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Abstract - This research presents a pioneering framework, termed X-Bridge, aimed at automating the identification of diverse 

faces through facial sketches. The significance of this framework lies in its potential applications in security and surveillance 

domains. The study advances the field by a. Conducting an in-depth analysis of conventional neural network architectures 

utilized for image classification, particularly focusing on their effectiveness in facial recognition tasks. b. Investigating the 

latest parameters essential for accurate facial recognition and their integration into various neural network structures to 

enhance performance. c. Assessing potential cross-modal connections that could facilitate more robust facial recognition 

systems.d. Introducing a novel Generative Adversarial Network (GAN)-based strategy, X-Bridge, specifically tailored to 

surpass existing standards on a meticulously curated dataset dedicated to facial recognition. Through these endeavors, the X-

Bridge framework exceeds current benchmarks, demonstrating its efficacy in automating facial recognition tasks. This 

research contributes to the advancement of automated facial recognition technology, offering promising implications for 

security and surveillance applications. 

Keywords - Cross-modal bridge, Heterogeneous face identification, Image-to-sketch conversion, Machine learning, Artificial 

neural networks, Categorization, Validation, Identifying. 

1. Introduction  
Face Recognition (FR) denotes the process of person 

verification or identification based on facial features 

extracted from an image or video source. FR stands out as a 

prominently explored domain within computer vision, 

garnering substantial attention over recent decades owing to 

its multifaceted applications. Foremost among these 

applications is its pivotal role in biometrics[1]. Unlike other 

biometric modalities such as fingerprints or iris scans, FR 

possesses the unique capability to identify subjects non-

intrusively without requiring their active participation[2]. 

This renders it invaluable for diverse purposes, including 

security systems, forensic investigations, and the 

identification of individuals within crowded environments. 

Furthermore, FR serves as an additional layer of security in 

authentication systems. Beyond biometrics, FR finds utility 

in domains like gender classification, emotion recognition, 

database searching, and witness identification, among 

others[3][4]. 

 

Notwithstanding its widespread adoption, FR remains a 

formidable technical challenge due to a myriad of external 

and internal factors. External conditions like variations in 

illumination, pose, or occlusion, coupled with internal factors 

such as facial expressions and aging, contribute to the 

complexity of FR algorithms[5]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Face recognition process 
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1.1. Image Preprocessing 

It involves eliminating unwanted distortions (noise) 

from an image while preserving vital information. Among the 

techniques are geometric conversions, brightness and color 

adjustments, local manipulations (such as gradients operator 

and filters), and analysis of frequencies.[6][7]. Although 

preprocessing reduces information, it has often been included 

in Face Recognition (FR) systems to enhance performance, 

leveraging prior knowledge about the image[8]. 

 

1.2. Face Detection 

This process identifies human faces within an image. 

Various algorithms exist, with Haar cascade detection being 

one of the most renowned. 

 

1.3. Face Alignment 

Following face detection, this step further processes the 

Region of Interest (ROI). It may employ advanced 

preprocessing techniques based on prior knowledge about the 

expected presence of a human face, aiming to mitigate 

challenges like pose or non-rigid expression. While not 

mandatory, this step enhances FR accuracy[9][11]. 

 

1.4. Face Representation 

This entails extracting features or taking an accurate 

picture of the facial image. Elastic Bunch Graph Matching, 

Principal Component Analysis, Fisher Linear Discriminant 

Analysis, Neural networks, and 2D and 3D facial synthesis 

are outstanding notable methods in the field of facial 

recognition and synthesis.[1][12]. 

 

1.5. Classification 

This process assigns a new observation to a specific 

category. In FR, it determines a person’s identity or verifies 

whether they are who they claim to be. For this, techniques 

for classification like Neural Networks (NEUs), Supported 

Vector Machines (SVM), and Bayesian classification 

algorithms are frequently used.[13]. 

 

Heterogeneous Face Recognition (FR) is a specialized 

form of FR that operates across distinct visual domains. Such 

approaches find crucial applications, particularly in security 

and surveillance[14][15]. For instance, in law enforcement, 

heterogeneous FR aids in identifying individuals based on 

sketches derived from eyewitness descriptions. Another 

application lies in FR using infrared light, offering the 

advantage of visibility in low-light conditions[16]. This 

technology is instrumental in security systems where 

standard RGB cameras are ineffective due to inadequate 

lighting[17]. 

 

FR can be viewed as a subset of object recognition, a 

challenging task due to its nonlinear nature. The difficulty 

arises from the inherent similarity among human faces and 

their non-rigid nature. Variations in facial appearance stem 

from both internal factors and external conditions. 

 

                         (a)                             (b)                                 (c) 

Fig. 2 Pose fluctuation presents problems for FR (a) loss of semantic 

correlation, (b) self-occlusion, and (c) nonlinear warping of face 

textures 
 

Internal sources of facial variation are inherent physical 

attributes that remain unaffected by external observers. These 

can be classified into intrapersonal and interpersonal 

attributes.  

 

Intrapersonal attributes pertain to differences within an 

individual’s appearance, such as facial expressions, aging, 

hairstyle variations, and accessories like glasses. 

Interpersonal attributes, on the other hand, account for 

differences in appearance between different individuals, 

including gender, ethnicity, and age[18][19]. 

 

External factors can influence how a face looks by 

interacting with lights or the relative positioning of the facial 

features and the observer[1]. Pose, scale, occlusion, lighting 

fluctuations (illumination), and imaging characteristics 

(resolution, noise, focus, and image domain) are all included 

in these circumstances. Pose changes in FR provide three 

distinct challenges: nonlinear warping of facial textures, loss 

of semantic congruence, and self-occlusion[20]. 

 

While interpersonal attributes are desirable for FR, 

intrapersonal differences and external conditions present 

significant challenges. In many cases, variations induced by 

intrapersonal differences and external conditions can 

overshadow interpersonal differences within standard 

subspaces, exacerbating the complexity of FR tasks[21]. 

 

It is noteworthy that the utilization of surveillance 

systems raises concerns regarding citizen privacy. The 

deployment of systems incorporating face detection and 

recognition capabilities may potentially infringe upon 

individuals’ privacy rights by enabling monitoring of their 

movements and actions[24]. 
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2. Literature Survey 
Gulrajani et al. (2017) focused on improving the training 

of Wasserstein GANs (WGANs) for better stability. Larsen 

et al. (2016) explored using learned similarity metrics in 

autoencoders beyond pixels, contributing to better 

reconstruction in image generation. Gruber (2018) examined 

the use of VAEGANs for generating facial images. Mirza and 

Osindero (2014) introduced conditional GANs, allowing for 

controlled image generation based on input conditions. 

Kingma and Welling (2013) proposed the VAE framework 

for learning latent variable m. 
 

2.1. Problem Definition 

The primary problem is to improve the accuracy and 

realism of facial image generation and recognition, focusing 

on GANs, VAEs, and autoencoders. 

2.2. Motivation and Application 

Motivated by the need for robust face recognition 

systems in security, surveillance, and user authentication 

applications. 
 

2.3. Face Recognition Datasets 

Gross et al. (2010) introduced the Multi-PIE dataset, 

which is widely used for face recognition research. Gao et al. 

provided a large-scale Chinese face database for 

benchmarking facial recognition models. Huang et al. 

benchmarked video-based face recognition systems using the 

Cox face database. 
 

2.4. Network Architectures 

Schroff et al. (2015) presented FaceNet, a unified 

embedding model for face recognition and clustering. Deng 

et al. (2018) proposed ArcFace, which uses additive angular 

margin loss for enhanced face recognition accuracy. 
 

2.5. Loss Function 

Wang et al. (2018) introduced a large-margin cosine loss 

function for deep face recognition. Wang et al. (2017) 

focused on L2 hypersphere embedding with NormFace for 

face verification. Wang et al. (2018) proposed an additive 

margin softmax loss for better discriminative face 

verification. 
 

2.6. GAN 

Mirza Osindero (2014) provided the foundation for 

conditional GANs, allowing for the generation of images 

with specified attributes. Gulrajani et al. (2017) improved 

WGAN training for more stable and realistic image 

generation. 

2.7. Cross-Modal Bridge 

2.7.1. Dimensionality Reduction 

Hadsell et al. (2006) focused on learning invariant 

mappings for dimensionality reduction, a technique crucial 

for bridging different modalities. 

2.8. Feature Extractor 

2.8.1. DeepFace 

Taigman et al. (2014) introduced DeepFace, aiming to 

close the performance gap between humans and machines in 

face verification. 

 

2.8.2. Joint Identification-Verification 

Sun et al. (2014) developed a deep learning framework 

combining identification and verification for robust face 

recognition. 

2.9. Pipeline of the System 

Systems typically involve face detection, feature 

extraction, and classification stages, with GANs or VAEs 

used for image generation or enhancement. 

2.10. Facial Features Preservation Score 

2.10.1. VAEGAN 

Gruber (2018) used VAEs to generate facial images 

while preserving key facial features, leading to higher 

preservation scores in generated images.FaceNet & ArcFace: 

Emphasis on embedding techniques that maintain the 

integrity of facial features across transformations. 

3. Methodology  
Training Set: A group of information utilized to train a 

model for machine learning, consisting of labeled instances 

from which the algorithm trains.[4][10]. 

 

 

Fig. 3 Comparing open-set and closed-set recognition of faces methods 

[1] 
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3.1. Testing Set 

A different collection of information is utilized to 

evaluate the effectiveness of a trained machine learning 

model, enabling it to evaluate its capacity to generalize 

unknown information.[2][27][29]. 

 

3.2. Face Identification 

The method of establishing an individual’s identification 

from a given photograph by comparing it to a database 

containing existing pictures[16]. 

 

3.3. Face Verification 

Confirming whether two face photos are of the same 

people or not is usually done for control of access or 

validation.[6][30][31]. 

 

Face Recognition Modern machine learning relies 

heavily on datasets to train and validate categorization 

techniques[8][14]. It offers an examination of well-known 

datasets for sketch-based and face recognition. A comparison 

between these datasets is presented in Table 1. Notably, there 

has been a significant performance gap among methods due 

to the use of private datasets from companies like Google, 

Facebook, and Microsoft. However, the availability of newly 

accessible datasets with millions of images helps bridge this 

gap. Openly accessible datasets, as well as obstacles, 

significantly enhance the reproducibility of work[1][32]. 

 

The table provides a summary of various face 

recognition datasets, listing the number of pictures/videos 

and Identities (IDs), conditions (e.g., laboratory or variable), 

and resolution[6][12]. Datasets like FERET, XM2VTS DB, 

and LFW offer diverse sets of images under controlled 

laboratory conditions[34][36]. YouTube, SFC, and PaSC 

datasets contain variable conditions and a mix of images and 

videos. CelebFaces and CASIA WebFace present large 

datasets with variable conditions and resolutions. MegaFace 

and MS-Celeb-1M offer extensive datasets with a vast 

number of identities. VGGFace2, PIPA, and CFP datasets 

also contribute to the diversity of available data for face 

recognition research[39].

 
Table 1. Comparisons of facial detection dataset[1] 

Dataset No. of Images/Videos No. of Ids Resolution 

MS-Celeb-1M [22] 8,556,240 98,892 300×300 

VGGFace2 [23] 3.4M 9,100 + Variable 

PIPA [24] 64,18 2,456 Variable 

CFP 7,100 510 Variable 

LFW [10] 14,233 5,849 250×250 

FERET [8] 15,051 274 512×768 

XM2VTSDB [9] 2,460 285 720×576 

YouTube [1][11] 3,525 vids 1,695 Variable 

CMU Multi-PIE [12] 760,001 347 High-Res 

SFC [13] 4.5M 4,130 Images 

CAS-PEAL [14] 98,594 1,140 640×480 

COX Face [15] 1,100 + 1,000 vids 1,100 Unknown 

MegaFace [21] 4.9M 682,057 Variable 

PaSC [16] 9,476 + 2,802 vids 283 Unknown 

CelebFaces [17] 212,599 11,177 178×218 

CASIA WebFace [19] 484,414 11,575 250×250 

IJB-A [20] 5,812 + 2,085 vids 510 Variable 
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Fig. 4 The inception module in its normal configuration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Structure of conventionally generated adversarial networks 

 

The standard version of the inception module is a 

building block in Convolutional Neural Networks (CNNs) 

designed to capture information at multiple scales within an 

image. It comprises parallel convolutional layers of different 

filter sizes and pooling operations[3]. This setup allows the 

network to learn features at various resolutions 

simultaneously, Improving its capacity to extract different 

and useful characteristics from input data[10]. The resulting 

feature maps from each parallel branch are then concatenated 

and passed on to subsequent layers for further processing. 

This architecture enables efficient utilization of 

computational resources while improving the network’s 

performance in tasks like image classification and object 

detection. 

 
The discriminators and the generator are the two main 

components of a conventional Adversarial Generation 

Network (GAN)[1]. The generator’s purpose is to produce 

artificial data from an arrangement that closely resembles 

actual information[7][9]. It creates samples repeatedly, using 

random noise as the initial input. In contrast, the 

discriminator serves as a critic and makes an effort to discern 

between created and actual samples. These two networks 

compete with one another during the training process: the 

discriminator seeks to become more skilled at identifying 

bogus data, while the generator seeks to create more realistic 

data[15]. Both networks progressively get better through this 

adversarial training process until the generator produces data 

that the discriminator cannot tell apart from actual data. This 

framework is commonly utilized for tasks like picture 

production, data augmentation, and image-to-image 

translation. 

 

Fig. 6 Elastic bunch graph matched to faces 
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Wiskott et al. presented Elastic Bunch Graph Matching 

(EBGM) as a graph-matching technique. It creates a 

topological structure that connects every node to a specific 

collection of Gabor wavelets, which are renowned for their 

resilience to distortion, scaling, and variations in 

illumination[2]. EBGM uses a deformable matching method, 

which allows nodes to change their scale and location in 

response to alterations in face appearance, in contrast to 

standard graph matching. Even though EBGM performs 

competitively in face recognition tasks and is resilient to 

appearance changes, it has a high computational cost. It only 

uses feature point locations, ignoring additional picture 

information. Furthermore, the graph arrangement for initial 

faces is a challenge when done by hand; however, 

Campadelli and Lanzarotti’s advances employ parametric 

models to solve this problem. An alternate method by Biswas 

et al. concatenates these characteristics for face 

representation in face recognition tasks by using SIFT 

features to characterize each landmark. 

 

4. Result and Comparison  

 

Fig. 7 An analysis of tested state-of-the-art models’ classification rates 

for recognizing [1] 

 

 

Fig. 8 Outcomes of the MegaFace challenge are compared for various 

functions of loss 

 

Fig. 9 Comparison of certain loss functions’ categorization rates for 

recognition 

 

 5. Quantitative Results Comparison 

 

Fig. 10 F1 Score, Precision, and Recall for the color-FERET dataset. A 

purple cross denotes the optimal F1 score 

 

Fig. 11 Precision, Recall, and F1 Score for the Pix2Pix method-

translated dataset. A purple cross denotes the optimal F1 score 



Devendra A. Itole et al. / IJECE, 11(8), 260-268, 2024 

 

266 

 

Fig. 12 The dataset’s F1 Score, Precision, and Recall were converted 

using the UNIT technique. A purple cross denotes the optimal F1 score 

 

Fig. 13 For dataset reconstruction using the X-Bridge approach, 

precision, recall, and F1 score are calculated. A purple cross denotes 

the optimal F1 score. 

 

Fig. 14 For datasets translated using the X-Bridge approach, precision, recall, and F1 score were obtained. A purple cross indicates the optimal F1 

score 

  

Table 2. Method vs F1 score 

Method Dataset F1 Score 
Specific 

Threshold 
Comments 

ArcFace 

Classifier 
Color-FERET 0.75 - 

Achieved F1 Score: 0.75. The classifier yielded an improved 

F1 Score of 0.80 for a specific distance threshold. 

Pix2pix 

Method 
Translated - 0.27 

Significant performance drop observed with ArcFace classifier 

on the translated dataset. Challenges attributed to the 

classifier’s training on photos rather than sketches. 

UNIT 

Method 
Translated - - 

The UNIT method yielded inferior results compared to 

Pix2pix. Despite being robust enough to handle pose changes, 

the translated sketch quality remains lower. 

X-Bridge 

Method 
Translated 0.57 - 

Outperformed other methods significantly, achieving an F1 

Score of 0.57 for a specific threshold. A combination of 

accurate translation and robustness in pose and expression 

contributes to a performance boost. 
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ArcFace Classifier achieved an F1 Score of 0.75, 

improving to 0.80 with a specific threshold. Pix2pix 

saw a drop to the F1 Score of 0.27 due to photo-based 

training.  

 

UNIT’s results were inferior to those of Pix2pix, 

while X-Bridge outperformed others with a 0.57 F1 

Score thanks to accurate translation and robustness. 

 

 

Fig. 15 Comparison of the tested Cross-modal bridges. 

 

6. Conclusion 
The present research presents a unique heterogeneous 

Image of Faces program that uses X-Bridge, a synthesis-

based cross-modal bridge[7]. By converting pictures between 

two modalities while maintaining important face traits, the 

system compensates for differences between the modalities. 

Before producing translated pictures based on the acquired 

latent coding, X-Bridge encodes input images into a common 

latent space. A DenseNet-based facial extraction algorithm 

that has been taught on the Casia-WebFace dataset utilizing 

Arc loss for greater separation of classes then analyzes the 

converted photographs[1]. Comparisons with traditional 

Softmax show significant improvement, particularly in open-

set classification. The system, which consists of the feature 

extractor and cross-modal bridge, performs better than 

previous approaches and is assessed using a brand-new 

measure known as the Facial Feature Preservation Score 

(FFPS). The research analyzes face recognition datasets, 

neural network architectures, and loss functions to identify 

the most suitable options. It also explores existing methods 

for cross-modal bridge applications, focusing on generative 

adversarial networks. A novel methodology known as X-

Bridge is introduced that expands on prior techniques and 

offers state-of-the-art qualitative and quantitative 

outcomes[11].
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