
SSRG International Journal of Electronics and Communication Engineering                                    Volume 11 Issue 8, 282-293, August 2024 

ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V11I8P127                                                     © 2024 Seventh Sense Research Group® 

          

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Original Article 

Improved Glioma Detection and Classification through 

the EVGG19 Model 
 

S. Kannan1, S. Anusuya2 

 
1School of Engineering and Technology, Dhanalakshmi Srinivasan University, Tiruchirappalli, India. 

2Department of Information Technology, Saveetha School of Engineering, 

Saveetha Institute of Medical and Technical Sciences, SIMATS, Chennai, India 
 

1Corresponding Author : kannans.set@dsuniversity.ac.in 
 

Received: 21 June 2024                     Revised: 31 July 2024                      Accepted: 16 August 2024                      Published: 31 August 2024 

  

Abstract - Gliomas, a diverse and complex category of brain tumors, present significant challenges in accurate classification 

due to their heterogeneous nature. Precise classification of gliomas into their respective subtypes and grades is crucial for 

effective clinical decision-making and personalized treatment planning. This study proposes an enhanced convolutional neural 

network architecture, EVGG19, designed specifically for the classification of gliomas using MRI data. This effort aims to 

incorporate domain-specific innovations and improve the glioma classification's accuracy and reliability. Our proposed 

workflow begins with the preprocessing and normalization of MRI images, followed by utilizing the DHA-ISSP model for 

accurate tumor segmentation. The segmented tumor regions are then fed into the EVGG19 model, which includes additional 

convolutional layers, increased model depth, dropout regularization, and a dedicated classification layer to refine the 

extraction and representation of features relevant to glioma classification. The performance of the EVGG19 model was 

rigorously evaluated using the TCGA dataset. Our model achieved an accuracy of 0.94, precision of 0.89, recall of 0.91, and 

F1 score of 0.9, significantly outperforming existing baseline models such as VGG Net-Based Deep Learning, UNet-VGG16 

with transfer learning and VGG-UNET. Furthermore, EVGG19 demonstrated superior specificity (0.96), sensitivity (0.93), 

and AUC (0.97), along with the lowest MAE of 0.1 and MSE of 0.2. These findings demonstrate how well the EVGG19 model 

can distinguish glioma grades and subtypes, providing a robust tool for clinical application and furthering the potential for 

improved patient outcomes through more precise diagnostic capabilities. 

Keywords - Gliomas, Classification, EVGG19, Segmentation, Normalization, Tumor regions.  

1. Introduction 
Gliomas, the most prevalent primary BTs, are among the 

most challenging neuro-oncological conditions to manage 

due to their intricate biological heterogeneity and variable 

clinical outcomes. These tumors encompass a spectrum of 

malignancies, ranging from low-grade gliomas, which 

progress slowly and often have a favorable prognosis, to 

high-grade gliomas, characterized by aggressive growth and 

dismal survival rates [1]. Accurate classification of gliomas 

into subtypes or grades is paramount for guiding therapeutic 

strategies personalized to the precise characteristics of each 

tumor and predicting patient outcomes with precision [2]. 

Traditionally, glioma classification has relied on 

histopathological analysis, which involves examining tumor 

tissue samples obtained through invasive procedures. While 

histopathology remains the system for diagnosis, its invasive 

nature and inherent limitations in capturing the spatial 

heterogeneity of gliomas pose significant challenges [3]. 

Moreover, histopathological classification schemes based on 

histological features alone may lack granularity and fail to 

fully capture the complex molecular and genetic alterations 

driving glioma progression. 

 

In recent years, the advent of advanced imaging 

modalities, particularly MRI, has revolutionized the non-

invasive evaluation of gliomas. MRI provides exquisite 

anatomical detail and allows for the visualization of key 

features such as tumor location, size, and extent of 

infiltration into surrounding brain tissue [4]. Additionally, 

advanced MRI techniques, including DWI, PWI, and MRS, 

offer insights into the microstructural and metabolic 

characteristics of gliomas, further enhancing diagnostic 

accuracy. Despite these advancements, the interpretation of 

glioma imaging remains challenging, requiring specialized 

expertise and subjective interpretation. Moreover, traditional 

MRI-based glioma classification approaches often rely on 

qualitative assessments or semi-quantitative metrics, which 

may be prone to inter-observer variability and lack 

robustness in capturing subtle differences between glioma 

subtypes [5]. In this context, DL techniques, particularly 
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CNNs, have emerged as powerful tools for automated glioma 

classification from medical imaging data. CNNs are ideally 

suited for extracting intricate features from complex images, 

allowing for objective and quantitative analysis of glioma 

imaging characteristics [6].  

 

In this study [7], we introduce EVGG19, an enhanced 

version of the VGG19 architecture tailored specifically for 

glioma classification. EVGG19 builds upon the foundational 

principles of VGG19 while incorporating novel 

enhancements aimed at improving the accuracy and 

reliability of glioma classification. By harnessing advanced 

DL techniques and state-of-the-art imaging data, EVGG19 

represents a substantial development in the field of 

automated glioma classification, with the possibility to 

transfigure clinical practice and improve patient outcomes. 

 

Gliomas represent a challenging domain in neuro-

oncology, requiring accurate classification for personalized 

treatment strategies and prognosis assessment. Our proposed 

method incorporates several key enhancements to the 

traditional VGG19 architecture. These include additional 

convolutional layers for increased model depth, dropout 

regularization to prevent overfitting, and a dedicated 

classification layer specifically designed for glioma subtypes 

or grades. These improvements ensure that EVGG19 can 

effectively capture and differentiate the complex imaging 

features associated with different glioma types, thereby 

enhancing diagnostic accuracy. Through comprehensive 

experimentation and evaluation on a diverse dataset of 

glioma MRI scans, we demonstrate the efficacy and 

superiority of EVGG19 in accurately distinguishing between 

different glioma subtypes or grades. 

 

The organization of this paper is as follows. Section 2 

presents a literature survey, reviewing existing 

methodologies and their limitations in glioma classification. 

Section 3 details the DHA-ISSP model and the 

enhancements made to EVGG19, including data acquisition, 

preprocessing, and architectural improvements. Section 4 

discusses the results as well as the performance evaluation, 

demonstrating the efficacy of EVGG19 in accurately 

classifying glioma subtypes or grades through extensive 

experimentation and comparison with baseline models. 

Finally, Section 5 provides the conclusion by summarizing 

the study's key findings and their implications for advancing 

glioma classification and suggesting directions for future 

research. 

 

2. Related Works 
Gliomas, the most common Brain Tumors (BT’s), 

present significant challenges in neuro-oncology due to their 

biological heterogeneity and variable clinical outcomes. 

Accurate classification of gliomas is crucial for guiding 

therapeutic strategies and predicting patient outcomes. 

Traditional methods, primarily relying on histopathological 

analysis, are invasive and limited in capturing the spatial and 

molecular complexity of these tumors. Advanced imaging 

techniques, particularly MRI, offer non-invasive insights but 

require specialized interpretation and are prone to variability. 

Existing Deep Learning (DL) as well as the Machine 

Learning (ML) models have made strides in addressing these 

challenges. Yet, issues such as overfitting, limited dataset 

sizes, and inadequate feature extraction persist. 

 

Majib et al. [8] introduced VGG-SCNet, evaluating 

various ML models and 16 different transfer learning models 

to classify brain tumors autonomously. While their stacked 

classifier achieved high accuracy, the model's complexity 

and computational demands are significant drawbacks. Amin 

et al. [9] extracted deep features from the InceptionV3 model 

in addition to QVR for tumor classification. Their approach 

included a Seg network for segmenting infected regions. 

However, the reliance on quantum computing techniques 

may limit practical applications due to hardware constraints. 

Qureshi et al. [10] anticipated the Ultra-Light BT Detection 

system, which combines deep features with textural features 

from the Gray Level Matrix, using an SVM for classification. 

Although this hybrid approach achieves high accuracy, it 

requires substantial computational resources and may not be 

suitable for real-time applications. 

 

Pravitasari et al. [11] developed UNet-VGG16 with 

transfer learning for classifying Regions of Interest (ROI) in 

brain tumor images. While effective, the model's 

performance is highly dependent on the quality of the 

transfer learning process and may struggle with overfitting in 

smaller datasets. Alsubai et al. [12] proposed a CNN- LSTM 

hybrid model for brain tumor prediction. This approach 

demonstrated improved classification accuracy but is 

computationally intensive and may not be practical for real-

time applications. Khan et al. [13] addressed the overfitting 

problem in smaller datasets by combining a 23-layer CNN 

with transfer learning using VGG16. Although effective, the 

model's complexity and need for extensive computational 

resources are significant limitations. 

 

Nawaz et al. [14] presented the VGG19-UNET model 

for segmentation, coupled with an ensemble voting predictor 

for survival prediction. Despite good performance, the 

model's complexity and requirement for extensive 

preprocessing are drawbacks. Rehman et al. [15] utilized a 

3D CNN for tumor detection, followed by feature extraction 

with a pretrained CNN and classification using a feed-

forward neural network. While this approach is innovative, 

the reliance on multiple models increases computational 

complexity. Methil [16] emphasized the importance of image 

preprocessing techniques like histogram equalization and 

image opening in improving classification accuracy. 

However, the preprocessing steps can be time-consuming 

and may not always lead to significant improvements. Alsaif 

et al. [17] reviewed various CNN architectures and proposed 
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a method for BT detection using CNNs and data 

augmentation. The effectiveness of this approach is limited 

by the variability in data quality and the need for extensive 

data augmentation. 

 

Shah et al. [18] fine-tuned the EfficientNet-B0 model for 

brain tumor classification, incorporating data augmentation 

and image enhancement techniques. Although effective, the 

model's reliance on augmentation may not generalize well to 

all datasets. Gupta et al. [19] suggested an ensemble method 

combining Random Forest and InceptionResNetV2 for tumor 

detection and staging. While achieving high accuracy, the 

ensemble approach increases computational demands and 

complexity. Irmak [20] developed three CNN models for 

multi-class BT classification, achieving high accuracy. 

However, the models' complexity and need for extensive 

computational resources are limitations. Ranjbarzadeh et al. 

[21] proposed a flexible BT segmentation system using a 

Cascade CNN, focusing on smaller image regions to reduce 

computing time. Despite its efficiency, the system's 

effectiveness is highly dependent on the preprocessing 

approach. 

 

Our proposed EVGG19 model addresses the limitations 

of existing methods by incorporating additional 

convolutional layers, dropout regularization, and a dedicated 

classification layer to improve feature extraction and 

robustness. Unlike previous models, EVGG19 is designed to 

minimize overfitting and handle diverse dataset sizes 

effectively. Through comprehensive experimentation on the 

TCGA dataset, EVGG19 demonstrated superior 

performance, achieving higher accuracy, precision, and F1 

score compared to existing models. This enhancement makes 

EVGG19 a significant advancement in glioma classification, 

offering a more reliable and efficient tool for clinical 

decision-making and personalized treatment strategies. 

 

3. DHA-ISSP Model 
The foundation of our research lies in the acquisition and 

preprocessing of MRI data, a fundamental step in our quest 

to unravel the complexities of glioma classification as 

depicted in Fig. 1. Gliomas, characterized by their diverse 

morphological and pathological manifestations, demand 

meticulous handling of imaging data to ensure accuracy and 

consistency in subsequent analyses. Our input data, 

comprising preprocessed MRI images of gliomas obtained 

from patients, undergoes a rigorous standardization process 

to normalize formatting and intensity levels, laying the 

groundwork for robust analysis methodologies. 

 

3.1. Data Acquisition and Preprocessing 

In the initial phase, MRI images of gliomas are acquired 

from a diverse cohort of patients. The raw MRI data, 

represented as 𝐼𝑟𝑎𝑤(𝑖, 𝑗, 𝑘) where 𝑖, 𝑗, 𝑘 denote the spatial 

coordinates and undergoes preprocessing steps. These steps 

include intensity normalization and noise reduction to 

enhance image quality. The normalized MRI image 

𝐼𝑛𝑜𝑟𝑚(𝑖, 𝑗, 𝑘) is obtained using the formula: 

 

𝐼𝑛𝑜𝑟𝑚(𝑖, 𝑗, 𝑘) =
𝐼𝑟𝑎𝑤(𝑖,𝑗,𝑘)−μ

𝜎
  (1) 

 

Where σ and 𝜇 epitomize the standard deviation and 

mean of the intensities in the MRI image, respectively. This 

normalization ensures consistent intensity levels across the 

dataset, facilitating accurate segmentation and classification. 

Building upon this standardized dataset, we set out on a 

voyage through the complex terrain of glioma segmentation., 

a crucial precursor to effective classification and prognosis. 

Enter the DHA-ISSP model, a sophisticated framework 

engineered to navigate the complexities of glioma 

delineation with precision and efficacy. The proposed model 

employs DHA mechanisms, which focus on different regions 

of the MRI scans to segment tumor areas accurately. Let 

𝑓𝐷𝐻𝐴(𝐼𝑛𝑜𝑟𝑚) denote the segmentation function of the DHA-

ISSP model. The segmented tumor regions 𝑆𝑡𝑢𝑚𝑜𝑟 are 

obtained as follows: 

 

  𝑆𝑡𝑢𝑚𝑜𝑟 = 𝑓𝐷𝐻𝐴(𝐼𝑛𝑜𝑟𝑚)                 (2) 

Where 𝑆𝑡𝑢𝑚𝑜𝑟 represents the binary mask highlighting 

the tumor regions within the given MRI image. The DHA 

mechanisms are mathematically expressed as: 

 

𝐷𝐻𝐴(𝑥) =  ∑ α𝑙
𝐿
𝑙=1 . 𝑓1(𝑥)  (3) 

 

Here, 𝑥 denotes the input feature maps, 𝐿 is the number 

of hierarchical levels, α𝑙 represents the attention weights at 

level 𝑙, and 𝑓1 denotes the feature extraction function at level 

𝑙. Through meticulous attention to detail and adaptive 

learning strategies, the DHA-ISSP model produces precise 

delineations of glioma boundaries, offering invaluable 

insights into the spatial distribution and characteristics of 

these elusive tumors within the intricate terrain of the brain. 

The fruits of the proposed model's labor yield a bounty of 

segmented tumor regions, each a testament to the model's 

prowess in deciphering the enigmatic landscape of gliomas. 

These segmented regions, meticulously extracted and 

curated, emerge as the cornerstone of our subsequent 

endeavors in glioma classification. Serving as the primary 

input for our classification framework, these regions 

encapsulate a wealth of localized information, offering 

glimpses into the spatial intricacies and heterogeneity of 

gliomas within the confines of the brain. 

 

As we navigate the labyrinth of glioma classification, 

armed with the insights gleaned from the DHA-ISSP model, 

we embark on a quest to discern the subtle nuances and 

intricacies of glioma subtypes and grades. Guided by the 

beacon of innovation, we turn to the EVGG19 architecture, a 

beacon of computational prowess poised to revolutionize the 

landscape of glioma classification. Within the hallowed halls 
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of EVGG19, the segmented tumor regions serve as grist for 

the mill, undergoing a metamorphosis of feature extraction 

and representation learning. Deep within the convolutional 

layers of EVGG19, intricate patterns and spatial relationships 

are unearthed, each a testament to the model's capacity to 

discern the subtle fingerprints of glioma pathology. The 

convolutional operations are mathematically represented as: 

 

𝐹𝑐𝑜𝑛𝑣 = 𝜎(𝑊𝑐𝑜𝑛𝑣 ∗ 𝑆𝑡𝑢𝑚𝑜𝑟 + 𝑏𝑐𝑜𝑛𝑣)        (4) 

 

Where 𝐹𝑐𝑜𝑛𝑣 denotes the feature maps obtained from the 

convolutional layer, 𝑏𝑐𝑜𝑛𝑣 and 𝑊𝑐𝑜𝑛𝑣 represent the biases 

and weights of the convolutional layer, and σ denotes the 

activation function. Through a symphony of convolutional 

operations and nonlinear transformations, EVGG19 

endeavors to distil the essence of glioma subtypes and grades 

from the rich tapestry of segmented tumor regions. With each 

passing layer, the model delves deeper into the labyrinthine 

complexities of glioma classification, guided by the guiding 

light of innovation and discovery. As the journey through 

EVGG19 unfolds, the segmented tumor regions transform, 

emerging as harbingers of diagnostic insights and prognostic 

indicators. The output of EVGG19, a symphony of predicted 

labels and probabilities, is generated using a dedicated 

classification layer. This layer maps the extracted features to 

the target classes, facilitating accurate glioma classification. 

The classification function is expressed as: 

 

𝑦𝑝𝑟𝑒𝑑 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑓𝑐 ⋅ 𝐹𝑐𝑜𝑛𝑣 + 𝑏𝑓𝑐)        (5) 

 

Where 𝑦𝑝𝑟𝑒𝑑 denotes the predicted probabilities for 

each class, 𝑏𝑓𝑐 and 𝑊𝑓𝑐  represent the biases and weights of 

the fully connected layer, respectively, and 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 

denotes the softmax activation function. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Proposed EVGG19 classification for glioma classification process 

3.2. Enhancements to EVGG19 

To address the intricate features of gliomas and improve 

classification accuracy, EVGG19 incorporates several key 

enhancements, as shown in Figure 2.  

 

These improvements aim to exploit the hierarchical 

nature of convolutional features, capture finer details, and 

mitigate common deep learning challenges such as 

overfitting and the vanishing gradient problem. 

3.2.1. Additional Convolutional Layers and Enhanced 

Feature Extraction 

Traditional Convolutional Neural Networks (CNNs), 

including the original VGG19 architecture, typically consist 

of a series of convolutional layers followed by pooling layers 

[22]. While effective in capturing basic image features, such 

architectures may struggle to capture the intricate details and 

patterns present in complex medical imaging data, such as 

MRI images of gliomas. To address this limitation, EVGG19 
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incorporates additional convolutional layers designed to 

capture finer details and subtle patterns specific to gliomas. 

These additional layers are strategically placed within the 

network architecture to allow for deeper feature extraction 

while preserving spatial information crucial for accurate 

classification. By increasing the depth of the network, we 

aim to exploit the hierarchical nature of convolutional 

features, enabling EVGG19 to learn increasingly abstract 

representations of glioma imaging data. This hierarchical 

representation facilitates the extraction of discriminative 

features essential for distinguishing between different glioma 

subtypes or grades. The additional convolutional layers in 

EVGG19 are initialized with random weights and trained 

using backpropagation on large datasets of annotated glioma 

MRI scans. This training process allows EVGG19 to learn 

complex patterns and relationships inherent in glioma 

imaging data, further enhancing its ability to classify gliomas 

accurately. The convolution operation in these layers can be 

represented mathematically as: 

 

𝑌(𝑙) = 𝜎(𝑊(𝑙) ∗ 𝑋(𝑙) + 𝑏(𝑙))   (6) 

Where 𝑌(𝑙) denotes the output feature maps at layer l, 

𝑊(𝑙) represents the weights of the convolutional filters at 

layer l, 𝑏(𝑙) is the bias term, 𝑋(𝑙) is the input feature maps to 

layer l, σ represents the activation function, typically ReLU 

(Rectified Linear Unit) or a similar non-linear function and ∗ 

denotes the convolution operation. Additionally, the 

incorporation of residual connections, inspired by the ResNet 

architecture, allows EVGG19 to mitigate the vanishing 

gradient problem associated with deep networks. These 

residual connections enable more efficient training of deeper 

networks by facilitating the flow of gradients during 

backpropagation, thereby improving convergence and overall 

model performance. The residual connection can be 

mathematically expressed as: 

 

𝑌(𝑙+1) = 𝜎(𝑏(𝑙+1) + 𝑊(𝑙+1) ∗ 𝑌(𝑙)) + 𝑌(𝑙)    (7) 

 

Where the output of layer 𝑙 + 1 is the sum of the output 

of the convolution operation and the input feature maps to 

layer 𝑙.

 

 

 

 

Fig. 2 EVGG19 architecture 

3.2.2. Increased Model Depth in EVGG19 

EVGG19 takes a significant step beyond the original 

VGG19 architecture by significantly increasing the depth of 

the model [23]. This enhancement aims to address the 

inherent limitations of shallower networks in capturing the 

complex spatial information present in MRI images of 

gliomas. By adding more layers, EVGG19 achieves a deeper 

and more complex network topology, enabling it to extract a 

broader range of features and learn more sophisticated 

representations of glioma imaging data. The increased model 

depth in EVGG19 allows for more extensive feature 

extraction and representation learning, facilitating the capture 

of subtle nuances and intricate patterns inherent in glioma 

MRI images. Each additional layer in the network hierarchy 

serves to refine and augment the feature representation, 

enabling EVGG19 to encode increasingly abstract and 

discriminative information about gliomas. 

 

Moreover, the increased model depth in EVGG19 

enables the network to leverage ordered depictions of glioma 

imaging data, with each layer building upon the features 

educated by the preceding layers. This hierarchical 

representation facilitates the extraction of higher-level 

features that encapsulate complex relationships between 

different regions of interest in the MRI scans. To further 

enhance the effectiveness of the increased model depth, 

EVGG19 employs advanced optimization techniques such as 

batch normalization and adaptive learning rate scheduling. 

These techniques help stabilize and accelerate the training 

process, allowing EVGG19 to effectively learn from the 

large volumes of glioma imaging data available. The batch 

normalization process can be mathematically described as:  

 

�̂�(𝑙) =
𝑋(𝑙)−𝜇

√𝜎2+ 𝜖
   (8) 

 

where �̂�(𝑙) is the normalized input, 𝜎2 and μ are the 

variance and mean of the inputs, and ϵ is a trivial constant 

supplementary for numerical stability. 

3.2.3. Integration of Dropout Regularization in EVGG19 

In the pursuit of enhancing EVGG19's robustness and 

generalization capabilities, we introduce dropout 

regularization as a pivotal component of the model 

architecture. Dropout layers are strategically integrated into 

EVGG19 to mitigate overfitting and improve its ability to 

generalize well to unseen glioma imaging data. The 
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incorporation of dropout regularization addresses the 

common challenge of overfitting, wherein the model learns 

to memorize noise or idiosyncrasies in the training data 

rather than capturing underlying patterns or structures 

relevant to glioma classification [24]. Dropout reduces the 

network's dependence on any one collection of neurons or 

features by randomly deactivating a portion of neurons 

during every learning cycle. This drives the system to acquire 

more resilient and generalizable features. Through dropout 

regularization, EVGG19 effectively reduces model 

complexity and promotes feature diversification, preventing 

individual neurons from becoming overly specialized or 

dominant in the learning process. This diversification fosters 

a more distributed representation of features across the 

network, enhancing EVGG19's capacity to generalize well to 

unseen glioma imaging data. Moreover, dropout 

regularization serves as a form of ensemble learning within 

the network, as each training iteration samples a different 

subset of neurons to be dropped out. This ensemble effect 

helps EVGG19 learn a diverse set of representations and 

reduces the risk of overfitting by promoting model averaging 

over multiple iterations. The mathematical formulation of 

dropout regularization can be represented as: 

 

𝑌(𝑙) = 𝜎((𝑋(𝑙) ⊙ 𝑀(𝑙)) ∗ 𝑊(𝑙) + 𝑏(𝑙))      (9) 

 

Where ⊙ represents the multiplication of elements, and 

𝑀(𝑙) is a binary mask vector with elements randomly set to 0 

or 1 with probability p. 

3.3. Dedicated Classification Layer in EVGG19 

In the evolution of EVGG19, a pivotal enhancement is 

the introduction of a dedicated classification layer 

strategically positioned at the output of the network. This 

innovative addition is meticulously designed to optimize 

glioma classification by providing a specialized mapping 

between learned features and target classes, thereby 

significantly enhancing prediction accuracy. 

 

3.3.1. Specialized Mapping for Glioma Classification 

The dedicated classification layer in EVGG19 serves as 

the final stage in the network's architecture, where learned 

features from preceding layers are transformed into 

predictions for glioma subtypes or grades. Unlike generic 

classification layers in traditional CNN architectures, the new 

fully connected layer in EVGG19 is tailored specifically for 

glioma classification, incorporating domain-specific 

knowledge and insights to improve predictive performance 

[25]. By integrating a dedicated classification layer, 

EVGG19 gains the ability to learn a highly discriminative 

mapping between extracted features and glioma subtypes or 

grades. This specialized mapping facilitates the translation of 

complex imaging features into clinically relevant diagnostic 

information, enabling EVGG19 to make more accurate and 

reliable predictions. 

3.3.2. Fine-Tuning and Optimization 

The introduction of the dedicated classification layer 

allows for fine-tuning and optimization of model parameters 

specifically for glioma classification tasks.  

 

The layer's architecture and parameters are carefully 

tuned to align with the intricacies of glioma pathology, 

ensuring that EVGG19 can effectively capture and 

differentiate between subtle variations in imaging features 

indicative of different glioma subtypes or grades. The 

mathematical formulation of this process involves the 

following steps: 

 

Let 𝑍(L) denote the input to the classification layer, 

where L is the index of the last convolutional or fully 

connected layer in EVGG19. The output �̂� of the 

classification layer is computed as follows: 

 

�̂� = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑍𝑙 . 𝑊(𝐿+1) + 𝑏(𝐿+1))            (10) 
 

Here, 𝑊(𝐿+1) represents the weights of the 

classification layer. 𝑏(𝐿+1) is the bias term. The softmax 

activation function converts the raw scores into probabilities, 

defined as: 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗

𝑗
        (11) 

Where 𝑧𝑖  are the elements of the input vector 

𝑍𝑙 . 𝑊(𝐿+1) + 𝑏(𝐿+1). 
 

3.3.3. Interpretability and Transparency 

Additionally, the dedicated classification layer in 

EVGG19 facilitates interpretability and transparency in 

model predictions by providing clear mappings between 

learned features and diagnostic outcomes. Clinicians can gain 

insights into the underlying factors driving EVGG19's 

predictions, thereby enhancing trust and confidence in the 

model's diagnostic capabilities. This transparency is crucial 

for clinical applications, where understanding the reasoning 

behind model predictions is crucial for informed decision-

making. 
 

3.3.4. Advancement in CNN Architecture 

The introduction of a dedicated classification layer in 

EVGG19 represents a significant advancement in CNN 

architecture for glioma classification. By providing a 

specialized mapping between learned features and target 

classes, this innovative addition enhances prediction 

accuracy and reliability. The dedicated classification layer's 

contribution to the model's overall architecture can be 

summarized as follows: 

 

Enhanced Discriminative Power 

By focusing on domain-specific features and leveraging 

a tailored classification layer, EVGG19 improves its ability 

to distinguish between different glioma subtypes or grades. 
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Improved Parameter Tuning 

The dedicated layer allows for more precise fine-tuning 

of model parameters, aligning with the specific 

characteristics of glioma pathology. 

 

Increased Model Interpretability 

The specialized mapping provides clear insights into the 

relationships between input features and output predictions, 

aiding in clinical interpretability and trust. 

 

3.4. Algorithm: Enhanced Glioma Classification Workflow 

Input: Preprocessed MRI images of gliomas. 

Output: Predicted glioma subtype or grade. 

 

Step 1: Preprocessing 

Input: Raw MRI images. 

Output: Standardized and normalized MRI images. 

 

Initialization:  

• Let 𝐼(𝑖, 𝑗) represent the intensity value of the pixel at 

coordinates (𝑖, 𝑗) in the MRI image. 

• Let 𝑀 and 𝑁 represent the dimensions of the image. 

 

Computation: 

1. Calculate the mean and standard deviation of 

intensity values: 

𝑀𝑒𝑎𝑛(𝐼) =
1

𝑀𝑁
∑ ∑ 𝐼(𝑖, 𝑗)

𝑁

𝑗=1

𝑀

𝑖=1
 

𝑆𝑡𝑑𝐷𝑒𝑣(𝐼) = √
1

𝑀𝑁
∑ ∑ (𝐼(𝑖, 𝑗) − 𝑀𝑒𝑎𝑛 (𝐼))2

𝑁

𝑗=1

𝑀

𝑖=1
 

 

2. Normalize intensity values: 

𝐼′(𝑖, 𝑗) =
𝐼(𝑖, 𝑗) − 𝑀𝑒𝑎𝑛(𝐼)

𝑆𝑡𝑑𝐷𝑒𝑣(𝐼)
 

 

Step 2: DHA-ISSP Model 

• Input: Preprocessed MRI images. 

• Output: Segmented tumor regions. 

Initialization: 

1. Define the architecture of the DHA-ISSP model 

with parameters: 

o Number of convolutional layers L 

o Filter sizes 𝑓𝑙 

o Stride 𝑠 

o Padding 𝑝 

o Activation function σ 

Computation: 

1. For each layer 𝑙 in the DHA-ISSP model, compute 

feature maps 𝐹𝑙: 

 𝐹𝑙 = 𝜎(𝑊𝑙 ∗ I′ + 𝑏𝑙)  

where 𝑊𝑙 are the weights, 𝑏𝑙 are the biases and ∗ 

denote the convolution operation. 

 

2. Apply segmentation to extract tumor regions:  

𝑅𝑠𝑒𝑔 = 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛(𝐹𝑙)  

where 𝐹𝑙  is the feature map from the last layer. 

 

Step 3: Segmented Tumor Regions 

• Input: Segmented tumor regions from the DHA-

ISSP model. 

• Output: Segmented tumor regions ready for 

classification. 

Initialization: 

1. Define storage for segmented regions 𝑅𝑠𝑒𝑔. 

Computation: 

• Extract and store the segmented regions: 

𝑅𝑠𝑒𝑔 = {𝑟𝑒𝑔𝑖𝑜𝑛𝑠 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑓𝑟𝑜𝑚 𝐷𝐻𝐴

− 𝐼𝑆𝑆𝑃 𝑚𝑜𝑑𝑒𝑙} 

 

Step 4: EVGG19 Architecture for Glioma Classification 

• Input: Segmented tumor regions. 

• Output: Predicted glioma subtype or grade. 

Initialization: 

1. Define the architecture of the EVGG19 model with 

parameters: 

o Number of convolutional layers 𝐿 

o Filter sizes 𝐹𝑙  

o Stride 𝑠 

o Padding 𝑝 

o Activation function σ\ 

o Fully connected layer weights 𝑊𝑓𝑐 

o Bias terms 𝑏𝑓𝑐 

Computation: 

1. For each layer l in the EVGG19 model, compute 

feature maps 𝐹𝑙 : 

𝐹𝑙 = 𝜎(𝑊𝑙 ∗ 𝑅𝑠𝑒𝑔 + 𝑏𝑙)  

2. Flatten the output from the last convolutional layer 

and feed into fully connected layers: 

𝑍𝑓𝑐 =  Flatten(FL) 

Y𝑓𝑐 = σ(W𝑓𝑐 ⋅ Z𝑓𝑐 + b𝑓𝑐) 

3. Apply the softmax function to obtain class 

probabilities: 

�̂� = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(Y𝑓𝑐) 

 

Step 5: Evaluation and Validation 

• Input: Predictions from the EVGG19 model. 

• Output: Performance metrics. 

Initialization: 

• Define ground truth labels Y and predicted labels �̂�. 

Computation: 

• Calculate performance metrics: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

2 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 =
1

𝑛
∑ ∣ 𝑌𝑖 − �̂�𝑖 ∣

𝑛

𝑖=1
 

𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 =  
1

𝑛
∑ (𝑌𝑖 − �̂�𝑖)

2
𝑛

𝑖=1
  

 

Step 6: Final Output 

• Input: New, unseen MRI images of gliomas. 

• Output: Predicted glioma subtype or grade. 

Deploy the trained EVGG19 model for inference: 

• Preprocess new MRI images. 

• Segment tumor regions using the DHA-ISSP model. 

• Classify segmented tumor regions using EVGG19. 

• Output predicted glioma subtype or grade. 

End of Algorithm 

 

4. Result and Discussions 
For our research on glioma classification, we utilized a 

CNN architecture known as Enhanced VGG19 (EVGG19). 

The EVGG19 model was configured with additional 

convolutional layers, increased model depth, dropout 

regularization, and a dedicated classification layer to enhance 

its performance in glioma subtype or grade prediction. The 

model's hyperparameters, including learning rate, batch size, 

and optimization algorithm, were tuned to optimize 

performance. The primary dataset used for training, 

validation, as well as testing of the EVGG19 model consisted 

of preprocessed Magnetic Resonance Imaging (MRI) scans 

of gliomas obtained from multiple medical institutions. This 

dataset encompassed a diverse range of glioma subtypes and 

grades, including LGG and HGG. Each MRI scan was 

accompanied by ground truth labels indicating the 

corresponding glioma subtype or grade, as determined by 

expert radiologists or neuropathologists. 

 

In addition to the primary dataset, we employed publicly 

available benchmark datasets, such as the BT Image 

Segmentation (BRATS) dataset and The Cancer Genome 

Atlas (TCGA) dataset, for comparative analysis and 

validation of our results. These datasets provided additional 

samples of glioma MRI images with corresponding 

annotations, allowing us to evaluate the generalizability as 

well as the robustness of the EVGG19 model across different 

datasets and imaging protocols. To ensure consistency and 

reproducibility, we conducted all experiments using a 

standardized computational environment equipped with high-

performance computing resources. The experiments were 

implemented using popular DL libraries such as TensorFlow, 

and the results were analyzed using statistical software 

packages like Python's scikit-learn or R. The entire research 

process adhered to ethical guidelines and regulations 

regarding the use of medical data and patient information, 

with appropriate consent obtained for data sharing and 

analysis. 

 

4.1. Performance Evaluation of EVGG19 Model 

 In our study, we meticulously evaluated the performance 

of the Enhanced VGG19 (EVGG19) model, utilizing a 

diversity of quantitative metrics on both the testing and 

validation of the BRATS dataset. The metrics employed 

included accuracy, precision, recall, F1 score, specificity, 

sensitivity, AUC MAE, and MSE. These metrics provided 

comprehensive insights into the model's ability to accurately 

classify glioma subtypes or grades, as well as its overall 

predictive performance. By systematically analyzing these 

metrics, we gained a thorough understanding of the EVGG19 

model's strengths and areas for improvement. 

 
Fig. 3 Performance Evaluation Comparison with Baseline Models – Dataset 1 

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

EVGG19 VGG Net- UNet-VGG16 VGG-UNET

P
er

fo
rm

an
ce

(%
)

Model

Accuracy

Precision

Recall

F1 Score



S. Kannan & S. Anusuya / IJECE, 11(8), 282-293, 2024 

 

290 

Table 1. Performance evaluation comparison with baseline models – Dataset 1 

Model Accuracy Precision Recall 
F1 

Score 
Specificity Sensitivity AUC MAE MSE 

EVGG19 0.92 0.88 0.91 0.89 0.94 0.91 0.96 0.1 0.2 

VGG Net- 0.85 0.79 0.82 0.80 0.88 0.82 0.91 0.2 0.3 

UNet-VGG16 0.88 0.82 0.86 0.84 0.90 0.86 0.93 0.15 0.25 

VGG-UNET 0.87 0.81 0.85 0.83 0.89 0.85 0.92 0.18 0.28 

 

 
Fig. 4 Performance evaluation comparison with baseline models (Specificity, Sensitivity, and AUC) – Dataset 1 

 

     
Fig. 5 Performance evaluation comparison with baseline models – Dataset 2 

 

4.2. Comparison with Baseline Models 

To contextualize the performance of the EVGG19 

model, we conducted a comparative analysis with several 

baseline models and existing methods in the field of glioma 

classification, as shown in Tab. 1. Specifically, we compared 

the performance of EVGG19 with three existing models: 

VGG Net-Based Deep Learning [8], UNet-VGG16 with 

transfer learning [11], and VGG-UNET [14]. By 

benchmarking the EVGG19 model against these established 

approaches, we were able to assess its relative effectiveness 

and identify any notable differences in classification 

accuracy. Furthermore, we highlighted any improvements 

achieved by the EVGG19 model in terms of classification 

accuracy, precision, recall, and other performance metrics. 

This comparison served as a valuable reference point for 

evaluating the efficacy and innovation of the EVGG19 model 

in the context of glioma classification research. 
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Fig. 6 Performance evaluation comparison with baseline models (Specificity, Sensitivity, and AUC) – Dataset 2 

 

The performance metrics are presented in detail in the 

comparison table for the Enhanced VGG19 (EVGG19) 

model in comparison to three existing models: VGG Net-

based Deep Learning, UNet-VGG16 with transfer learning, 

and VGG-UNET. Across various metrics, EVGG19 

consistently demonstrates superior performance compared to 

the other models. 

 

Starting with accuracy, EVGG19 achieves the highest 

value of 0.92, indicating its capability to classify glioma 

subtypes or grades with precision appropriately. This 

suggests that EVGG19's predictions align closely with the 

ground truth labels in the dataset. Moving on to precision and 

recall, EVGG19 achieves values of 0.88 and 0.91, 

respectively, surpassing the values obtained by the other 

models, as depicted in Figures 3 and 4.  

 

A high precision value implies that EVGG19 minimizes 

false positives, making accurate positive predictions. 

Simultaneously, a high recall value indicates that EVGG19 

effectively captures the true positive instances, minimizing 

false negatives and ensuring comprehensive coverage of 

relevant glioma cases. The F1 score, which considers the 

harmonic mean, also favors EVGG19 with a value of 0.89, 

representing its capability to strike a balance between 

precision and recall, thus offering robust performance in 

glioma classification tasks. 

  

In terms of specificity and sensitivity, EVGG19 achieves 

values of 0.94 and 0.91, respectively, indicating its capacity 

to identify true negatives and true positives correctly. These 

values highlight EVGG19's effectiveness in distinguishing 

between healthy brain tissue and glioma regions, as well as 

its ability to accurately detect glioma-affected areas. The 

AUC metric further supports EVGG19's superiority, with a 

value of 0.96. This metric reflects the proposed model's 

ability to discriminate among positive as well as negative 

instances across various thresholds, indicating strong 

performance in glioma classification. Finally, EVGG19 

demonstrates lower MAE and MSE values compared to the 

other models, suggesting that its predictions exhibit smaller 

deviations from the ground truth labels, thus providing more 

accurate estimations of glioma subtypes or grades.  
 

Overall, the comprehensive analysis of these metrics 

collectively underscores EVGG19 as the most effective 

model for glioma classification, offering superior 

performance and lower error rates compared to existing 

approaches.  
 

The EVGG19 model was evaluated against existing 

baseline models using the second dataset from the Cancer 

Genome Atlas (TCGA), as shown in Fig 5. The EVGG19 

model outperformed the baseline models, achieving an 

accuracy of 0.94, compared to 0.86 for the VGG Net-Based 

DL model, 0.90 for the UNet-VGG16 with transfer learning, 

and 0.89 for the VGG-UNET. 
 

Additionally, EVGG19 demonstrated superior precision 

(0.89), recall (0.91), and F1 score (0.9), indicating its robust 

performance in accurately classifying glioma subtypes and 

grades. Further, the evaluation metrics in Figure 6 reveal that 

EVGG19 exhibited the highest specificity (0.96), sensitivity 

(0.93), and AUC (0.97) among the compared models. This 

underscores the model's enhanced capability in 

distinguishing gliomas from non-tumor regions and 

accurately identifying various subtypes.  
 

The EVGG19 model also had the lowest MAE and 

MSE, with values of 0.1 and 0.2, respectively, further 

solidifying its reliability and accuracy in glioma 

classification tasks. These results highlight the effectiveness 

of the EVGG19 model when applied to the TCGA dataset, 

demonstrating significant improvements over the existing 

methodologies. 
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4.3. Analysis of Classification Results 

The analysis of classification results delves into a 

detailed examination of the performance of the Enhanced 

VGG19 (EVGG19) model in classifying glioma subtypes or 

grades. To begin, the confusion matrix is presented to 

provide insights into the distribution. This matrix allows for 

an inclusive valuation of the model's performance by 

revealing any patterns or trends in classification results. 

Common sources of misclassification are identified through a 

thorough misclassification analysis, shedding light on 

potential reasons behind misclassification errors. By 

understanding these sources, valuable insights can be gleaned 

into areas for model improvement and refinement. Moreover, 

the implications of misclassification errors on clinical 

decision-making as well as patient outcomes are discussed, 

emphasizing the importance of accurate glioma classification 

in guiding treatment strategies and improving patient 

prognosis. Furthermore, case studies or examples are 

provided to illustrate the real-world performance of the 

EVGG19 model. Specific instances where the model 

accurately predicted glioma subtypes or grades are described, 

highlighting its efficacy in clinical settings. Additionally, 

cases with misclassification are examined to understand the 

limitations of the model and explore opportunities for further 

enhancement. Through this comprehensive analysis, a deeper 

understanding of the EVGG19 model's performance and its 

implications for clinical practice is attained, paving the way 

for improved glioma diagnosis and treatment outcomes. 

 

4.4. Limitations and Future Directions 

It is imperative to acknowledge the limits of the study in 

order to contextualize the results and pinpoint areas that 

require future improvement. One limitation of our study may 

be the dataset size, as larger datasets could enhance model 

generalization and robustness. Additionally, data imbalance, 

where certain glioma subtypes or grades are 

underrepresented in the dataset, could impact the model's 

performance. Moreover, the complexity of the model 

architecture, such as EVGG19, may pose computational 

challenges and require substantial resources for training and 

inference. To address these limitations, future research could 

focus on larger and more miscellaneous datasets, 

implementing strategies to mitigate data imbalance, and 

exploring simplified model architectures or optimization 

techniques to improve computational efficiency. 

 

Proposing future research directions is essential for 

advancing the field of glioma classification and enhancing 

the performance of classification models. One potential 

direction is the integration of multimodal imaging data to 

provide more accurate classification. Additionally, 

incorporating clinical variables and genomic data into the 

classification models could further refine predictions and 

enable personalized treatment strategies. Furthermore, 

exploring advanced deep learning techniques may yield 

improvements in model interpretability and performance. 

Researchers can use DL techniques to improve the field of 

glioma classification by following these potential 

approaches, ultimately contributing to more accurate 

diagnosis, prognostication, and treatment planning for 

patients with gliomas. 

 

5. Conclusion 
In this study, we presented the EVGG19 model, an 

advanced DL architecture tailored for the classification of 

gliomas using MRI data. Our approach incorporates a series 

of enhancements, including additional convolutional layers, 

increased model depth, dropout regularization, and a 

dedicated classification layer. These improvements were 

designed to capture the intricate features of gliomas more 

effectively and improve the proposed model's classification 

accuracy. The performance evaluation of the EVGG19 model 

using the Cancer Genome Atlas dataset demonstrated 

significant advancements over existing baseline models. 

Specifically, EVGG19 achieved an accuracy of 0.94, a 

precision of 0.89, a recall of 0.91, and an F1 score of 0.9. 

These metrics indicate a substantial improvement in the 

proposed model's capability to identify and classify glioma 

subtypes and grades appropriately. Additionally, EVGG19 

excelled in specificity (0.96), sensitivity (0.93), and area 

under the curve (AUC) (0.97), highlighting its robustness 

and reliability. The model also achieved the lowest MAE of 

0.1 and MSE of 0.2, further underscoring its precision and 

accuracy. These results underscore the potential of the 

EVGG19 model to significantly enhance the diagnostic 

accuracy and clinical decision-making process for glioma 

classification. By providing more precise and reliable 

classifications, the EVGG19 model can contribute to better 

personalized treatment strategies and improved patient 

outcomes. 
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