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Abstract - The Internet of Things (IoT) stands as a pivotal facilitator of technology, garnering considerable attention from the 

global scientific community. Nevertheless, the proliferation of IoT devices and the vast amounts of data they accumulate pose 

a significant vulnerability to an array of security threats and susceptibilities. The growing adoption of IoT infrastructure has 

given rise to challenges, including node failures, heightened threats, and increased susceptibility to attacks, anomalies, and 

potential security breaches. Addressing and mitigating these issues constitute a pivotal domain within the overarching realm 

of IoT. The current study presents a novel approach for anomaly classification in IoT Security by employing a Convolutional 

Neural Network (CNN) with feature optimization via the Normalized Bayesian Optimization Algorithm (NBOA). This research 

strives to enhance anomaly detection accuracy beyond the limitations of conventional CNN models. The proposed CNN is 

trained using meticulously optimized features extracted from the extensive IoT23 dataset, which is provided in CSV format. 

The utilization of this dataset results in notably superior performance, contributing to the overall effectiveness of the proposed 

anomaly detection approach. The proposed model attains an impressive accuracy of 98.69%, outperforming standard CNN 

models. The methodology entails leveraging NBOA for fine-tuning feature selection, thereby augmenting the model's ability to 

discern anomalies based on input values. 

Keywords - IoT, Deep Learning model (DL), Bayesian optimization, Anomaly detection, Classification.  

1. Introduction  
The IoT refers to a network of interconnected devices 

and objects that communicate and share data seamlessly over 

the internet [1]. These devices collect and exchange 

information to enable intelligent and automated decision-

making [2]. IoT technology spans various domains, including 

smart homes [3], healthcare [4], industrial automation [5], 

and more, revolutionizing how to interact with the 

surroundings and enhancing efficiency through the 

integration of digital connectivity. It has emerged as a 

transformative technology, capturing substantial attention 

from the global scientific community. Its impact on daily life 

is profound, linking physical and virtual devices to deliver 

remarkable advantages, including enhanced automation, 

control, heightened productivity, real-time information 

access, and increased efficiency.  

Figure 1 displays various applications associated with 

the IoT. The widespread adoption of IoT devices presents 

new challenges, particularly the susceptibility to anomaly 

attacks [6]. Anomalies in IoT data streams, indicating 

malicious activities or system malfunctions, underscore the 

critical need for early detection to ensure the security of IoT 

ecosystems. Conventional detection techniques, including 

Machine Learning (ML) with both supervised [7] and 

unsupervised algorithms [8], are instrumental in identifying 

anomalies. Supervised learning uses labelled datasets [9], 

while unsupervised learning adapts to evolving threats 

without predefined labels.  

Anomaly classification [10] is crucial because of the 

complex as well as the dynamic behaviour of the IoT 

environment, providing a nuanced understanding of 

irregularities and enabling timely responses to potential 

security threats. This classification is essential for 

organizations aiming to mitigate risks and maintain the 

seamless operation of their IoT networks. 

In this study, a methodology was proposed for anomaly 

classification in IoT security, employing a CNN [11]. Firstly, 

a multiclass classifier is proposed tailored to categorize 

anomalies within the IoT Security domain, leveraging a 

dataset comprising 24 features (IoT23 Dataset). Then, DL 

techniques are applied through the use of a CNN, allowing 

the model to discern intricate patterns within the data. Next, 

the features fed into the CNN are optimized with precision 

through the implementation of the NBOA [12]. 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1 Applications of IoT 

This optimization step improves the model's capacity to 

grasp and comprehend the distinctive attributes of IoT data, 

contributing to a more effective and accurate anomaly 

classification system. Through this innovative combination 

of CNN architecture and NBOA, the major aim is to advance 

anomaly detection capabilities in IoT Security, providing a 

robust solution to the challenges posed by evolving security 

threats. The proposed work on classification in the complex 

and dynamic realm of IoT security has three main 

contributions: 

• An efficient DL model for anomaly classification in IoT 

security which addresses the challenge of detecting and 

classifying novel network attacks that evade traditional 

detection methods. 

• The efficiency associated with the recommended 

strategy in attaining precision and effective classification 

of typical and attack data is highlighted through 

contrasting the offered approach with prior studies. 

• It identifies research gaps in the literature and provides 

future scopes for further investigation, particularly in 
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exploring diverse data preparation methods, feature 

extraction techniques, and deep learning approaches. 

 

The remaining sections of the document are organized as 

follows: In Section 2, the literature review and research gaps 

are provided. The methodology is highlighted in Section 3. 

The detailed results of the proposed method and the 

comparative study with existing research work are presented 

in Section 4. Finally, the conclusion and future scopes are 

discussed in Section 5. 

2. Literature Review 

Chakraborty et al. [13] launched a rule-based deep neural 

network for detecting and classifying novel network attacks, 

specifically addressing challenges posed by polymorphic 

techniques. The model, tested on the CICIDS 2017 dataset, 

showed impressive results. However, a limitation is the 

absence of testing across diverse network traffic classes and 

novel attack types, leaving the evaluation of its attack 

prediction capability incomplete. The study also did not 

explore the application of RNN/LSTM for handling 

anomalies in time series IoT traffic data, limiting the 

comprehensiveness of the anomaly detection methodology. 

Vishwakarma et al. [14] Outlined is a two-stage Intrusion 

Detection System (IDS) for IoT, employing Naive Bayes for 

data categorization and an unsupervised elliptic envelope for 

subsequent classification. The model attained an accuracy of 

97% on the NSL-KDD dataset and 86.9% on the 

UNSW_NB15 dataset. However, limitations such as 

multiclass classification challenges, feature engineering 

issues, and the absence of real-time deployment with 

preventive action capabilities may hinder the practical 

applicability of the proposed IDS in complex and time-

sensitive security scenarios. 

 

Shah et al. [15] suggested a system paradigm for IoT 

security based on AI, employing LSTM, GRU, and ANN on 

the X-IIoT dataset, showcasing a comprehensive 

methodology and robust results. A limitation of this study is 

the absence of an analysis of the AI model's security 

performance against adversarial attacks on the IoT system, 

leaving potential vulnerabilities unexplored and unaddressed 

in the current research. Shami et al. [16] brought up an 

innovative anomaly detection technique designed for IoT 

devices at the host level, leveraging system call data and 

dynamic Markov chains to overcome segmentation and fixed 

threshold challenges. Evaluated on UNM and PiData 

datasets, the approach demonstrated impressive results with 

low false positives, high accuracy, and a notable F1 score, 

providing an efficient solution for syscall-based anomaly 

detection in IoT. However, limitations include the lack of 

exploration into the effectiveness of predetermined 

probability thresholds and fixed-length segmentation, with 

the study lacking empirical evidence or evaluation results. 

Additionally, the evaluations mention a lack of specific 

details on the datasets, potentially limiting the findings' 

generalizability. 

 

Awajan et al. [17] suggested an IoT IDS based on DL 

with a fully connected, four-layer network, achieving 

impressive results: accuracy, precision, recall and an F1-

score of 93.74%, 93.71%, 93.82% and 93.47%, respectively. 

It effectively addressed network heterogeneity, offering a 

scalable, platform-independent framework. However, 

limitations include the absence of a developed platform-

independent framework from the system and a lack of 

exploration into the efficiency of a lightweight version, 

leaving potential improvements unexplored. Bhavsar et al. 

[18] presented the PCC-CNN model for IoT IDS, 

outperforming traditional ML in NSL-KDD, CICIDS-2017, 

and IOTID20 datasets. Limitations include the absence of 

real-time datasets, exploration of anomaly detection 

pipelines, and overlooking imbalanced attacks and data 

handling techniques. Vigoya et al. [19] proposed CIDAD, a 

CoAP-IoT anomaly detection dataset, achieving notable 

results but limited by dataset reliance and a focus on shallow 

ML models, suggesting potential for future research 

expansion. 

 

Mukherjee et al. [20] utilized supervised ML models on 

a 350 K dataset to predict anomalies in IoT systems, 

achieving an average accuracy for the entire dataset, 

showcasing the effectiveness of LR, DT, RF, and ANN in 

identifying threats and anomalies in smart devices, with a 

novel application on the Ds2OS dataset, emphasizing the 

need for further research to understand the correlations 

between IoT networks and attacks for enhanced prevention 

strategies. A limitation of this study is the lack of exploration 

into the varying operation of micro-services in the IoT 

network at different times, potentially leading to anomalies 

due to fluctuations in typical behavior within IoT services. 

Odeh et al. [21] laid out an innovative ensemble-based DL 

approach, incorporating LSTM, GRU, and CNN methods for 

anomaly detection, achieving outstanding accuracies for 

CNN-LSTM and CNN-GRU, respectively, using the NSL-

KDD dataset and showcasing the effectiveness of this 

combined framework in promptly and precisely detecting 

anomalies. 

 

Yazdinejad et al. [22] launched a powerful ensemble DL 

model for cyber threat hunting in imbalanced IIoT datasets, 

achieving exceptional accuracies. The study's limitations 

include the inability to identify anomalies and their specific 

locations in the system for enhanced protection of data 

processing and analysis, potentially leading to serious 

failures or shutdowns in the Industrial IoT. Additionally, the 

work does not explore multi-view approaches to optimize 

accuracy, presenting a potential avenue for future 

investigation. Hazman et al. [23] introduced the IDS-SIoEL 

framework for IoT-based smart environments, employing 

Ensemble Learning with an optimal anomaly detection model 
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using AdaBoost, Boruta, mutual information, and correlation 

feature selection techniques, achieving impressive 

performance in accuracy, 33.68 seconds for learning, and 

0.02156 seconds for detection on IoT-23. A limitation of this 

study is the exclusion of multi-class classification and an IDS 

model utilizing DL algorithms. 

 

Alwasel et al. [24] proposed integrating graph theory 

with ML for aberration detection in industrial IoT, 

showcasing improved classification accuracy for LR, support 

vector machines, and K-means clustering. However, a 

limitation lies in the need for further investigation to optimize 

strategies and interactions between graph theory and network 

data analysis. This includes exploring diverse data 

preparation methods, feature extraction techniques, and ML 

approaches to achieve accurate and efficient classification of 

normal and attack data. Elsayed et al. [25] suggested that the 

ToN-IoT dataset, a Guaranteed Automated Two-level IDS 

utilizing an improved Long Short-Term Memory system, 

performed better in terms of accuracy, detection rate, and 

precision, thereby addressing security threats in IoT and SDN 

with remarkable effectiveness. The limitation of this study 

lies in its current state, lacking refinement through feature 

selection, inability to detect zero-day attacks on IoT systems, 

and not yet being tested in real-world IoT networks composed 

of mobile devices. 

 

Saba et al. [26] proposed a CNN-centric method for 

anomaly-based Intrusion Detection Systems (IDS) in IoT, 

applying it to the NID and BoT-IoT datasets and achieving 

notable accuracy levels, addressing critical security 

challenges and demonstrating the effectiveness of DL in 

enhancing IoT security. The limitation of this study lies in the 

need for further research and improvements in IoT to improve 

threat detection rates, highlighting the need to construct and 

create security protocols both inside and outside of IoT 

equipment, with the goal of creating techniques utilizing a 

variety of algorithms, including numerous DL algorithms. 

K.-H et al. [27] suggested IMIDS, CNN-based IDS for IoT 

devices, achieving an F-measure of 97%, outperforming 

competitors, and addressing the training data shortage issue 

by employing a novel attack data generator. Yet, the 

limitation lies in the evaluation of two popular IDS datasets 

without exploring real-world IoT scenarios. 

 

Shafiq et al. [28] explored the transferability of a 

pretrained autoencoder model across IoT devices, achieving 

an average improvement in detection accuracy for Mirai, 

there was a percentage of 9.52%, while for Bashlite, it stood 

at 44.59%, showcasing the most significant enhancement 

observed at 26.68% and 73.00%, respectively in transfer 

learning, using collections comprising seven devices affected 

by Mirai and nine devices affected by Bashlite, yet 

limitations include the lack of deep relationship among static 

features of IoT devices and their typical traffic patterns, 

suggesting the need for more representative feature datasets. 

Salman et al. [29] proposed a framework utilizing ML for the 

identification of IoT devices, classification of traffic, and 

detection of malicious network activity, attaining as much as 

94.5% accuracy in identifying device types, 93.5% accuracy 

in classifying traffic types, and 97% accuracy in detecting 

anomalous traffic using a diverse dataset, predominantly 

highlighting the effectiveness of RF, yet acknowledging the 

challenge of detecting unknown traffic types and the potential 

impact of tunneling and anonymization on classification 

accuracy. Ullah et al. [30] presented a comprehensive 

exploration of DL models, including LSTM, BiLSTM, GRU, 

and hybrid architectures, achieving high performance 

parameters on seven datasets, demonstrating promising 

results while acknowledging the need for further 

investigation into optimization techniques for small datasets 

and the exploration of ensemble methods. 

 

Research in IoT security and anomaly detection often 

lacks robust anomaly classification, hindering practical 

applicability. Additionally, studies commonly overlook 

comprehensive evaluations across diverse IoT scenarios and 

attacks, limiting the generalizability and effectiveness of 

proposed detection methods. Bridging these gaps is crucial 

for enhancing real-world applicability and developing robust 

IDS for IoT security. 

 

3. Materials and Methods 
3.1. Dataset Description 

The IoT-23 dataset is a recent compilation of network 

traffic data originating from IoT devices. It was created in 

collaboration with Avast Software in Prague and captured at 

the Stratosphere Laboratory, AIC group, FEL, CTU 

University, Czech Republic. The features meticulously 

optimized and utilized for training CNN are derived from the 

comprehensive IoT23 dataset, specifically formatted in CSV 

for easy accessibility and analysis. The dataset is categorized 

into twenty captures, representing network traffic from 

infected IoT devices. Each capture is labeled with the 

malware sample's name executed during the scenario. 

Additionally, three captures depict benign network traffic 

from real IoT devices, labeled with the respective devices' 

names. It is noteworthy that every malevolent situation 

involves executing a particular virus example on a Raspberry 

Pi, utilizing different procedures as well as performing 

diverse activities. Figure 3 visually presents a sample dataset, 

offering a graphical representation of the data under 

consideration. 

 

The dataset is marked with labels that describe the type 

of network flow categorization through manual examination 

of the network. Labels include "Attack," signifying an 

attempt from the compromised device to infiltrate another 

host; "Benign," indicating no suspicious or malicious 

activities; "C&C" (Command and Control), denoting a 

onnection to a command-and-control server; "Okiru," 
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denoting characteristics of Okiru botnet; and 

"PartOfAHorizontalPortScan," signifying connections used 

for gathering information through a horizontal port scan for 

potential subsequent attacks. These labels are assigned based 

on payload and behavioral analysis, enriching the dataset 

with valuable insights for the development and evaluation of 

ML algorithms targeting IoT malware detection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Fig. 2 Block diagram of proposed methodology 

 
Fig. 3 Visualization of dataset 
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Fig. 4 Summary statistics 

 

3.2. Dataset Preprocessing and Exploratory Data Analysis 

Data preprocessing is a crucial step in preparing datasets 

for analysis and modeling. Null value checking involves 

identifying and handling missing data within the dataset. This 

process typically includes assessing the presence of null or 

NaN values in each column and deciding on appropriate 

strategies for imputation or removal. Duplicate value 

checking aims to identify and eliminate redundant entries 

within the dataset, ensuring data integrity. Duplicates can 

skew analysis results and lead to biased models, so their 

detection and removal are essential. By systematically 

addressing missing values and duplicates, data preprocessing 

enhances the quality of the dataset, laying a solid foundation 

for accurate and reliable analysis or model training. 

 

Exploratory Data Analysis (EDA) [31] encompasses 

various methods and techniques to gain insights into the 

underlying patterns and structure of a dataset. Some common 

EDA methods, including summary statistics, data 

visualization, feature distribution, and heat maps, are used 

here. 

 

Summary statistics are essential measures that provide a 

concise overview of the central tendency and dispersion of 

numerical data within a dataset, which is demonstrated in 

Figure 4. Figure 5 showcases the visualization of the data, 

presenting a graphical representation that aids in 

comprehending the patterns, relationships, or trends within 

the dataset. Table 1 shows the class labels and their 

corresponding counts.  

 

 
Fig. 5 Dataset visualization 
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Table 1. Count of class labels 

Class Label Count 

C&C 3328 

Attack 3826 

Part of A Horizontal Port 

Scan 

3816 

Benign 3788 

Okiru 3728 

 

 

Histograms are a fundamental and effective data 

visualization technique used in Exploratory Data Analysis 

(EDA) to illustrate the distribution of numerical data. This 

graphical representation divides the data into bins or intervals 

and displays the frequency or count of observations within 

each bin through vertical bars. Each bar's height represents 

the count of data points falling within the designated range. 

Figure 6 illustrates the distribution of features within the 

dataset, providing a visual representation of how the various 

elements are spread or concentrated. 

 
Fig. 6 Feature distribution 
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3.3. Bayesian Optimization 

Bayesian optimization plays a pivotal role in refining the 

features used in CNN for anomaly classification in IoT 

security. Specifically, the study employs the NBOA to 

optimize the features fed into the CNN. Bayesian 

optimization is a powerful iterative technique that leverages 

probabilistic models to systematically explore and exploit the 

parameter space, seeking optimal configurations.  

 

In this study, NBOA ensures that the CNN is trained on 

features that are finely tuned and adapted to the unique 

characteristics of the IoT23 dataset. This strategic 

optimization process enhances the model's overall 

performance, contributing to the accurate and efficient 

classification of anomalies in IoT security. 

 

Figure 7 presents a flowchart illustrating the process of 

Bayesian optimization within the study. This visual 

representation delineates the sequential steps involved in 

leveraging Bayesian optimization, showcasing how the 

algorithm iteratively refines and explores the parameter 

space. Bayesian optimization leverages Gaussian processes 

[32], which are probabilistic or Bayesian models, to 

iteratively find the minimum of a function (f(x)) within a 

bounded set (X). Unlike traditional optimization methods that 

provide point estimates, Bayesian optimization considers the 

entire a-posteriori predictive distribution, allowing for the 

natural incorporation of uncertainty statistics. This method is 

particularly effective in scenarios where sampling the 

function is resource-intensive. It builds a posterior 

distribution of functions, continually refining as more 

observations are made. 

 

Figure 8 exhibits the Gaussian process and utility 

function after nine steps in the study, offering a visual 

depiction of how these components evolve during the 

Bayesian optimization process. Matching a Gaussian process 

to known samples, enhancing the posterior distribution, and 

choosing the next exploration point using an exploration 

strategy are all steps in the optimization process. By 

minimizing the number of steps required to uncover nearly 

ideal parameter combinations, Bayesian optimization strikes 

a balance between exploration and exploitation. Variational 

Bayes approach is employed to normalize the probability (𝑷𝒓 

(data)) in Bayes' Theorem. Optimization aims to find the best 

parameters and optimize the quantity 𝑷𝒓(𝒑𝒂𝒓𝒂𝒎𝒔|𝒅𝒂𝒕𝒂) 

with a focus on increasing this quantity during the exploration 

process. This iterative approach enhances algorithm certainty 

about regions in the parameter space worth exploring. 

 

𝑃𝑟(𝑝𝑎𝑟𝑎𝑚𝑠|𝑑𝑎𝑡𝑎) =
𝑃𝑟(𝑑𝑎𝑡𝑎|𝑝𝑎𝑟𝑎𝑚𝑠)𝑃𝑟(𝑝𝑎𝑟𝑎𝑚𝑠)

𝑃𝑟(𝑑𝑎𝑡𝑎)
          (1)

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Bayesian optimization 
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Fig. 8 Gaussian process and utility function after 9 steps 

 

 

 

 

 

 

 

 

Fig. 9 Basic CNN architecture 

3.4. Convolutional Neural Network 

In tasks related to classification, groundbreaking 

performance has been demonstrated by Convolutional Neural 

Networks (CNNs). Their superiority over other ML 

approaches stems from their ability to handle transformations 

such as scaling, rotation, and Field of View (FOV), providing 

robust results. A standard design for CNN includes layers like 

input, convolutional, pooling, fully connected, and output 

layers.  

The basic structure of a CNN model is illustrated in 

Figure 9. To effectively map an image's class labels, the input 

layer must initially receive the images. The Convolution 

Layer, serving as the core of a CNN-based DL model, 

employs a set of trainable convolution filters. The resulting 

two-dimensional maps are generated by taking the dot 

product of the input vector and the convolution filter. 

  The convolutional layer's operation on an input image X, 

where X has dimensions ijc and c represents the number of 

channels, is defined by the following Equation (2): 

𝑓(𝑋) = ∑ 𝑤𝑘 ∗ 𝑋𝑘 + 𝑏𝑐
𝑘=0                   (2) 

Variables in this context include weight (w), bias (b), 

nodes (k), and the convolution operator (*). A feature map is 

generated by applying convolution to an image using a 

weight vector within a convolution layer. In the training 

process, backpropagation is employed to adjust and optimize 

the weight vector. This layer is commonly integrated into 

CNNs because of the non-linearity introduced by the 

Rectified Linear Unit (RELU), ensuring a consistent gradient 

for all positive input values and addressing non-

differentiability. Equation (3) represents the ReLU function 

when these values are substituted. 

 

 
 

 

 
 

 
 

 

 

 
 

  
 

 
 

 

 
 

  
 

 
 

 
 

Input Layer 

Convolution 

Layer 

Pooling 

Layer 

Output Layer 

Fully Connected 

Layer 

Convolution 

Layer 

Pooling 

Layer 



Jisha Jose & J. E. Judith / IJECE, 11(8), 185-199, 2024 

 

194 

𝑅𝑒𝐿𝑈(𝑋) = {
0,             𝑖𝑓 𝑋 < 0

𝑋,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                 (3) 

To enhance training efficiency beyond what can be 

achieved with standard sigmoid or hyperbolic tangent 

functions, the ReLU function is employed in CNNs. Unlike 

traditional neural networks facing the vanishing gradient 

problem, integrating the ReLU activation function in CNN 

architectures can mitigate this issue. 

 

The pooling layer, situated between convolution layers, 

serves to down-sample the output from convolution layers. 

Utilizing two types of pooling functions, namely average 

pooling and max pooling, CNN reduces dimensionality 

without sacrificing meaningful information. Average pooling 

computes the average value for non-overlapping sub-

partitions of the convolved image, while max pooling 

achieves the same objective by returning the maximum value 

for each partition. The pooling layer contributes to 

intermediate dimensionality reduction between two 

convolution layers. 

 

The final layer in a typical CNN design is the fully 

connected layer, positioned just before the output layer. Each 

node in this layer connects to every other node, resembling a 

classic neural network with adjustable parameters. To reduce 

computational complexity, the dropout approach is applied in 

this layer, removing certain nodes and connections. As CNN-

based classification methods extract more intricate 

information, system complexity increases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

Fig. 10 Proposed model architecture 

The proposed neural network architecture is a sequential 

model designed for multi-class classification tasks using the 

Keras library built on top of TensorFlow. Figure 10 

represents the model architecture of the proposed model in 

the study, providing a visual depiction of the architecture or 

conceptual framework designed to address the objectives 

outlined in the research. The model follows a feedforward 

structure consisting of a linear stack of five Dense layers. The 

initial layer, with 128 neurons, accepts an input shape of 24 

features and applies the Rectified Linear Unit (ReLU) 

activation function, introducing non-linearity to capture 

complex relationships in the data. Subsequent layers, 

containing 64, 32, and 16 neurons correspondingly, also 

utilize the ReLU activation function. These hidden layers 

serve as feature extractors, progressively reducing the 

dimensionality of the input.  

 

The final layer, comprising 5 neurons and employing the 

softmax activation function, is tailored for multi-class 

classification. It outputs probability distributions across the 

five classes, facilitating the assignment of class labels to input 

data. The model is compiled using categorical crossentropy 

as the loss function, a standard choice for multiclass 

classification problems, and the Adam optimizer for efficient 

gradient-based optimization. The evaluation metric chosen is 

accuracy, providing insights into the model's performance 

during training. The training process involves iteratively 

adjusting the model's parameters over 500 epochs using a 

batch size of 500 instances. Finally, the model, after being 

trained, is employed to predict outcomes on the test data, 

generating class probabilities for each input instance.  

 

3.5. Performance Evaluation 

Table 2 offers a thorough summary of the performance 

metrics and their corresponding equations in the study. 

Table 2. Performance metrics with equation 

Performance Metrics Equation 

Accuracy 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  

Precision 
𝑇𝑃

𝑇𝑃+𝐹𝑃
  

Recall 
𝑇𝑃

𝑇𝑃+𝐹𝑁
  

F1-Score 
2 ×

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
  

TP- True Positive, TN- True Negative, FP- False 

Positive, FN- False Negative 
 

Table 3. Hyperparameters 

Parameters values 

Number of Epochs 4000 

Batch Size 500 

Iterations 500 

Loss function Categorical_crossentropy 

Optimizer Adam 

 
dense_input 

InputLayer output: 

input: [(None, 24)] 

[(None, 24)] 

 
dense 

Dense output: 

input:  (None, 24) 

 (None, 128) 

 
dense_1 

Dense output: 

input: (None, 128) 

(None, 64) 

 
dense_2 

Dense output: 

input: (None, 64) 

(None, 32) 

 
dense_3 

Dense output: 

input: (None, 32) 

(None, 16) 

 
dense_4 

Dense output: 

input: (None, 16) 

(None, 5) 



Jisha Jose & J. E. Judith / IJECE, 11(8), 185-199, 2024 

 

195 

4. Results and Discussion 
4.1. Hardware and Software Setup 

For consistent computational performance, Google 

Colaboratory and Microsoft Windows 10 are chosen for this 

research. The configuration comprises an Intel Core i7-

6850K processor running at 3.60 GHz with 12 cores, and an 

NVIDIA GeForce GTX 1080 Ti GPU equipped with 2760 

4MB memory. Table 3 furnishes a detailed account of the 

hyperparameters used in the study, presenting a 

comprehensive list and their respective values. 

In the specified model configuration, hyperparameters 

have a vital role in establishing learning dynamics and 

optimization strategies during the training process. 

"Categorical_crossentropy" loss function is chosen, 

indicating that the model is likely performing a multi-class 

classification task, while the "adam" optimizer is selected for 

its efficiency in adapting learning rates during training. The 

hyperparameter choices include training for a substantial 

number of epochs. These hyperparameters collectively 

influence the model's ability to converge to an optimal 

solution and can significantly impact the training efficiency 

and final performance of the DL model. 

4.2. Experimental Results 

Figure 11 showcases the accuracy of training and 

validation, offering insights into the model's performance in 

terms of training data, and Figure 12 visualizes the training 

and validation loss, offering a perspective on the model's 

convergence or divergence during the training period. The x-

axis corresponds to the number of epochs, providing a 

temporal view of the model's learning process. 

 
Fig. 11 Accuracy plot 

 
Fig. 12 Loss plot 



Jisha Jose & J. E. Judith / IJECE, 11(8), 185-199, 2024 

 

196 

The accuracy plot demonstrates the model's ability to 

correctly classify instances, reaching a peak accuracy of 

approximately 98.69% by the end of the training period. This 

upward trend indicates that the model continually refines its 

predictive capabilities, capturing intricate patterns in the 

training data. On the other hand, the loss plot portrays the 

model's convergence towards minimizing the training loss. 

As epochs progress, the model systematically reduces its 

training loss, indicative of improved optimization and the 

successful adjustment of internal parameters. The 

convergence of the loss curve suggests that the model is 

effectively learning from the training data, achieving an 

equilibrium between preventing overfitting and underfitting. 

Together, these plots demonstrate the model's outstanding 

performance, demonstrating high accuracy and minimal loss, 

demonstrating its capacity to accurately categorize 

abnormalities in the studied data.  

Table 4. Classification report of model 

Class Precision Recall F1-

Score 

C&C 0.98 0.97 0.98 

Attacks 0.97 0.98 0.98 

PartOfAHorizontalP

ortScan 

1.00 1.00 1.00 

Benign 0.99 0.99 0.99 

Okiru 0.99 0.99 0.99 

The classification report offers a thorough assessment of 

a model's effectiveness in several classes. A thorough 

analysis of the model's classification report, including 

precision, recall, and F1-score for every class, is provided in 

Table 4.  

The F1-score is the harmonic mean of precision and 

recall. Precision indicates the accuracy of positive 

predictions, while memory gauges the capacity to record all 

positive examples.  

Interestingly, the class "PartofaHorizontalPortScan" 

demonstrated immaculate model performance with perfect 

precision, recall, and F1-score. Other classes with precision 

and recall scores between 0.98 and 0.99, like "C&C," 

"Attack," "Benign," and "Okiru," also show good 

performance. These findings imply that the model has a good 

capacity for correctly classifying cases in a range of classes.  

Each class's total number of instances is displayed in the 

"support" column, which aids in understanding the 

distribution of data among the categorization groups. In 

summary, this classification report provides a thorough 

analysis of the model's efficacy, emphasizing its strong 

ability to differentiate between several classes with high 

recall, precision, and F1-score values. 

 

 
Fig. 13 Confusion matrix 
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Utilizing a confusion matrix, the experimental findings 

from the given data show a thorough assessment of a 

classification model's performance. Figure 13 displays a 

confusion matrix, which is essential for assessing the 

performance of a classification model’s efficacy in anomaly 

classification. A tabular representation of the model's 

predictions compared to the actual outcomes for each class is 

provided by the confusion matrix. Assessing the model's 

overall effectiveness, memory, precision, and accuracy in 

categorization is especially beneficial. The matrix provides 

information on true positives, true negatives, false positives, 

and false negatives by assigning a unique combination of 

expected and actual class labels to each cell. Table 5 provides 

a comprehensive display of the performance metrics 

associated with the proposed approach in the study. 

Table 5. Performance evaluation of the proposed model 

Performance matrix Values (%) 

Accuracy Score 98.69  

Misclassification Score 1.30  

Precision Score 98  

Recall Score 98 

F1 Score 98 

 

4.3. Performance Comparison 

The performance of the proposed anomaly detection 

system is assessed against existing models, evaluating 

computational efficiency. Table 6 provides a comparison of 

the proposed method with the existing models. 

Table 6. Performance comparison with existing methods 

Author Details Title Model Accuracy Precision Recall F1- 

Score 

Vishwakarma et al. 

[14] 

A new two-phase 

IDS with Naïve 

Bayes ML for data 

classification and 

elliptic envelop 

method for anomaly 

detection 

Elliptic envelop method 

for anomaly detection 

98.95 % 95.40% 97.51 % 96.44 % 

Awajan et al. [17] A Novel DL-Based 

IDS for IoT 

Networks 

DL- Based IDS System 93.74 % 93.71% 93.82 % 93.47 % 

Elsayed et al. [25] Securing IoT and 

SDN Systems Using 

Deep Learning 

Based Automatic 

IDS 

Deep Learning 96. 56 % 97.3 % 97.35 % 97.4 % 

Khan et al. [33] Voting Classifier 

Based IDS for IoT 

Networks 

DT- RFKNN- NB 87 % 90 % 88 % 87 % 

Proposed 

Methodology 

Deep Learning 

Model with 

Normalized 

Bayesian Optimizer 

for Anomaly 

Classification in IoT 

Security 

Deep Learning and 

Normalized Bayesian 

Optimization 

98.69 % 98 % 98 % 98 % 

Comparing the performance metrics of various models, 

the proposed methodology in this study achieves the highest 

accuracy at 98.69%, with recall, F1-score and precision at 

98%. It outperforms other models such as the two-phase IDS 

with Naïve Bayes, elliptic envelop method for anomaly 

detection (Accuracy: 98.95%, Precision: 95.40%, Recall: 

97.51%, F1-score: 96.44%), the DL-based IDS for IoT 

networks (Accuracy: 93.74%, Precision: 93.71%, Recall: 

93.82%, F1-score: 93.47%), the deep-learning based 

automatic IDS (Accuracy: 96.56%, Precision: 97.3%, Recall: 

97.35%, F1-score: 97.4%), and the voting classifier-based 

IDS for IoT networks with DT-RFkNN-NB (Accuracy: 87%, 

Precision: 90%, Recall: 88%, F1-score: 87%). The proposed 

model demonstrates superior overall performance in anomaly 

classification for IoT security. 

5. Conclusion  
The study delves into the critical domain of IoT security, 

recognizing the heightened vulnerabilities posed by the 

widespread adoption of IoT devices. The proposed approach, 

integrating a CNN with feature optimization through the 
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NBOA, addresses the challenges of anomaly classification in 

IoT security. Leveraging the IoT23 dataset, the study 

showcases the efficacy of the CNN model trained on 

optimized features, achieving a remarkable accuracy of 

98.69%. This surpasses the performance of traditional CNN 

models and underscores the significance of feature 

optimization in enhancing anomaly detection accuracy. The 

methodology's success in fine-tuning feature selection 

through NBOA establishes a promising avenue for bolstering 

IoT security against threats and potential breaches. As the IoT 

landscape continues to expand, the proposed approach 

provides a valuable contribution to the ongoing efforts to 

fortify the security infrastructure of IoT systems, ensuring the 

reliability and integrity of connected devices and networks. 

Further research can explore additional optimization 

techniques and scalability considerations to advance the 

resilience of anomaly detection in the ever-changing 

landscape of IoT security. 
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