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Abstract - Image forgery detection is a critical task in digital forensics, aiming to identify manipulated images to maintain trust 

and authenticity in digital content. Conventional techniques for identifying image forgeries often rely on handcrafted attributes 

and heuristics, which have limitations in detecting sophisticated forgeries. The capacity of deep learning algorithms to 

automatically extract pertinent features from data has made them a promising solution to this problem in recent years. The 

effectiveness of Convolutional Neural Networks (CNNs), a type of deep learning, in identifying image forgeries is investigated 

in this paper. The proposed research begins by collecting a dataset from the CASIA V2, comprising authentic and tampered 

images. Initially, a custom CNN model is constructed and trained on the dataset to establish a baseline performance. 

Subsequently, transfer learning using the MobileNet V2 architecture pretrained on the ImageNet dataset and is applied to 

leverage its feature extraction capabilities. However, the MobileNet V2 model demonstrates suboptimal accuracy before fine-

tuning, prompting further enhancement. To improve the MobileNet V2 model’s efficiency, fine-tuning is employed at epoch 25, 

resulting in a notable accuracy increase to 94.14%. Compared to the baseline CNN model (93.98% accuracy) and the initial 

MobileNet V2 model (77.85% accuracy), fine-tuning significantly enhances the model’s efficiency in identifying image forgeries. 

The proposed methodology showcases the potential of deep learning in image forgery detection, offering improved accuracy 

and robustness in identifying manipulated digital content. 

Keywords - Image forgery, Authentic, Tampered, Transfer learning, CASIA V2, Compression error analysis.  

1. Introduction 
In the modern era, often referred to as the period of 

technological and informational supremacy, numerous crucial 

challenges revolve around managing information. Among 

these challenges is the critical task of safeguarding 

information against manipulation and identifying those 

responsible for such attacks.  

This task becomes especially pertinent given the 

prevalence and significance of images and videos as the most 

pervasive forms of information. Globalization and 

advancements in technology have made electronic equipment, 

such as digital cameras, more broadly accessible and 

reasonably priced. As a result, the use of digital cameras has 

increased dramatically, leading to an abundance of images 

taken with different kinds of camera sensors.  

The necessity for electronic image formats is increasing 

in the modern digital era due to social media sharing, online 

filing, and recordkeeping [1]. A notable feature of images is 

their universal accessibility; they may provide information to 

people with low literacy levels as well. Images are a 

fundamental element of the digital world and are vital for data 

storage and distribution. Although image-editing software was 

initially created to improve images, some people abuse it to 

create false images and disseminate false information [2]. This 

poses a serious risk because altered images can have 

permanent effects. 

The tampering of digital images, known as digital image 

forgeries, presents a serious problem since the changes are 

frequently imperceptible to the human eye. False information 

is primarily disseminated through social media sites like 

Facebook and Twitter owing to this kind of manipulation [3].  

It is necessary to use digital image forgery algorithms and 

approaches to detect such forgeries in order to preserve image 

security, particularly in situations when access to the original 

information is restricted.  

These techniques detect anomalies that have been added 

to images. These anomalies can appear as uneven feature 

distributions and heterogeneous alterations in image attributes 

[4]. There are two primary methods for manipulating images 

[5], as depicted in Figure 1.

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1 Hierarchy of forgery detection 

The image is enhanced with a digital signature or 

watermark using the active approach while it is being created, 

making it possible to analyze it afterwards to see whether it 

has been altered. Conversely, the passive technique, often 

known as the blind technique, does not rely on pre-embedded 

information such as watermarks; instead, it only uses features 

that are directly derived from the images. There are two 

further categories into which the passive method can be 

separated: dependent and independent. While the dependent 

technique concentrates on finding operations like copy/move 

and splicing, the independent approach finds changes like 

compression and resampling. This distinction aids in 

understanding the various approaches used to detect image 

forgeries, each of which presents different difficulties and 

insights. 

Forgery detection techniques are one of the primary 

issues in image security, and they are employed in conjunction 

with passive authentication in situations where access to the 

original information is unavailable. This method relies on 

examining the characteristics of the image while searching for 

any unusual patterns.   

Additionally, this research advances this field of 

investigation in the following ways: 

• To propose a MobileNetV2-based architecture for 

authenticating genuine and forged images. 

• To successfully train the suggested model on the CASIA 

V2 benchmark datasets by utilizing the transfer learning 

technique. 

The paper is organized as follows in the ensuing sections: 

Section 2 explores the literature review, while Section 3 

defines the proposed system architecture. Following that, 

Section 4 outlines the experimental findings and provides a 

discussion, and section 5 provides conclusion. 

2. Related Works 
The latest strategies for identifying digital image 

modifications have been made possible by advancements in 

image forensic techniques. Prior studies [6-8] have 

investigated methods that examine different phases of an 

image’s history, from capture to compression, in order to 

detect processing traces. These traces serve as markers of 

digital authenticity, which are ascertained by means of digital 

signature verification. 

Prajakta Kubal et al. (2023) [9] addressed the growing 

problem of image forgeries in the digital domain, highlighting 

the significance of image verification in preserving integrity 

and thwarting misuse. Their method, called EACN (Error 

Analysis and Convolutional Neural Network), combined 

CNNs with error level analysis to evaluate error rates that arise 

from quality degradation in order to authenticate images. Even 

though metadata analysis is easily manipulated, EACN, which 

uses Deep Learning (DL) to detect robust forgeries, obtained 

an accuracy of 92.10%. Shobhit Tyagi and Divakar Yadav 

(2023) [10] investigated how easily digital images and videos 

can be altered, either for good intentions like improving 

appearance on social media or for bad intentions like stealing 

someone’s identity or damaging someone’s reputation. They 

underlined the necessity for law enforcement to use automated 

technologies to discern between real and fake media. In an 

effort to promote security and privacy within the research 

community, the survey thoroughly examined a variety of 

image and video modification techniques, commonly 
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employed methodologies, and sophisticated forgery detection 

strategies. 
 

The increasing use of image capturing as a result of the 

broad availability of cameras was addressed by Syed Sadaf Ali 

et al. (2022) [11]. They stressed the usefulness of images in 

daily life due to their informational value, but they also 

mentioned the growing concern about image modification 

resulting in false information. CNNs have received interest 

recently despite the existence of established approaches for 

detecting forgeries. Nevertheless, a lot of CNN-based methods 

concentrate on particular kinds of forgeries. Therefore, an 

effective method for spotting hidden forgeries is required. 

Their suggested lightweight CNN-based solution uses the 

differences between the original and recompressed images to 

identify image forgeries, especially double image 

compression. Although the technique achieves a promising 

validation accuracy of 92.23%, its applicability to smaller 

images is hindered by its minimum image resolution 

requirement of 128 × 128. 
 

Emad Ul Haq Qazi et al. (2022) [12] discussed how 

advances in technology have led to a spike in data misuse, 

which calls for reliable techniques to spot manipulation. Their 

research concentrated on employing a ResNet50v2-based 

method to detect image splicing, a prevalent type of digital 

manipulation.  
 

The CASIA v1 as well as CASIA v2 datasets were used 

in their studies. Through the use of transfer learning and the 

architecture’s residual layers and pre-trained weights from the 

YOLO CNN model, their model demonstrated higher 

detection rates for manipulated images. 
 

Davide Alessandro Coccomini et al. (2022) [13] 

discussed how deepfake generation techniques are developing 

quickly and how this could seriously threaten social peace by 

enabling the creation of incredibly lifelike manipulated 

images and videos. They emphasized how difficult it is for 

deepfake detection algorithms to update themselves rapidly in 

order to recognize manipulations carried out using the latest 

techniques. Using the ForgeryNet dataset, the study evaluated 

the effectiveness of Vision Transformers and EfficientNetV2 

in a cross-forgery scenario.  
 

EfficientNetV2 tended to specialize and perform better on 

well-known techniques, whereas Vision Transformers showed 

stronger generalization and were, hence, more capable of 

recognizing images created using novel techniques. 

In response to the increasing misuse of image altering 

software and the distribution of these images via Online Social 

Networks (OSNs), Haiwei Wu et al. (2022) [14] addressed the 

increasing concern regarding the authenticity of digital 

images. They discovered issues caused by noisy activities like 

resizing and compression brought on by OSN, which made it 

harder to detect image forgeries. They suggested a training 

plan to address this problem by dissecting OSN-induced noise 

into visible and invisible parts. They greatly increased the 

robustness of their fraud detection system by including this 

noise modeling in their training framework. Amit Doegar et 

al. (2021) [15] addressed the challenge of image forgery 

detection in real-time applications and online platforms. They 

introduced a fusion-based decision approach utilizing 

lightweight deep learning models like SqueezeNet, 

MobileNetV2, and ShuffleNet. This approach involved two 

stages: using pretrained weights to assess image forgery and 

fine-tuning the weights for comparison. Their experiments on 

the MICC-F220 dataset demonstrated superior accuracy 

compared to existing methods: SqueezeNet achieved 89.39%, 

MobileNetV2 reached 92.42%, and ShuffleNet attained 

90.90%. Despite these promising results, the method’s 

performance might be limited by the dataset’s size and 

diversity, potentially affecting its generalizability across 

various image manipulation scenarios and datasets of different 

characteristics. 

The ubiquity of image forgery in the digital age was 

discussed by Sumaira Bibi et al. (2021) [16], who 

concentrated on copy-move and splicing as common forms. 

Although current approaches focused mostly on JPEG images, 

they argued for solutions that are independent of image 

formats. They suggested using Stacked Autoencoders (SAE) 

to detect forgeries using a variety of compression methods. 

For feature extraction, CNNs with prior training, such as 

VGG16 and AlexNet, were used. Their method, which used 

an Ensemble Subspace Discriminant classifier, produced very 

impressive accuracies, 93.3% for TIFF images, in particular. 

Time complexity remained a challenge even after the success. 

Yohanna Rodriguez-Ortega et al. (2021) [17] proposed 

recognition algorithms in response to the proliferation of high-

quality false images in the media. They took on copy-move 

forgery detection, pointing out the shortcomings of 

conventional techniques for classifying large amounts of data. 

Although they showed promise, deep learning-based methods 

had trouble with hyperparameter selection and generalization. 

They examined the influence of their depth and generalization 

across various datasets to develop two deep learning models—

one based on Transfer Learning (TL) and the other custom—

in an effort to lessen this. The TL-based VGG-16 quadrupled 

the inference time but performed 10% better than the modified 

model. They demonstrated how single-dataset trained models 

performed poorly when evaluated on a variety of data sets, 

underscoring the difficulty of generalizing models. The 

disparity between recall and precision measures, as well as the 

longer inference time of the VGG-16 model, are among its 

drawbacks. 

A technique for identifying and locating image forgeries 

using Deep Convolutional Neural Networks (DCNN) and 

semantic segmentation was presented by Abhishek and Neeru 

Jindal (2021) [18]. Utilizing color illumination and a transfer 
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learning methodology, they trained a VGG-16 model with two 

classes to identify fake or authentic image pixels. Several 

datasets, including GRIP, DVMM, CMFD, and BSDS300, 

were used to test the technique. First, a 54-layer DCNN 

transfer learning network was trained using copy-move, 

spliced, and fake video images, after which a 27-layer DCNN 

network was retrained using the original and fabricated 

images. Ultimately, all fake images were used to train a 91-

layer VGG network to distinguish between forged and real 

pixels. 

According to Shilpa Dua et al. (2020) [19], the majority 

of detection techniques focus on copy-move or splicing 

forgeries. They developed a unique algorithm that can identify 

both kinds of forgeries at the same time in order to overcome 

this restriction. Their method takes advantage of the 

distortions created by JPEG-encoded image transformations, 

concentrating on modifications to the statistical characteristics 

of the AC components of block Discrete Cosine Transform 

(DCT) coefficients. They developed a feature vector by 

independently calculating the standard deviation and non-zero 

DCT coefficients for each AC frequency component. 

Accurate identification of real and fake photos was made 

possible by this vector in conjunction with Support Vector 

Machine (SVM) classification. Tests using the CASIA v1.0 

and v2.0 datasets showed higher detection rates than previous 

approaches. 

The issue of image manipulations on online sharing 

platforms and the difficulties they present for forgery 

detection algorithms was tackled by Boubacar Diallo et al. 

(2020) [20]. By taking into account application-specific image 

quality, their methodology aimed to improve robustness. They 

highlighted lossy compression—specifically, JPEG—as a 

popular modification and used a CNN for camera 

identification. They experimented with different grades of 

compressed and uncompressed images, and their CNN 

performed better than earlier methods. They also suggested a 

thorough examination of CNN’s characteristics to improve its 

accuracy and interpretability.  

A technique to identify facial image forgeries was 

presented by Lingzhi Li et al. (2020) [21]. By using a 

grayscale representation, this approach was capable of 

determining whether an input face image could be divided into 

two separate images by blending them.  

Face X-rays have shown efficacy in identifying 

modifications ubiquitous in face alteration techniques by 

emphasizing the blending border for falsified images and its 

absence for authentic ones. When face X-ray was trained on 

fictitious images beforehand, it remained resilient against 

different manipulation techniques, in contrast to many 

detection algorithms that depend on particular artifacts. 

State-of-the-art techniques for identifying image 

forgeries often suffer from slow processing speeds and low 

accuracy. They typically excel at detecting either image 

splicing or copy-move forgeries, but not both. To address 

these drawbacks, an entirely novel image forgery-detecting 

method has been unveiled in this research. This framework is 

suitable for real-world applications, as it dramatically 

improves detection accuracy and response time. Its efficiency 

ensures usability even on slower devices, expanding its reach 

to a larger user base. Further details about the suggested 

framework are provided in the following sections. 

3. Materials and Methods  
The proposed approach begins with sourcing data from 

the CASIA V2 dataset, available on the Kaggle repository. 

This dataset comprises three main folders: authentic, 

tampered, and ground truth. Subsequently, Compression Error 

Analysis (CEA) is applied to quantify information loss caused 

by compression and its impact on image quality. The images 

in the test set are then converted into CEA format by 

computing the difference between original and resaved 

images, followed by adjusting pixel values for optimal 

visualization. The converted images are categorized based on 

authenticity (authentic or tampered), with counts displayed for 

each category. Data augmentation techniques are then 

employed to enhance the dataset. Three CNN approaches are 

explored: developing a custom CNN model, implementing 

transfer learning with MobileNet V2, and fine-tuning 

hyperparameters for enhanced performance. These strategies 

aim to identify the most effective method for image tampering 

detection. Finally, model evaluation metrics such as accuracy, 

precision, recall, and F1-score are calculated to assess model 

performance. Figure 2 shows the block schematic of the 

proposed model. 

3.1. Dataset Description 

The research employs the CASIA 2.0 dataset [22], which 

was chosen because of its appropriateness in evaluating many 

forms of image alteration. Three separate categories that are 

essential to the goals of the research are included in this 

dataset. In order to provide a baseline for comparison, it first 

contains Pristine (Authentic) images, which are original, 

unedited images. Second, to simulate a frequent type of 

tampering, the dataset includes Copy-move (Tampered) 

images, in which some sections have been duplicated inside 

the same image.  

Lastly, there are Spliced (Ground Truth) images, which 

replicate a common method of image forgery by including 

altered areas that have been duplicated from several images 

and pasted into the main image. The CASIA 2.0 dataset’s 

varied assortment of image categories provides researchers 

with an extensive array of scenarios to assess and improve 

forgery detection methods. Figure 3 shows the sample images 

in the dataset. 
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Fig. 2 Block schematic of the proposed model 
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Figure 4 illustrates the distribution of images within the 

dataset across different classes. Specifically, the dataset 

comprises a total of 1171 images categorized as authentic and 

1158 images classified as tampered. 

 
Fig. 4 Image count in the dataset 

3.2. Compression Error Analysis (CEA) 

An approach for assessing how compression methods 

affect image quality is CEA. Whether images are compressed 

using lossy or lossless techniques, a reduced file size results in 

some information loss. The goal of CEA is to measure and 

comprehend this information loss and how it impacts the 

application and visual quality of the compressed images. 

CEA entails several key steps in evaluating the effects of 

compression algorithms on image quality. Initially, the 

process involves compressing an uncompressed image using a 

chosen compression algorithm to produce a compressed 

version. Subsequently, error measurement techniques are 

employed to compare the compressed image with the original, 

identifying any discrepancies or introduced errors. Following 

this, error visualization techniques are applied to visualize the 

errors, facilitating an understanding of their manifestation in 

the compressed image relative to the original. Through 

analysis and interpretation of these error measurements and 

visualizations, insights are gained into the impact of 

compression on image quality, including the identification of 

common compression artifacts and trade-offs between 

compression ratio and image fidelity. Finally, leveraging these 

insights, optimization and improvement strategies are devised 

to refine compression algorithms, adjust parameters, or 

explore alternative methods to minimize information loss 

while achieving desirable compression ratios, thereby 

enhancing overall image quality. 

CEA is becoming a widely used technique in image 

forensics research, especially for identifying image 

manipulation and tampering [23]. Using this procedure, the 

error pattern is interpreted by comparing the original image 

with a modified version of the same image. CEA compares 

pixels in matching locations from the original and altered 

images to determine how they differ. Eight by eight blocks are 

used for the analysis, and two conditions are usually noted for 

JPEG images: 

• If all 8 × 8 blocks display a comparable error pattern, 

indicating that every block has attained a local minimum, 

it is possible to identify the original JPEG image. 

• If any 8 x 8 block shows a higher error pattern, suggesting 

that a block has not attained its local minimum, that block 

is classified as a modified JPEG image. 

Equation 1 illustrates the steps involved in the ELA 

process, which entails resaving an image with a predetermined 

level of compression quality and comparing the variations 

among different compression levels. 

Resavings   Recompress 

𝐼𝐴0(𝑖, 𝑗) − 𝐼𝐵1(𝑖, 𝑗) = 𝐶𝐸𝐴1 

𝐼𝐴1(𝑖, 𝑗) − 𝐼𝐵2(𝑖, 𝑗) = 𝐶𝐸𝐴2                                         (1) 

𝐼𝐴2(𝑖, 𝑗) − 𝐼𝐵3(𝑖, 𝑗) = 𝐶𝐸𝐴3 

⋮ 

⋮ 

𝐼𝐴𝑛(𝑖, 𝑗) − 𝐼𝐵𝑛(𝑖, 𝑗) = 𝐶𝐸𝐴𝑛 

The provided Equation outlines the functioning of CEA, 

particularly concerning JPEG images. To delve into the 

calculation of CEA, let us delve into an example. Here, 𝐼 

denotes a JPEG image. A JPEG image that has been resaved 

n times with a quality setting of 75% is represented by 𝐴𝑛, 

whereas a JPEG image that has been recompressed n times 

with a quality setting of 95% is represented by 𝐵𝑛,. To 

evaluate the error value that would arise from recompressing 

the JPEG image at a 95% compression quality, the CEA 

calculation known as “using CEA of 95%” is utilized. The 

CEA continuously reduces with each additional image resave, 

represented by the variable 𝑛. Therefore, every 8 𝑥 8 block in 

the JPEG image gradually gets closer to its local minimum as 

a result of numerous resave, producing a darkening effect. 

In the proposed research, the input image file undergoes 

processing along with a specified quality parameter, resulting 

in the transformation of the image into a CEA representation. 

Initially, a temporary JPEG file is created with the designated 

quality level, followed by the computation of differences 

between the original image and its compressed counterpart, 

resulting in the generation of the CEA image. Subsequently, 

this CEA image is subjected to enhancement techniques to 

effectively highlight discrepancies between the original and 

compressed images. 
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Figure 5 demonstrates the CEA representation of the 

image across different quality levels. It iterates through a 

spectrum of quality values, creating and presenting the CEA 

images corresponding to each quality level alongside the 

original image. This process enables the examination of how 

the CEA representation changes with varying compression 

qualities. The images from the test set are then converted into 

their CEA format, making them suitable for input into the 

proposed model. This involves generating the CEA 

representation by calculating the difference between the 

original and resaved images. Additionally, the pixel values of 

the CEA image are adjusted to fall within the range [0, 255] 

for improved visualization. 

The converted images are then organized into separate 

directories based on their authenticity status (authentic or 

tampered), and the total count of converted images in each 

category is displayed. This pre-processing step effectively 

prepares the images for subsequent utilization in either 

training or testing the model aimed at detecting image 

tampering.   Figure 6 shows the final CEA visualization of the 

sample images.

 
(a) Authentic 

 
(b) Tampered 

Fig. 5 CEA results for various levels of compression 
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Fig. 6 CEA visualization of the sample images 

 

 
Fig. 7 Data augmented images 

 

3.3. Data Augmentation 

Data augmentation, a crucial component of the proposed 

methodology, involves enhancing the dataset by introducing 

variations in the images.  
 

This is achieved through techniques such as rotation or 

skewing, which slightly modify the orientation or perspective 

of the images. By applying these transformations, the dataset 

is enriched with diverse instances, thereby enhancing the 

ability of the model to generalize and recognize patterns 

efficiently.  
 

Figure 7 showcases a selection of augmented images, 

demonstrating the effectiveness of these techniques in 

diversifying the dataset and improving the model’s robustness 

to variations in image characteristics. 

3.4. Deep Learning Classifier 

Following the augmentation process, the augmented 

images are subsequently inputted into the DL classifier. For 

the CNN model, three distinct approaches are explored. 

Initially, a custom CNN model is constructed and trained on 

the dataset to assess its performance. Secondly, transfer 

learning is employed using MobileNet V2, leveraging its pre-

trained weights from the ImageNet dataset, and the 

performance is compared. Lastly, hyperparameter tuning is 

conducted using the second approach to optimize its 

performance further. These approaches aim to evaluate 

different strategies for leveraging deep learning techniques in 

image classification tasks, with the overarching goal of 

identifying the most effective approach for detecting image 

tampering in the dataset.
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Fig. 8 Basic architecture of CNN 

3.4.1. Convolutional Neural Network 

A subclass of deep neural networks known as CNNs is 

designed especially for handling structured, grid-like data, like 

images [24]. Owing to its capacity to automatically learn 

hierarchical representations of features straight from raw pixel 

input, CNNs have become the backbone of various computer 

vision applications. A CNN’s architecture usually comprises 

multiple layers organized in a particular order, as depicted in 

Figure 8. 

The raw data is given to the input layer; usually, this is an 

image shown as a grid of pixel values. The convolution layer 

mostly carries out the process of extracting features from the 

input data. Convolution maintains a relationship between 

pixels as they move across the input data by using small 

squares of input data to learn image features. A mathematical 

technique known as convolution needs two inputs, such as an 

image matrix and a learnable filter or kernel. The dot product 

of the filter’s values and the matching area of the input data 

are calculated at every position. A convolution operation is an 

elementwise matrix multiplication operation. After this 

procedure, a feature map is produced that shows the spatial 

patterns found in the input. The convolutional layer is able to 

efficiently capture pertinent information like edges, textures, 

and forms by picking up the values of these filters during 

training.  

After every convolutional operation, activation functions 

such as ReLU are employed to introduce non-linearity and aid 

in the learning of intricate patterns. Then, using techniques 

like max pooling and average pooling, pooling layers 

minimize the feature maps’ spatial dimensions while 

preserving crucial information. Advanced features gained by 

convolutional layers are mapped to output classes by fully 

connected layers, which are positioned towards the end of the 

network and connect every neuron in one layer to those in the 

next. Ultimately, the output layer generates the network’s 

output, which, depending on the task at hand, is frequently 

presented as class probabilities or continuous values. 

The feature map produced by a given layer is subjected to 

an activation function in order to assess the output of that 

layer. Deep learning models typically employ the ReLU as 

their activation function. The feature maps’ spatial dimensions 

are decreased, yet the pooling layer retains crucial 

information. Typical pooling procedures, such as max pooling 

and average pooling, select the maximum or average value 

within each pooling window to downsample the feature maps. 

A fully connected layer’s layout consists of an output 

layer, a hidden layer, and flattening, which make up the 

traditional neural network model. The convolutional and 

pooling layers produce three-dimensional outputs, while a 

fully connected layer requires a one-dimensional vector as 

input. Consequently, the output of the pooling layer is 

flattened into a vector format, which serves as the input to the 

fully connected layer. Dense layers, or fully connected layers, 

link each neuron in one layer to every other layer’s neuron. 

Fully connected layers, which are usually found at the end of 

the network, translate the high-level information that the 

convolutional layers have learned to the output classes. These 

layers use the retrieved characteristics to learn how to 

categorize or predict, which allows them to do tasks like 

regression or classification. The CNN’s last layer generates 

the network’s output, which is typically presented as 

continuous values for regression tasks (like linear activation) 

or class probabilities for classification tasks (like softmax 

activation). The particular function that the CNN is intended 

to carry out determines the structure of the output layer. 

In the proposed model, a Rescaling layer normalizes the 

pixel values of input images by dividing them by 255, thereby 

scaling them to the range [0, 1]. The initial convolutional 

(CONV) layer applies a 2D convolution operation with 16 

filters of size 3x3 to the model, followed by a Rectified Linear 

Output 
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Unit (ReLU) activation function, enhancing the output 

element-wise. Subsequent Max Pooling layers perform 2D 

max pooling to reduce spatial dimensions while preserving 

crucial information. Layers 4 to 7 utilize Conv2D and 

MaxPooling2D blocks with increasing filter sizes (32 and 64), 

enabling the capture of more intricate features from input 

images.  

A flattened layer then converts the 2D feature maps into a 

1D vector, facilitating the transition to fully connected (dense) 

layers. The final layers consist of two Dense layers, with the 

first containing 128 neurons employing ReLU activation to 

capture high-level abstract features from the flattened feature 

maps. The second and last layer, with 2 neurons, corresponds 

to image categories and generates raw logits for each class, 

facilitating probability calculation and predictions. Figure 9 

shows the model architecture of the proposed CNN. 

3.4.2. MobileNet V2 

MobileNetV2 is a convolutional neural network 

architecture designed for efficient and lightweight deep 

learning tasks, particularly on mobile and embedded devices. 

It builds upon the success of its predecessor, MobileNetV1, by 

introducing several key improvements to enhance 

performance and efficiency. The core components of 

MobileNetV2’s architecture include inverted residual blocks, 

depth wise separable convolutions, and linear bottlenecks. 

Because of the careful design of these blocks, which balance 

model complexity and computational performance, 

MobileNetV2 is an excellent choice for situations with limited 

resources. 

Depth wise separable convolutions, which split the 

conventional convolution operation into two distinct layers—

depth wise convolution and pointwise convolution—are one 

of MobileNetV2’s distinguishing characteristics. By 

factorizing spatial and channel-wise processes, depth wise 

convolution lowers computational costs by applying a single 

filter to each input channel independently.  

Cross-channel interactions are then made possible by 

pointwise convolution, which combines the output channels of 

the depth wise convolution with a 1x1 convolution. 

MobileNetV2 adds inverted residual blocks in addition to 

depth wise separable convolutions to capture richer feature 

representations with less computational overhead, as shown in 

Figure 10. A lightweight expansion layer, a depth wise 

convolution, and a linear projection layer constitute these 

blocks.

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 Model architecture of CNN 
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Fig. 10 Inverted residual block on MobileNet V2 

 

 

 

 

Fig. 11 MobileNetV2 expansion-filtering-compression system 

By extending the input channels into a higher-

dimensional space, the expansion layer enables the depth wise 

convolution that follows to extract more intricate features, as 

shown in Figure 11. After that, the linear projection layer 

compresses the enlarged features to their original 

dimensionality while keeping all relevant data.  

The low-dimensional data flowing between the blocks 

serves as a compressed representation of the original data. 

Before filters are applied to this data, it needs to be 

uncompressed. The expansion layer functions as a 

decompressor, restoring the data to its full form. 

Subsequently, the depth wise layer conducts the necessary 

filtering operations at this stage of the network. Finally, the 

projection layer compresses the data once more to reduce its 

dimensionality. 

Moreover, MobileNetV2 uses linear bottlenecks to lower 

the intermediate feature map computing cost. MobileNetV2 

guarantees that the number of channels stays constant across 

the network by implementing a 1x1 convolution with a linear 

activation function after the depth wise convolution, avoiding 

excessive computational overhead. 

Transfer learning is a machine learning technique where a 

model trained on one task is adapted to a related task by 

leveraging the knowledge gained during the initial training. 

Instead of training a model from scratch, transfer learning 

involves using pre-trained models as a starting point and fine-
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tuning them on the new task. This approach is particularly 

useful when the new task has limited labeled data or 

computational resources. In the proposed study, the pre-

trained MobileNetV2 model is loaded with weights trained on 

ImageNet, excluding the final fully connected layers, to 

prepare it for training on the dataset. Features are then 

extracted from this model, serving as input for our final layers.  

The pre-trained MobileNet V2 model has already learned 

to extract useful features from images, which can be beneficial 

for detecting forged or tampered images. By fine-tuning the 

MobileNet V2 model on a dataset specific to image forgery 

detection, the model can adapt its learned features to better 

discriminate between authentic and manipulated images. To 

preserve the knowledge captured by the original model, the 

layers of the base model are frozen. Additionally, a layer is 

added to preprocess the input, performing necessary 

transformations such as normalization and reshaping to align 

with the expected input shape of MobileNetV2. A Global 

Average Pooling layer is introduced to reduce spatial 

dimensions and compress the extracted features. 

Subsequently, a dense layer with a single neuron is appended 

to produce predictions based on the processed features. 

Finally, all layers are combined to form the proposed detection 

model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12 Model architecture of the proposed MobileNet V2 model 

To enhance the model’s performance, a fine-tuning 

approach is employed by training specific layers of the base 

model. Among the 154 layers, the last 100 layers are selected 

for training, while the remaining layers are kept frozen. 

Following this selection, the model is compiled using the same 

hyperparameters and subjected to an additional 40 epochs of 

training to further refine its performance. The model 

architecture of the proposed MobileNet V2 model is shown in 

Figure 12. 

4. Results and Discussion 
4.1. Hardware and Software Setup 

The research utilized a high-performance computational 

setup comprising an Intel Core i7 processor, 32GB of RAM, 

and the powerful NVIDIA GeForce GTX 1080Ti GPU. Model 

implementation was conducted through the Keras library, 

which operates as a prototype built upon the TensorFlow 

framework and executed using Python. Renowned for its user-
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friendly interface and robust capabilities, Keras played a 

pivotal role in designing complex neural network 

architectures. This framework ensures efficient resource 

utilization across CPU, GPU, and TPU environments. To 

harness extensive computational power and streamline model 

training, the deployment was orchestrated on Google Colab, a 

cloud-based Python notebook environment.  

Hyperparameters play a crucial role in determining how a 

machine learning framework behaves during the training 

process. Unlike model parameters, which are learned from the 

data, hyperparameters are predefined by the user prior to 

training. These hyperparameter selections, including the 

optimizer, learning rate, loss function, and number of epochs, 

collectively define the training configuration aimed at 

optimizing the model’s performance for the proposed image 

forgery detection task. The specific model configuration is 

detailed in Table 1. 

Table 1. Model configurations 

Hyperparameters CNN MobileNet V2 

Learning rate - 0.0001 

Optimizer ADAM ADAM 

Loss Function 

Sparse 

Categorical 

Cross entropy 

Binary cross 

entropy 

Epoch 15 
Initial -25 

Fine tune-30 

Activation function ReLU ReLU 

 

4.2. Experimental Results 

The accuracy and loss plot for the proposed study 

illustrates the performance of the model during the training 

and validation phases. The accuracy plot displays the 

percentage of correctly classified samples over each epoch, 

indicating how well the model is learning to classify authentic 

and manipulated images.  

A rising accuracy curve suggests that the model is 

improving its ability to make accurate predictions as training 

progresses. Conversely, the loss plot illustrates the error 

between the predicted and actual labels for each batch of data. 

A decreasing loss curve indicates that the model is minimizing 

its error, meaning it is becoming more proficient at classifying 

images correctly.  

Figure 13 shows the accuracy and loss plot for the CNN 

model. The model is trained for 15 epochs. Initially, during 

the first epoch, the model achieves a training accuracy of 

approximately 86.75% and a validation accuracy of around 

92.47%, with corresponding training and validation losses of 

approximately 0.3265 and 0.2711, respectively.  

As training progresses, both the training and validation 

accuracies consistently improve, reaching approximately 

93.98% accuracy by the final epoch. 

 
Fig. 13 Accuracy and loss plot of CNN 

However, the validation loss fluctuates slightly 

throughout training, peaking at around 0.3556 during the 

fourth epoch before decreasing and stabilizing around 0.3039 

by the fifteenth epoch.  

This pattern indicates that while the model steadily 

improves its ability to classify images correctly, there may still 

be some overfitting occurring, as evidenced by the slightly 

higher validation loss compared to the training loss.  

As the low accuracy of the CNN model indicates poor 

performance, the approach of transfer learning using 

MobileNet V2 is adopted, with the model trained over an 

initial period of 25 epochs.  

The accuracy and loss plot of the MobileNet V2 before 

fine-tuning is shown in Figure 14. At the beginning of training, 

during the first epoch, the model achieves a training accuracy 

of approximately 53.33% and a validation accuracy of around 

52.69%, with corresponding training and validation losses of 

approximately 0.7301 and 0.6895, respectively.  

As training progresses, both the training and validation 

accuracies steadily improve, reaching approximately 83.91% 

for training and 77.85% for validation accuracy by the final 

epoch. Similarly, the training and validation losses decrease 

over the epochs, stabilizing around 0.3633 for training loss 

and 0.3762 for validation loss by the end of training. 



Pramod Chathampally & V. Mary Amala Bai / IJECE, 11(8), 227-243, 2024 

 
 

240 

 
Fig. 14 Accuracy and loss plot of MobileNet V2 before fine tuning 

 
Fig. 15 Accuracy and loss plot of MobileNet V2 after fine tuning 

The visualization indicates a consistent decrease in both 

training and validation loss, suggesting that further fine-tuning 

of the model and training for additional epochs is warranted. 

To refine the model, specific layers of the base model are 

trained: the last 100 out of 154 layers are adjusted while the 

remaining layers remain frozen. The model is then compiled 

with the same hyperparameters and trained for an additional 

40 epochs. Fine-tuning of MobileNet V2 is initiated from 

epoch 30 onwards, with a total of 55 epochs. Initially, the 

accuracy and loss metrics indicate a substantial improvement 

in model performance, as shown in Figure 15. For instance, at 

epoch 30, the training accuracy stands at approximately 

91.85%, while the validation accuracy reaches around 

89.03%. However, as the training progresses, both the training 

and validation accuracies steadily increase, reaching a peak 

accuracy of about 96.51% and 94.19%, respectively, by epoch 

55. Similarly, the loss metrics show a decreasing trend over 

epochs, indicating a consistent improvement in the model’s 

ability to minimize prediction errors. The final validation loss 

is notably reduced to 0.1865, reflecting the enhanced 

performance of the fine-tuned MobileNet V2 model in 

detecting image forgery. Overall, the iterative fine-tuning 

process effectively refines the model’s capability, resulting in 

significant enhancements in accuracy and reductions in loss, 

thereby demonstrating its effectiveness in image forgery 

detection tasks. 

In order to thoroughly evaluate the efficacy and 

operational efficiency of the proposed model for image 

forgery detection, the F1-score, accuracy, precision, and recall 

are the four primary metrics utilized. These measures, which 

are based on the concepts of False Positive (FP), False 

Negative (FN), True Negative (TN), and True Positive (TP), 

are essential for assessing the model’s performance. These 

performance parameters have mathematical formulations that 

are shown in Equations (2), (3), (4), and (5). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                            (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                              (3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                              (4) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                              (5) 

Table 2 shows the classification report of the proposed 

methodology. The accuracy achieved is 94.19%, indicating 

the model’s ability to correctly classify authentic and 

tampered images. With a precision of 92%, the model shows 

a high level of correctness in identifying tampered images out 

of all detected positive cases. Moreover, the recall score of 

95% highlights the model’s capability to effectively identify 

the majority of tampered images present in the dataset. These 

metrics collectively suggest that the proposed model, after 

fine-tuning MobileNet V2, exhibits strong capabilities in 

detecting image forgery with high accuracy and reliability. 

Table 2. Classification of the proposed model 

Evaluation Metrics Result Obtained (%) 

Accuracy 94.19 

Precision 92 

Recall 95 

F1-score 93 
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A performance measuring tool used in classification tasks 

to assess how well a model predicts the future state of the data 

is the confusion matrix. Through the comparison of the actual 

and projected classes for a particular dataset, it offers an 

overview of the model’s performance. As shown in Figure 16, 

the confusion matrix indicates that out of 30 images, 11 

tampered images were correctly classified as tampered, while 

19 authentic images were correctly classified as authentic. 

However, there were 2 instances where authentic images were 

misclassified as tampered, and no tampered images were 

mistakenly classified as authentic. Overall, the confusion 

matrix suggests that the model exhibits strong performance in 

correctly identifying both tampered and authentic images, 

with only a few misclassifications observed. 

 

Fig. 16 Confusion matrix 

 
Fig. 17 ROC curve of the proposed model 

Receiver Operating Characteristic (ROC) curves are 

utilized to assess the model’s capability to differentiate 

between tampered images and authentic ones in the proposed 

image forgery detection task. The area under the ROC curve, 

a measure of the model’s discriminative ability, is determined 

to be 95%, as shown in Figure 17. 

 

Figure 18 displays an image from the batch along with its 

predicted class label and the corresponding actual label. This 

visualization helps in assessing how well the model is 

performing on the test data. 

 
Fig. 18 Prediction output 

The proposed model combines image preprocessing and 

model prediction to analyze images and generate binary 

classification results, distinguishing between authentic and 

tampered images. The effectiveness of the framework in 

discerning between authentic and tampered images is visually 

depicted in Figure 19. 
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Fig. 19 Prediction of the model from random images 

 

Table 3. Comparison of the proposed approach with existing models 

Author (Year) Methodology Accuracy (%) 

Yohanna Rodriguez-Ortega et al. (2021) [17] VGG-16 78 

Wina Permana Sari and Hisyam Fahmi (2021) 

[26] 
CNN 85.89 

Ying Zhang et al. (2016) [25] Stacked Autoencoder 87.51 

Amit Doegar et al. (2020) [27] Google Net and Random 

Forest 

89.55 

Proposed Methodology: CNN 

MobileNet V2 

93.97 

94.19 
 

5. Conclusion 
The proposed research highlights the effectiveness of 

deep learning, particularly CNNs, in detecting image forgery. 

Through the exploration of various methodologies, including 

custom CNN models and transfer learning with MobileNet 

V2, significant insights have been gained into the application 

of deep learning techniques in this domain. The results 

demonstrate that fine-tuning the MobileNet V2 model at 

epoch 25 substantially enhances its accuracy, underscoring the 

importance of model optimization for improved performance. 

By achieving a high level of accuracy in distinguishing 

between authentic and tampered images, the proposed 

approach showcases the potential of deep learning to address 

the challenges posed by image manipulation. The evaluation 

metrics, including accuracy, precision, recall, and F1-score, 

provide comprehensive assessments of the models’ 

performance, affirming their effectiveness in image forgery 

detection tasks. Furthermore, the study contributes to 

advancing the field of digital forensics by providing practical 

solutions for identifying manipulated images. The findings not 

only offer insights into the capabilities of deep learning 

techniques but also highlight the need for continued research 

and development in this area. 
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