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Abstract - High resistance DC arc faults in the DC microgrid can create serious damage to the microgrid and put the operator's 

safety in danger. If it is not quickly found and eliminated. Available pattern-based fault identification approaches do not perform 

as expected due to the nonperiodic nature of arc fault and the presence of multiple switching converters. This research suggests 

using Wavelet Transform (WT) in conjunction with deep neural networks to detect arc faults in DC microgrids. Multi-Layer 

Perceptron (MLP)/Dense neural networks and Convolution Neural Networks (CNN) have been employed in this proposed 

methodology. The MATLAB simulation using the Cassie arc model is developed, and simulation results. According to the 

simulation results, MLP and CNN have respective arc fault detection accuracies of 95.5% and 96.4%. The result also shows that 

CNN performs better in various degrees of noisy signal conditions. 

 
Keywords - Deep neural networks, Fully connected networks, Multi-Layer Perceptron, Convolutional Neural Networks. 

1. Introduction 
The DC microgrid with incorporated solar generation is 

the most simple, stable, cost-effective, adaptable, and 

profoundly effective answer to individuals living without 

admittance to power [1-2]. Two criteria can be used to 

categorise DC microgrid faults involving short circuits and 

arcs. A DC arc fault results in a DC microgrid because of 

insulation degradation in the electrical conductor and high DC 

voltage. Such a fault, if it goes undetected and is not 

extinguished can cause damage to the entire system and cause 

fires. Unsafe arc faults can occur as series or parallel arcs [3].  

 

When the conductor is connected in series with the load 

breaks, a series arc may form. Series arcs usually do not 

produce enough heat energy to start a fire. The parallel arc 

fault, which can appear as a ground fault or a short circuit, is 

more hazardous. The probability of a fire and the exponential 

growth in thermal energy are caused by the high fault current 

in a parallel arc fault. The system impedance and the arc fault's 

own impedance both restrict the amount of current that can 

flow in a short circuit, parallel arc fault. [4]. In contrast to an 

AC system, where power electronics are usually only present 

at the point-of-load, a DC system necessitates the installation 

of DC/DC converters in the distribution system. These 

converters provide dispersed capacitance to the system, 

creating many pathways for high-frequency signals to couple. 
The arc signature may be obscured by high-frequency noise 

from the DC/DC converter switching and other 

electromagnetic interference, enabling an arc to form and 

persist undetected [5]. Extremely less exploration is devoted 

to acknowledging DC arcs when contrasted with AC arc 

detection. The fact that arcs in DC systems are not periodic 

due to which pattern recognition-based detection methods 

may not be able to identify their amplitude or frequency tracks 

which poses a major challenge to their detection [6]. 
 

Snehamoy Dhar et al. have presented a new differential 

current-based quick fault detection and location scheme for 

multiple photovoltaic-based DC microgrids [7]. However, this 

method does not consider the effect of switching noise signals. 

Suyong Chae et al. proposed a series DC arc fault detection 

algorithm using relative magnitude comparison [8]. DC 

microgrids with several switching devices are unsuitable for 

this technique. Wavelet-based arc fault detection is proposed 

by Wang et al. [9]. Time-frequency domain information gives 

better results compared to Discrete Fourier Transform (DFT). 

However, it fails to provide information regarding the type of 

arc fault and its location. Miao Li et al. presented a FET-based 

hybrid method to detect series arc faults. When an arc fault 

occurs, the current change is detected using the window-by-

window detection approach. Hence, the correctness of the arc 

fault recognition is directly proportional to the selection of 

window size [10]. Dual state-parameter estimation-based 

series arc fault detection required a serious level of accuracy 

for parameter estimation [11]. Hence it is important to propose 

an arc fault detection method that could accurately detect the 
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type of the arc fault and its location much before creating 

damage to the system.  In order to identify DC arc faults, this 

research suggests a fault recognition and classification 

technique based on Deep Neural Networks (DNNs). Any kind 

of data can be processed using the DNN method, primarily 

CNN, which can extract features on its own. The suggested 

fault detection method's performance is independent of the 

location of the defect and the rate of signal deterioration. 

There are six sections in the paper. Section 1 comprises a brief 

introduction to arc faults in DC microgrids and their 

complexity. Section 2 explains the proposed methodology of 

DC arc fault detection. Section 3 comprises the MATLAB 

simulation model to test the proposed DC arc fault detection 

scheme and its results, followed by a conclusion in Section 4. 

 

2. Methodology 
Figure 1 shows the methodology of arc fault detection in 

the form of a flow chart. In this research, we propose and 

implement Machine Learning (ML) based methods for arc 

fault detection and classification in DC distribution systems. 

Compared to conventional computational algorithms, the 

machine learning-adapted methodology has a higher 

computational accuracy. The features involved in developing 

machine learning for fault detection and classification are the 

fundamental frequency, fault voltage, and current components 

at fault circumstances.  

 

High-frequency transient signals can be seen in the 

voltage and current waveforms during failures. To extract the 

necessary information, transitory signals are broken down 

using the Wavelet Decomposition (WD) approach. The fault 

information extracted from wavelet transform is used to train 

classifiers Convolutional Neural Networks (CNNs) and Multi-

Layer Perceptron (MLP). Using a confusion matrix, the 

created algorithm's performance is evaluated, and the 

outcomes show remarkably high accuracy.

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Methodology of DC arc fault detection 

 
Fig. 2 DC arc fault equivalent circuit 
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2.1. Types of Arc Fault Data Set  

In order to analyse the features of the arc fault, Figure 2 

depicts an analogous circuit for DC series and parallel arc 

faults. The analogous circuit consists of loads, an arc fault 

production unit, and a DC/DC converter. DC arc faults can be 

produced in series or parallel by the arc fault generation unit. 

 

This research uses the Cassie arc model to explain how an 

arc defect starts in a DC microgrid circuit [12]. The way the 

arc interacts with the electrical circuit during a fault is known 

as the Cassie arc. The following differential equation uses the 

Cassie arc model to represent the dynamic properties of a DC 

arc. 
 1

𝑔

𝑑𝑔

𝑑𝑡
=

𝑑 ln 𝑔

𝑑𝑡
=

1

𝜏
(

𝑢2

𝑈𝑐2 − 1)                    (1) 

Where,  
𝑔 the arc's conductance,  

𝑢 Voltage in the arc, 

𝐼 Flow of current via the arc,  

𝑈𝑐 Constant arc voltage,  

τ Arc time constant. 

 

The above equation states that the nature of the arc fault 

signal depends on arc resistance. Arc resistance is the function 

of arc gap length. An arc fault also depends on source voltage 

as well as changes in load conditions [13]. The DC microgrid 

is split into two zones for the study. Five situations are used to 

capture the data: normal, parallel arc fault in zone 1, parallel 

arc fault in zone 2, series arc fault in zone 1, and series arc 

fault in zone 2. The simulation time is fixed as 2s for a 20 kHz 

sampling frequency. 
 

2.2. Data Preprocessing 

The arc fault data collected from the simulation model is 

augmented by adding noise signals. This additional noise 

signal represents the practical signal that results due to the 

presence of electromagnetic interference noise and measuring 

instruments [14]. Zero mean Gaussian distribution random 

noise is added to generate 10 different faults from one 

measurement. This facilitates an increment in the data set by 

10 times. Further expansion of the data set is done by applying 

2nd and 3rd order smoothing and sharpening fault signals. 

Therefore, for training purposes, 10 times (after adding 

random noise and smoothing and sharpening) of actual data is 

available [15]. 
 

2.3. Discrete Wavelet Transform 

A Discrete Wavelet Transform (DWT) is a method that 

breaks down a given sign into low-frequency and high-

frequency components [16]. This work uses the dyadic-

orthonormal wavelet transform using Daubechies 3 (db3) to 

identify the features of arc faults. The arc fault signal is 

measured at each zone, and wavelet coefficients are calculated 

using DWT. The system's fault status is indicated by a change 

in energy at one or more frequency bands. This decomposed 

energy signal is utilized to train the respective classifier. 

2.4. Deep Neural Network 

In Artificial Intelligence (AI), deep learning is a subfield 

of machine learning. DNN is predominantly utilized for 

classification and pattern recognition [17]. Out of the different 

architectures of DNN, the most widely used varieties are 

Convolutional Neural Networks (CNNs) and Multi-Layer 

Perceptron (MLP), sometimes referred to as dense neural 

networks. 
 

2.4.1. Multi-Layer Perceptron/Dense Neural Network 

Multilayer Perception is the most popular Machine 

learning algorithm. In a multilayer perceptron, every node in 

the current layer is linked to every node in its preceding layer's 

output [18]. The classifier is the final layer, and the number of 

neurons in the output layer corresponds to the number of 

classifications in the dataset.  

 
2.4.2. Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) are Deep 

Learning algorithms that possess the ability to receive an input 

signal, allocate significant learnable weights and biases to 

different signal features, and distinguish between them [19]. 

A CNN is a neural organization including a feed-forward 

structure that contains three sorts of layers: Convolutional 

Layer (CL), the Sub-inspecting Layer (SL), and the Fully-

connected Layer (FL). The FL layer is the final layer of a 

dense network where the types of faults and the number of 

outputs are equal. 

 

3. Results and Discussion  
3.1. Dataset Collection and Pre-processing 

MATLAB/Simulink is used to model the DC arc fault 

detection circuit, as seen in Figure 3 [20]. Two km is the length 

of the DC line. Zone 1 is the area up to one kilometre of the 

DC line from the source, and Zone 2 is the remaining distance. 

The Cassie arc model is placed at zone 1 and zone 2 in series 

and parallel to simulate series and parallel arc faults [20]. The 

resistive DC load is connected at the end of the system. The 

input to the DC bus is 100V DC. AC component with 

frequencies of 2000 Hz represents power electronic switching 

noise, and 120 Hz frequency components represent power 

ripple are added to create realistic readings. Table 1 displays 

the remaining simulation parameters. 
 

The system is marked as normal once it is simulated under 

typical circumstances. The following time intervals are used 

to gather data for the fault conditions: 0-0.5 s, 0-1 s, and 0-2 s. 

The fault conditions are: 
• Zone 1 series arc fault  

• Zone 1 parallel arc fault 

• Zone 2 series arc fault  

• Zone 2 parallel arc fault 

 

Each type of fault is simulated 1000 times by varying the 

arc time constant τ, constant arc voltage Uc and loading 
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conditions. All these types of fault signals are undergone pre-

processing. The signal pre-processing is done by data 

augmentation by adding zero-mean Gaussian distribution 

random noise and applying 2nd and 3rd order smoothing and 

sharpening. The total data set includes 13 cases, split into one 

normal case and 12 fault cases collected from 4 arc faults at 3 

different time intervals. Total data obtained is 13X1000 = 

13,000. These data sets are then undergoing augmentation, 

and the size of the data set is increased to 13,000X10X4 =5, 

20,000. 

 

Figure 4's waveforms display the load voltage at zone 1, 

arc voltage, bus voltage, and AC harmonic voltage with arc 

time constant τ = 0.0008, Uc = 500 V. Similarly, other fault 

types are simulated and collected in the dataset.

  
Table 1. Description of simulation parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 MATLAB simulation model of proposed arc fault detection 

  

Sr. No Simulation Block Parameters Description 

1 Voltage of DC source 100 V 

2 AC Harmonics 1 

Voltage amplitude = 10 V, Phase in degree = 0,  

Frequency = 2000 Hz,  

Sample time = 0 

3 AC Harmonics 2 

Voltage amplitude = 10 V, Phase in degree = 0, 

Frequency = 120 Hz,  

Sample time = 0 

4 Cassie arc model 

Time constant τ = 1.2 µsec, Uc = 500V,  

g(0) = 1000 sec  

Contact separation starts= 1 ns 

5 Load Active power = 10KW, nominal voltage =1000V. 

6 Buffer 64 channels in the output buffer 

7 
DWT (Dyadic analysis 

filter bank) 

Wavelet order = 3,  

number of levels = 4,  

filter (mother wavelet) = Daubechies 
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3.2. Computation of Input Features for Classifier Using 

DWT 

The particular and approximate coordinator data are 

shown in the Figure 5 wavelet multi-resolution analysis 

window when an arc flash happens in zone 1 of DC line 

operation. In this instance, zone 1 of the DC wire experiences 

an arc. 

 

 
Fig. 4 Arc fault waveform for bus voltage, AC harmonic voltage, arc 

voltage and load voltage 

 

 
Fig. 5 Wavelet multi-resolution analysis of load voltage during arc fault 

occurs in zone1 at 0.3 second 

 

As a result, before the arc is started, the detail coordinator 

data in this case—D1, D2, D3, D4, and Approximation A4—

are constant. The arc is started at 0.3 seconds, after which the 

coordinator data changes. For multi-resolution wavelet 

transform analysis, the Daubechies mother wavelet is 

employed.  

 

Figure 6 displays the wavelet spectrum energy at level 4 

of the multi-resolution analysis for the approximate signal A4, 

detail signals D1, D2, D3, and D4. During normal functioning, 

it is found that the spectral energy of the signals remains 

constant inside this window. 

 
Fig. 6 Localised energy spectral of  wavelet coefficient for arc fault 

occurs in zone 1 at 0.3 second 

 
3.3. Arc Fault Detection Using Proposed Deep Neural 
Network 

The proposed arc fault detection method uses two 

different networks, MLP and CNN. The TensorFlow 

framework is utilised to develop both networks. The total 

dataset is categorized into 70% for training, 20% for 

validation, and 10% for testing.  

 

The designs of both networks are based on the size of the 

input signal. Process weights are initialised randomly, and the 

loss function is defined during training. The method that is 

being given uses the cross-entropy function as a loss function. 

By modifying the weight of the neurones and reducing the loss 

function, a higher precision is attained [21]. The networks are 

trained with defined fault types and labeled accordingly.  

 

The validation step is initiated at the end of the training. 

Validation processes verify the accuracy of the trained 

network and check for errors. The fault detection scheme 

works in two steps; initially, input signal probabilities that 

belong to a certain fault type are calculated. This calculated 

probability is compared with the trained network data set 

probabilities. Based on the probability match, the fault type 

and location are identified. 
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Fig. 7 Learning rate of network Vs epoch 

 
Table 2. Fault detection accuracy in percentage 

Fault Type MLP CNN 

• Normal 100 100 

• Zone 1 series arc fault  96 96 

• Zone 1 parallel arc fault 93 92 

• Zone 2 series arc fault  96 96 

• Zone 2 parallel arc fault 95 94 

  

 
Fig. 8 Training accuracy of fault detection of model 

 

Table 2 displays the classification accuracy of Dense and 

CNN during arc faults and in healthy conditions. The length 

of the input signal is equal to the number of neurons in the 

input layer. A dense network is designed with three hidden 

layers with several nodes 1500-1000-500 respectively [22]. 

The number of classes decides the number of nodes in the 

output layer. In this proposed technique, the number input 

signal is classified into 5 classes. The activation technique 

used for hidden layers is ReLu, and the output layer is soft-

max. The cross-entropy loss function is used during training, 

and training is done with Adam optimizer. After every 25 

epochs, the learning rate is updated to half for convergence to 

the global minimum shown in Figure 7. 
 

The input size of CNN is the same as that of the fault 

signal. There are three convolutional layers, and each layer has 

4, 8, or 16 filters, respectively [23]. The input and output layer 

activation methods, as well as the loss function minimization, 

are identical to those used in dense neural networks. In order 

to achieve convergence to the global minimum, the learning 

rate in this network training is also changed every 25 epochs 

to half. The average accuracy for all types of fault detection 

with CNN is shown in Figure 8. 

 

Figure 9 shows the loss with respective epochs for 

training and validation of CNN. Hard stopping criteria of 100 

epochs are used and can also be replaced with the consecutive 

epoch error difference criteria, wherein the training is stopped 

if the consecutive epoch error difference is not more than the 

chosen threshold. The figure shows the accuracy of training 

and validation over the training epochs, which correlate with 

the loss curves. 

 
Fig. 9 Loss vs epoch curve of both training/validation of the model 

 

For the single defect, the training time is 40 ms. When the 

model is being tested, the model file is loaded and trained as 

an HDF file. To evaluate the complexity of networks, the 

number of layers varies from 2 to 6 in both Dense and CNN. 

It is observed that the classification accuracy reaches the 

maximum value for 3 layers. For further increases in the 

number of layers, accuracy gets saturated for both networks.  
 

By introducing 10dB of Gaussian random noise into the 

fault signal, the suggested protection strategy is additionally 

tested in a noisy setting. This added noise represents the high-

frequency noise produced by communication channels and 

measuring devices used in the DC microgrid [24].  

 

Comparatively, CNN performs well in the presence of 

noise. The accuracy of both networks is shown in Table 3 in 

the presence of a noise signal. 

 
Table 3. Fault detection accuracy for noisy signal in percentage 

Fault Type MLP CNN 

• Normal 100 100 

• Zone 1 series arc fault  94 95 

• Zone 1 parallel arc fault 94 95 

• Zone 2 series arc fault  95 96 

• Zone 2 parallel arc fault 94 96 
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The confusion matrix summarizes the performance of the 

classification algorithm in the form of a table.  

A = 

   100     0     0     0     0 

     1    95     1     2     1 

     2     1    95     0     2 

     1     1     1    96     1 

     0     1     2     1    96 

 

The overall statistics of the performance of CNN as 

summarized and shown below. 

Accuracy: 0.9640 

                             Error: 0.0360 

                       Sensitivity: 0.9640 

                       Specificity: 0.9910 

                         Precision: 0.9640 

                 FalsePositiveRate: 0.0090 

                          F1_score: 0.9639 

    MatthewsCorrelationCoefficient: 0.9550 

                             Kappa: 0.8875 

 

Two other available classifiers, the Support Vector 

Machine (SVM) and the Gaussian Mixture Model (GMM), are 

also compared with the proposed method. Based on 

classification accuracy, specificity, and execution time, the 

performance of the suggested classification technique is 

compared with that of GMM and SVM. The preprocessed arc 

fault data set is used to evaluate the effectiveness of SVM and 

GMM. Figures 10, 11, and 12 show these classifiers' relative 

performance for the same dataset. 

 
Fig. 10 Accuracy comparison 

 

 
Fig. 11 Specificity comparison 

 
Fig. 12 Execution time comparison 

 

The results demonstrate that, when compared to existing 

classifiers, the suggested classifiers have higher accuracy, 

higher specificity, and lower execution times for fault type 

discrimination. The accuracy achieved for classification using 

the TensorFlow and the MATLAB MLP and CNN models are 

96% and 95.6%, respectively, as shown in Table 2. The CNN 

shows an improved detection accuracy of 96.4 % in the 

presence of noise, as shown in Table 3. The confusion matrix 

and overall statistic performance also show the exceptional 

performance of CNN in arc fault detection. The proposed 

method's performance is compared with GMM and SVM 

classifiers. The result shows that the accuracy achieved by 

MLP and CNN is 95.4% and 96.4%, respectively, Whereas 

GMM gives 84% and SVM 89%. The specificity of the 

proposed MLP and CNN are 0.961 and 0.991 compared to 

GMM and SVM, which give 0.889 and 0.923, respectively. 

The execution times required by proposed classifiers are 

comparatively much less than GMM and SVM. The proposed 

algorithm is also tested with experimental results 

demonstrating an accuracy of 96% for MLP and 98% for 

CNN. Thus, we can conclude that the proposed methodology 

of the DNN classifier proved an efficient method for DC arc 

fault detection. 
 

4. Conclusion 
In this paper, the application of deep neural networks for 

DC microgrid arc fault diagnosis is demonstrated. Arc failures 

are simulated, and a DC microgrid serving DC load is 

modelled in MATLAB. The input for the neural networks is 

the arc failure signal that was acquired from the simulation. 

The defect feature is extracted using the discrete wavelet 

transform, which also serves as the neural network's input. 

This work has emphasised how important it is to choose the 

best DNN setup in order to maximise network performance. It 

has been noted that the CNN performs better than the Dense 

network when there is noise (96.4%), but the Dense network 

performs better when there is no noise (96%). The 

performance of the proposed method is also verified in terms 

of accuracy, specificity, and execution time result shows 

96.4% accuracy, 0.991 specificity, and 0.1 execution rate 

comparatively existing classifiers. Therefore, based on the 

data, we can say that the suggested deep neural network 

models outperform other classifier models in the given 

situation. 
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