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Abstract - Human illnesses that impact a person's ability to think, communicate, and behave are primarily classified as 

psychological and neurological disorders. Currently, neurological illnesses affect almost 12% of the world's population. About 

1% of people worldwide have schizophrenia, a chronic psychological illness. The proposed ensemble model combines two hybrid 

Deep Learning (DL) approaches with the Support Vector Machine (SVM) as the meta learner. Convolutional Neural Network-

Gated Recurrent Unit (CNN-GRU) and Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) are the DL 

approaches utilized in the ensemble approach for Schizophrenia detection. The EEG signals utilized in this study are sourced 

from the Kaggle repository, an extensive online database known for its diverse collection of high-quality medical data. This 

novel DL model for schizophrenia classification aims to enhance diagnostic accuracy and reduce reliance on expert 

interpretation. The first hybrid model, CNN-LSTM, attains an accuracy of 92.93% and CNN-GRU with an accuracy of 93.10%. 

Thus, the staking ensemble model achieves an overall accuracy of 94.85%, indicating strong overall correctness in classifying 

cases. Comparative simulations of the suggested approach against several current solutions in schizophrenia diagnosis reveal 

that the suggested approach attains superior accuracy when juxtaposed with other existing methods. These findings bolster the 

advantages of DL for neuroscientific research in general and psychiatric classification in particular. 

Keywords - Schizophrenia, Gated recurrent unit, Psychological disease, Long short-term memory, Convolutional neural 

network, Support vector machine. 

1. Introduction  
A mental illness known as Schizophrenia (SZ) causes an 

imbalance in certain brain regions, which impairs the ability 

to coordinate emotions, behaviors, and thoughts. It is a serious 

mental illness that is chronic and has a major impact on 

sufferers' day-to-day lives [1]. Significant deficits in reality 

perception and behavioural abnormalities associated with 

persistent delusions, hallucinations, influence experiences, 

disorganized thinking, severely chaotic conduct, excessive 

agitation, or slowing of movements are characteristics of 

schizophrenia [2, 3]. The symptoms and signs of 

schizophrenia are depicted in Figure 1. Patients' social activity 

and brain development are significantly impacted by the 

illness, which frequently starts in late adolescence.  

In clinical examinations, negative symptoms of 

schizophrenia are typically misinterpreted [4]. Clinicians' 

experience also plays a role in diagnosing. Since the 

emergence of neuroimaging techniques, structural brain 

changes associated with schizophrenia have been intensively 

explored. Many studies have reported diminished volume of 

the bilateral medial temporal areas, a left superior temporal 

region deficit, and overall gray matter loss, while there are still 

some disagreements over the duration of the illness and the 

use of antipsychotics are the causes of this disease [4,6]. 

Numerous research has shown how conventional Machine 

Learning (ML) methods may identify structural and functional 

abnormalities in the brain associated with schizophrenia. The 

development of a reliable technique for diagnosing 

schizophrenia with negative symptoms is urgent. Recent 

research has demonstrated that speech impairment may serve 

as a sign of the diagnosis of schizophrenia. Generally 

speaking, the majority of current approaches use feature 

engineering techniques, intensity-related features, spectrum-

related features, and other ways to evaluate schizophrenia 

speech. According to these studies, speech can be used as an 

automated biomarker to diagnose schizophrenia. However, it 

is still challenging to suggest a strong model because of the 

limitations in the amount of data and the challenges associated 

with efficient feature extraction. This article proposes a 

staking ensample model to accomplish end-to-end detection 

of schizophrenia. 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1 Symptoms of schizophrenia 

The feature extraction issues can be avoided with the 

suggested method. The following succinctly describes the 

contributions of the proposed work: 

• Proposed an efficient DL model for SZ detection from 

EEG data.  

• Implement an ensemble approach to increase the 

detection performance.  

• Reduce the error rates and false positive rate 

 

2. Literature Review 
Over the past few decades, research has focused on the 

identification of abnormal speech in cases of schizophrenia. 

The majority of earlier research relied on feature engineering.  

 

Aslan et al. [7] extracted important features from 

scalogram images and trained the network for the 

identification of schizophrenia using the Visual Geometry 

Group-16 (VGG16) DL network architecture, an advanced 

CNN architecture. The study used two separate datasets with 

participants from various age groups and demonstrated a high 

degree of success in categorizing SZ patients and healthy 

persons. The difficulty of choosing suitable parameter values 

was one of the study's shortcomings. In addition, the quality 

and diversity of the training data have a big impact on the 

effectiveness of the model. 

 

An automated method for detecting schizophrenia was 

presented by Wawer et al. [8]. The authors employed three 

different forms of text representation, namely utterance 

embedding vectors, dictionary vectors, and bag of words. The 

study's shortcomings were the omitted chances to comprehend 

the disorder's larger context and connections to other illnesses. 

The method might not fully account for the diversity and 

complexity of psychiatric disorders. It has also made the data 

more complex and presented more processing difficulties. 

 

During auditory processing, the potential of aberrant 

patterns in electrical brain activity to distinguish SZ from 

healthy people was investigated by Barros et al. [9]. The 

authors suggested an architecture to do the categorization 

based on multichannel EEG obtained during a passive 

listening task using deep CNN. According to the results, the 

algorithm distinguished between individuals with 

schizophrenia and healthy patients with 78% accuracy. One of 

the study's shortcomings is the low signal-to-noise ratio 

caused by the overlay of EEG recordings with brain processes 

unrelated to the job at hand. The method could also result in 

false positives or false negatives. 

 

Hu et al. [10] integrated 3D structural and Magnetic 

Resonance Imaging (MRI) data to create a deep feature 

strategy based on pre-trained 2D CNN for the categorization 

of schizophrenia. This study employed two separate MRI 

datasets of controls and schizophrenia that were similar in 

terms of age and gender for both groups. The authors created 

multimodal three-dimensional CNN models and employed a 

deep feature technique based on two-dimensional pretrained 

CNN, which showed an accuracy of 81.02%. One of the 
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study's disadvantages was the significant computational cost 

that arises from the high dimensionality of the input data 

during training. The sample size is quite small, particularly 

when it comes to 3D CNN network training. 

 

A lightweight three-dimensional CNN based system for 

SZ diagnosis utilizing MRI images was proposed by Patro et 

al. [11]. The model used a bagging classifier with ensemble 

learning for classification after the features were extracted 

from MRI scans. The MCICShare, COBRE, and fBRINPhase-

II benchmark databases were the three datasets from which the 

algorithm was tested. In comparison to the existing 

approaches, the model attained the highest accuracy of 

92.22% and sensitivity of 94.44%. The limitations of this 

study included the increased computational cost associated 

with training 3D models. The DL algorithm was trained on 

binary labels seen in MRI data, which oversimplifies the fact 

that individuals may have many diseases at the same time and 

that many psychiatric problems progress along with it. The 

model was also susceptible to tweaking its hyperparameters. 

 

DL algorithms created by Oh et al. [12] were able to 

identify SZ fairly well on MRI data sets obtained by a single 

source, even if the individuals' clinical features varied slightly. 

The DL method was trained on MRI data that was all binary 

labeled. Although this binary categorization is frequently 

employed in AI research, it may provide challenges when 

implementing this approach in clinical settings. A deep CNN 

was trained using 5 public structural MRI data sets that 

included both normal and schizophrenic patients. In all, 873 

structural MRI data sets were employed for this training. In 

order to get over the drawbacks of feature extraction-based 

techniques, Khare et al. [13] suggested an automated 

identification of SZ utilizing a mix of time-frequency analysis 

and CNN. The EEG signals undergo three different processing 

methods, namely smoothed pseudo-Wigner–Ville 

distribution, short-time Fourier transform and continuous 

wavelet transform. The resulting Time-Frequency 

Representation (TFR) plots were scalogram, spectrogram, and 

SPWVD-based, respectively. The SPWVD-based TFR and 

CNN model have yielded an accuracy of 93.36% for the 

approach. One limitation of the method is the reliance on 

empirical selection of parameters and additional memory 

requirements. 

 

Zheng et al. [14] used functional MRI data for SZ to 

retrieve effective time series from preprocessed fMRI data. 

They then use TL and VGG16 net to perform correlation 

analysis on regions of interest, classifying the functional 

relationship between SZ and healthy control. Based on 

VGG16, experimental results indicate that fMRI classified 

data with up to 84.3% accuracy. 

 

Current methods often rely on empirical parameter 

selection, leading to increased memory requirements and 

computational costs, particularly when training 3D CNN 

models. The variability in signal-to-noise ratio across subjects, 

influenced by differences in EEG data acquisition parameters, 

can further affect signal quality. Existing nonlinear techniques 

for measuring the brain's chaotic behaviors, such as fractal 

dimension and Lyapunov exponent, is computationally 

intensive and unsuitable for real-time applications, leaving a 

gap for real-time, visually interpretable methods for 

neurologists. Additionally, most studies utilize all EEG 

channels without exploring the impact of a specific number of 

channels on classification performance. The modest sample 

sizes, especially for 3D CNN training, limit the efficiency of 

feature extraction and generalizability of the models. 

Moreover, schizophrenia's high heterogeneity, with various 

subtypes and symptom presentations, poses a significant 

challenge for machine learning models to capture effectively. 

Addressing these gaps requires developing more robust, 

interpretable, and computationally efficient models capable of 

handling the nuanced and heterogeneous nature of 

schizophrenia. 
 

3. Materials and Methods 
The proposed methodology for schizophrenia detection 

from EEG data begins with data collection from the Kaggle 

repository, followed by essential preprocessing and data 

augmentation techniques. The core of the methodology is built 

around two hybrid DL approaches: CNN-LSTM and CNN-

GRU, as depicted in Figure 2. These architectures are 

designed to capture both temporal patterns and spatial features 

in the EEG data. In the CNN-LSTM model, the CNN 

component is responsible for extracting local patterns and 

features from the input EEG data, generating a set of learned 

features that encode spatial information. These features are 

then passed to the LSTM component, which processes them 

sequentially to capture dependencies and temporal dynamics 

in the data. The CNN-GRU model follows a similar approach, 

with the GRU component excelling at capturing temporal 

dependencies. The final step in the methodology involves a 

stacked ensemble method [15] to improve the classification 

performance. Predictions from the CNN-LSTM and CNN-

GRU models are gathered and stacked together to create a new 

feature set. This new set of features, capturing complementary 

information from both models, is then used as input for an 

SVM classifier. The SVM, serving as the meta learner, 

effectively combines these diverse predictions to produce a 

final output. This ensemble approach leverages the strengths 

of each base model, enhancing the overall robustness and 

accuracy of the schizophrenia detection system. 
 

3.1. Dataset Description 

The EEG data for schizophrenia used in this study has 

been sourced from Kaggle. This dataset consists of 19 

electrode values and one label column, as shown in Figure 3. 

The electrode names listed in the left column include Pz, Fp2, 

F4, F7, C3, C4, P4, F3, O2, F8, T3, T4, T5, P3, T6, Fz, O1 

and Cz. These labels correspond to specific scalp locations 

according to the international system for EEG electrode 

placement. 
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Fig. 2 Block diagram of proposed methodology 

 
Fig. 3 Dataset sample 

 
Fig. 4 Visualization of dataset 
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The locations represent different brain regions, with 

prefixes indicating Parietal (P), Frontal (F), Occipital (O), 

Central (C), and Temporal (T) regions. The suffixes denote 

whether the electrode is placed on the left (odd numbers) or 

right (even numbers) hemisphere. The numerical values 

following the electrode labels represent the voltage 

measurements recorded by each electrode at a given time 

point. The final column, labelled "label," likely contains the 

class labels associated with the EEG data, identifying different 

conditions or states relevant to schizophrenia. The data split 

for the method is 80:20. The visualization of the dataset in the 

case of the number of classes is depicted in Figure 4. 

A heatmap is a data visualization approach that uses a 

colour-coded matrix or grid to display data values. With each 

cell in the matrix represents a data point or a combination of 

variables, and its color denotes the magnitude or intensity of 

the data, as shown in Figure 5. By emphasizing regions with 

high or low values, heatmap visualization aims to reveal 

patterns, trends, and relationships within the data [16]. 

Heatmaps make it easy and quick for viewers to comprehend 

data by using colors to represent distinct data ranges. This 

makes it possible to spot anomalies, gradients, and clusters. 

    Spectrograms of EEG data provide a visual indication of the 

signal's frequency content over time, capturing both temporal 

and spectral characteristics [5]. These visualizations can 

highlight distinct patterns and anomalies in brain activity, 

aiding in the identification of neurological conditions like 

schizophrenia. The Spectrogram representation of nineteen 

electrodes is represented in Figure 6. By transforming raw 

EEG signals into spectrograms, DL models can more 

effectively learn and classify complex temporal patterns in the 

data. 

 
Fig. 5 Heatmap visualization 
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Fig. 6 Spectrograms of electrodes 

3.2. Convolutional Neural Network 

CNNs are a kind of Deep Neural Network that are 

frequently applied to the processing of visual images. They are 

capable of identifying and categorizing specific features from 

images. In the CNN model, Convolution operations are 

carried out by the Convolutional Layer, which forms the basis 

of CNN. This layer's Kernel is the part that handles the 

convolution (matrix) process. The stride rate determines how 

the kernel adjusts both horizontally and vertically until the 

entire image is scanned. The convolutional operation is 

represented by the following equations. 

      (𝐼 ∗ 𝐾)(𝑝, 𝑞) = ∑ ∑ 𝐼(𝑚, 𝑛) ⋅ 𝐾(𝑝 − 𝑚, 𝑞 − 𝑛)𝑛𝑚          (1) 

Where 𝐼 is the input image, K is the convolution kernel, 

and (p,q) denotes the spatial position in the output feature map. 

The non-linear activation function is an additional crucial 

component of convolutional layers in addition to convolution. 

The activation function Relu is represented by the following 

equations. 

                         𝑓(𝑝) = 𝑚𝑎𝑥 (0, 𝑝)                      (2) 

By replacing negative values with zero, it introduces non-

linearity to the network. The pooling layer helps to lower the 

amount of processing power needed to handle the data. The 

pooling operation is represented by the following equations. 
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                 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔 (𝑝, 𝑞) = 𝑚𝑎𝑥(𝐼𝑝,𝑞)                  (3) 

It reduces the spatial dimension of the feature map by 

retaining the maximum values within each pooling window. 

Every neuron in the Fully Connected layer (FC) is 

interconnected to every other neuron due to the flattened input. 

The flattened vector is then transmitted via a few more FC 

layers, which are typically where the functional operations 

related to mathematics are carried out. This is the point where 

the classifying process begins. 

𝑞 = 𝑊𝑝 + 𝑏                   (4) 

Where the bias vector is denoted by b, W is the weight 

matrix, the input vector is p, and q is the output vector. In the 

multiclass classification problem, the softmax function is an 

activation function that normalizes output real values from the 

last fully connected layer to target class probability. 

                  𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) =
𝑒𝑝𝑚

∑ 𝑒𝑝𝑛𝑛
                  (5) 

It converts the raw scores (logits) into probabilities, 

ensuring that the sum of the probabilities across all classes 

equals one. A mask known as the Dropout layer eliminates 

certain neurons' contributions to the subsequent layer while 

maintaining the integrity of all other neurons. Because they 

keep the training data from overfitting, dropout layers are 

essential to CNN training. 

3.3. Long Short-Term Memory 

A Recurrent Neural Network (RNN) architecture, LSTM 

is characterized by a more sophisticated structure that includes 

extra memory cells and gates, which enable the model to recall 

or forget information from past time steps selectively. The 

basic architecture of an LSTM is visualised in Figure 7, 

consisting of input, hidden state, and output. An LSTM cell is 

made up of various parts. The information that enters the 

memory cell from the current input and the previously hidden 

state is managed by the input gate and is represented as: 

  𝑖𝑡 =  𝜎(𝑊𝑖 . [[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖   ~𝐶𝑡 =  𝑡𝑎𝑛ℎ(𝑊𝑐 ·
[ℎ𝑡−1, 𝑥𝑡]  + 𝑏𝑐   )                                          (6) 

Information transfer from the previous memory cell to the 

current memory cell is managed by the forget gate. It enables 

the LSTM to choose to retain or forget data from earlier time 

steps. The sigmoid function is represented by σ, the weight 

matrices for the input gate are represented by Wi and Wc, the 

concatenation of the previous state and present input is 

represented by [ht−1, xt]  , the bias vectors are represented by 

bi  and bc.  

               𝐹𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                  (7)                                                                    

𝑏𝑓 is the bias vector for the forget gate, the weight matrix 

𝑊𝑓 is for the forget gate, and the vector of forget gate values 

𝐹𝑡 for the current time step. The LSTM's internal state is called 

the memory cell. It retains data that the input and forget gates 

can modify selectively. The LSTM uses three different kinds 

of gates to regulate information flow inside the network. The 

information flows from the memory cell to the output, and the 

output gate manages the current hidden state. 

 𝑂𝑡 = 𝜎(𝑤𝑜 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)ℎ𝑡 = 𝑂𝑡 ∗  tanh (𝑐𝑡)             (8) 

Where wois the weight matrix for the output gate. The 

LSTM receives a series of inputs during the forward pass, 

updating its hidden state and memory cell at each time step. 

The output gate creates the current hidden state and output by 

combining a sigmoid function with a tanh function. The 

LSTM is an excellent choice for jobs requiring the modeling 

of long-term dependencies because of its capacity to 

selectively recall or forget information from earlier time steps.

 
Fig. 7 Basic LSTM architecture 
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3.4. Gated Recurrent Unit 

GRU describes sequential data by applying the concept of 

selective memory retention and forgetting, just like LSTM. 

However, GRU is simpler, more computationally efficient, 

and has fewer parameters than LSTM, which makes it easier 

to train. An input gate, an output gate, and a forget gate 

compose the basic architecture of the GRU, which is shown in 

Figure 8. To create a new hidden state, the update gate has to 

decide how much of the candidate activation vector and how 

much of the previous hidden state to include. 

Using the prior hidden state ℎ𝑡−1 and the current input x, 

the reset gate r and update gate z are calculated. 

𝑟𝑡 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑤𝑟 ∗ [ℎ𝑡−1, 𝑥𝑡]  (9) 

𝑍𝑡=Sigmoid (𝑤𝑧 ∗ [ℎ𝑡−1, 𝑥𝑡]  (10) 

Where the weight matrices 𝑤𝑟 and 𝑤𝑧 are acquired during 

training. A "candidate activation vector" is calculated by the 

GRU at each time step by fusing data from the previous hidden 

state and present input. The concealed state is subsequently 

updated for the subsequent time step using this candidate 

vector. The candidate activation vector ℎ𝑡~ is calculated using 

the current input x. 

ℎ𝑡~ = tanh (𝑤ℎ ∗ [𝑟𝑡 ∗ ℎ𝑡−1, 𝑥𝑡])  (11) 

𝑤ℎ represents an additional weight matrix. the new hidden 

state ℎ𝑡 is measured as 

ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ𝑡~  (12)

 
Fig. 8 Basic architecture of GRU 

3.5. Proposed CNN- LSTM Architecture 

The proposed architecture integrates CNN with LSTM 

networks to leverage the strengths of both components. The 

model framework is depicted in Figure 9. The model begins 

with a 1-D convolutional layer with a kernel size of 3 and 64 

filters. This layer is responsible for learning spatial features 

from the EEG data, focusing on extracting local patterns from 

the input sequences. The convolutional layer's ability to 

capture intricate details at different spatial hierarchies is 

crucial for identifying subtle local patterns that may be 

indicative of schizophrenia. Following the convolutional 

layer, a max-pooling layer is applied to downsample the 

features. This reduces the dimensionality of the feature map, 

thereby focusing on the most salient features and improving 

the computational efficiency of the model. The downsample 

output from the max-pooling layer is then fed into the LSTM 

component of the hybrid model. 

The LSTM layer in this architecture consists of 32 units 

and is designed to capture long-term dependencies and 

temporal patterns within the EEG signals. By processing the 

sequence of features extracted by the CNN, the LSTM layer 

retains the memory of past states and updates this memory 

based on the input sequence. This capability allows the model 

to detect subtle temporal changes and complex temporal 

dynamics in the EEG data, which are critical for distinguishing 
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schizophrenia-related patterns. Finally, the output from the 

LSTM layer is passed through a flattened layer, which 

transforms the sequential output into a one-dimensional 

vector. This flattened representation is then fed into a dense 

layer with a sigmoid activation function, which produces the 

final binary classification output. The sigmoid function maps 

the output to a probability value between 0 and 1, indicating 

the likelihood of the presence or absence of schizophrenia. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 Proposed CNN- LSTM model architecture 

3.6. Proposed CNN- GRU Model 

The proposed CNN-GRU hybrid model is a sophisticated 

deep learning architecture designed to detect schizophrenia 

from EEG (Electroencephalography) data by leveraging the 

strengths of both CNN and GRU. The model architecture is 

shown in Figure 10. The model architecture begins with a one-

dimensional convolutional layer consisting of 64 filters with a 

kernel size of 3. The CNN component focuses on extracting 

local spatial patterns and features from the input sequences, 

capturing important nuances in the EEG signals. Following 

the convolutional layer, a MaxPooling one-dimensional layer 

with a pool size of 2. It reduces the dimensionality of the 

feature map by downsampling the extracted features. This 

process helps reduce the computational load and focus on the 

most relevant features, enhancing the model's ability to 

generalize new data well. 

 

The output of the max-pooling layer is then fed into a 

GRU layer. The GRU layer in this model consists of 32 units 

and utilizes the ReLU activation function. This GRU layer is 

crucial for capturing temporal dependencies within the EEG 

data learning sequential patterns that may indicate 

schizophrenia over time. GRUs, known for their ability to 

retain important information over long sequences and their 

simpler structure compared to traditional LSTMs, make the 

model more computationally efficient while still effectively 

capturing temporal dynamics. After the GRU layer, the output 

is passed through a flattened layer. This layer transforms the 

multi-dimensional output from the GRU into a one-

dimensional vector, making it suitable for the subsequent 

dense layer. The final layer in the model is the dense layer, 

which contains a single neuron with a sigmoid activation 

function. This activation function maps the output to a 

probability value between 0 and 1, indicating the likelihood of 

schizophrenia. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 Proposed CNN- GRU model architecture 

3.7. Support Vector Machine 

SVM is an ML technique used for linear or nonlinear 

classification, regression, and outlier detection. The primary 

goal of the SVM method is to identify the best hyperplane in 

an N-D space for dividing data points into various feature 

space classes. The goal of the hyperplane is to maintain the 

largest possible buffer between the nearest points of various 

classes. The number of features determines the dimension of 

the hyperplane. The hyperplane can be viewed as a line when 

the number of input features is two. If there are three input 

features, the hyperplane transforms into a 2-D plane. If there 

are more than three features, it becomes more difficult to 

imagine.  
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The hyperplane that shows the greatest margin or 

separation between the two classes is a plausible candidate for 

the best hyperplane. The hyperplane is selected with the 

maximum distance between it and the closest data point on 

each side. A hyperplane that satisfies this condition is referred 

to as the maximum-margin hyperplane or hard margin. The 

linear hyperplane equation is expressed as follows: 

𝑋𝑢𝑦 + 𝑐 = 0   (13) 

The direction perpendicular to the hyperplane, or the 

normal vector, is represented by the vector X. The offset or 

distance of the hyperplane from the origin along the normal 

vector X is represented by the parameter c in the equation. 

To find the distance between the data point and the decision 

boundary: 

𝐷𝑚 =
𝑋𝑢∗𝑦𝑖+𝑐

‖𝑋‖
      (14) 

Where the weight vector X's Euclidean norm is denoted 

by ||X||. For Linear SVM classifier: 

 

�̂� = {
1: 𝑋𝑢𝑦 + 𝑐 ≥ 0

0: 𝑋𝑢𝑦 + 𝑐 < 0
       (15)   

3.8. Proposed Stacking Ensemble Model 

The proposed stacked ensemble method in this work 

combines predictions from multiple base models, specifically 

a CNN-LSTM and a CNN-GRU model. These base models 

generate predictions that capture different aspects of the EEG 

data, and these predictions are then stacked together 

horizontally to create a new feature set for each sample. This 

stacking process aggregates diverse information, potentially 

capturing complementary patterns, and the resulting feature 

set is used as input for an SVM classifier. The SVM, a robust 

and versatile classification algorithm, learns to combine these 

predictions effectively and finds the optimal decision 

boundary for the final classification, enhancing the accuracy 

of schizophrenia detection. 

Table 1. Hyperparameters 

Optimizer Adam 

Loss Binary Crossentropy 

Batch Size 128 

Number of Epochs 10 
 

3.9. Hardware and Software Setup 

TensorFlow and Python were used during the creation and 

training of the model on Google Collaboratory. High-

performance CPU and GPU were the main components of the 

hardware configuration, which allowed it to carry out the 

computational activities required for training effectively and 

assessing the deep learning models. A sophisticated processor, 

such as an AMD Ryzen or an Intel Core i9, was used to 

manage the computational load efficiently. In order to speed 

up the training of deep neural networks, which usually require 

labor-intensive matrix operations—a potent GPU, NVIDIA 

GeForce RTX, was employed. Adam is the optimizer used in 

the training process, while categorical crossentropy is the loss 

function. For training, a batch size of 128 samples in each 

iteration is used, and the process is carried out over 10 epochs. 

Python would have been the main programming language in 

the software stack because of its wide usage and abundance of 

libraries for deep learning and machine learning applications. 

TensorFlow on Google Collaboratory enabled web-based 

collaborative coding and deep learning model 

experimentation. TensorFlow is a cloud-based platform that 

provides free access to GPU resources.  

4. Results and Discussion 
The precision, recall, accuracy, and f1-score of the model 

are the metrics used to assess its performance. These 

parameters shed light on how well the model can handle 

imbalances between classes and categorize examples. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
 𝑇𝑝𝑜𝑠+𝑇𝑛𝑒𝑔

𝑇𝑝𝑜𝑠+𝑇𝑛𝑒𝑔+𝐹𝑝𝑜𝑠+𝐹𝑛𝑒𝑔
                  (16) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝𝑜𝑠

𝑇𝑝𝑜𝑠+𝐹𝑝𝑜𝑠
   (17) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑝𝑜𝑠

𝑇𝑝𝑜𝑠+𝐹𝑛𝑒𝑔
           (18) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
)                   (19) 

In the hybrid model of CNN and LSTM, the accuracy 

improved from 97.18% to 97.53%, while the loss decreased, 

indicating effective learning. The accuracy and loss plot of the 

CNN-LSTM system is depicted in Figure 11. Initial accuracy 

was relatively high due to the model's inherent ability to 

capture data patterns. Accuracy generally increased with each 

epoch, though minor fluctuations occurred, which are normal 

due to factors like learning rate adjustments, data complexity, 

and the stochastic nature of gradient descent. These 

fluctuations were minor, showing a consistently upward trend 

in accuracy and suggesting that the model effectively learned 

and enhanced its performance over time. 

 

At the start of training (Epoch 1), the model exhibits a loss 

of 3.431, indicating that the model's initial predictions are 

moderately accurate despite randomly initialized weights. By 

the final epoch (Epoch 10), the loss decreases to 0.214, 

showing successful learning and enhanced predictive 

performance.  

The accuracy and loss plot of the CNN-GRU model is 

depicted in Figure 12. The CNN-GRU model starts with a 

training accuracy of 73.44% in Epoch 1 and improves to 

98.24% by Epoch 10. This steady improvement indicates that 

the model effectively learns from the training data over time, 

with its predictions becoming more accurate. The training 

process proves effective, enabling the model to capture data 

patterns better and improve its prediction capabilities 
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incrementally. At the start of training, the system's loss is 

0.6106, which represents the initial error in the model's 

predictions. By the final epoch, the loss decreases to 0.129. 

This reduction in loss indicates that the model has become 

more accurate over time, as it has learned to make predictions 

that are closer to the actual target values. The consistent 

decrease in loss across the epochs reflects the model's 

improving performance and effective learning process.

  

 

Fig. 11 Accuracy plot and loss plot of CNN- LSTM model 

 

Fig. 12 Accuracy plot and loss plot of CNN- GRU model 

Table 2. Classification report of proposed methodology 

Performance 

Metrics 

CNN-LSTM 

Model 

CNN-GRU 

Model 

Ensemble 

Model 

Accuracy 0.9293 0.9310 0.9485 

Recall 0.9234 0.9215 0.9492 

Precision 0.9128 0.9226 0.9510 

F1-Score 0.9197 0.9216 0.9500 
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Fig. 13 Performance comparison of the proposed methodology 

    
Table 3. Performance comparison with existing works 

Author Methodology Accuracy 

Barros et al. CNN 78% 

Hu et al. Deep learning approach 

with two different 

datasets 

81.02% 

Patro et al. Deep ensemble model 92.22% 

Khare et al. CNN 93.36% 

Proposed 

Model 

Ensemble model 94.85% 

 

As shown in Figure 13, the classification report compares 

the performance metrics of three models: CNN-LSTM, CNN-

GRU, and an Ensemble Model. The Ensemble Model, which 

combines the predictions of the CNN-LSTM and CNN-GRU 

models, demonstrates superior performance across all metrics. 

The accuracy of the Ensemble Model is 0.9485, higher than 

both the CNN-LSTM (0.9293) and CNN-GRU (0.9310) 

models. Similarly, the precision of the Ensemble Model is 

0.9510, indicating that it is more effective at correctly 

identifying positive instances compared to the CNN-LSTM 

(0.9128) and CNN-GRU (0.9226) models. The recall of the 

Ensemble Model is 0.9492, showing that it has a higher 

sensitivity in detecting true positives than the CNN-LSTM 

(0.9234) and CNN-GRU (0.9215) models. The F1-Score, 

which balances precision and recall, is also highest for the 

Ensemble Model at 0.9500, compared to 0.9197 for CNN-

LSTM and 0.9216 for CNN-GRU. This indicates that the 

Ensemble Model effectively leverages the strengths of both 

base models to achieve the best overall performance in 

schizophrenia detection. 

5. Conclusion  
Schizophrenia (SZ) is often diagnosed by a qualified 

psychiatrist through patient interviews. This procedure is 

laborious, time-consuming, and prone to mistakes, and 

prejudice. This paper introduces a staking ensample model for 

the identification of SZ patients using EEG signals. The 

proposed ensemble model, combining CNN-LSTM and CNN-

GRU deep learning architectures with an SVM meta learner, 

demonstrates significant advancements in the detection of 

schizophrenia from EEG signals.  

By leveraging high-quality data from the Kaggle 

repository, the ensemble model achieves an impressive 

accuracy of 94.85%, surpassing the individual performances 

of the CNN-LSTM (92.93%) and CNN-GRU (93.10%) 

models. This superior accuracy highlights the efficacy of the 

ensemble approach in enhancing diagnostic precision and 

reducing dependence on expert interpretation. Comparative 

analyses underscore the model's robustness and its potential to 

outperform current state-of-the-art methods, thus 

underscoring the promising role of deep learning in advancing 

psychiatric classification and contributing to the broader field 

of neuroscientific research.  
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