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Abstract - Detecting small or low-visibility targets in the presence of rough sea clutter is a critical challenge in coastal radar 

systems. Sea clutter refers to the unwanted echoes or reflections of radar signals caused by the dynamic sea surface majorly due 

to wind, waves, and other environmental factors. These echoes can mask the Radar returns from smaller targets like boats or 

aircraft, particularly at closer ranges. The complex and dynamic nature of this sea clutter poses a considerable challenge in the 

detection of targets of interest. The detection and tracking of targets of interest in marine situations are effectively improved by 

suppressing sea clutter. Sensitivity Time Control (STC) is a powerful method for mitigating near-range sea clutter, leveraging 

both spatial and temporal characteristics of the clutter returns. The STC curve estimate technique reduces the strength of signals 

from nearby range bins and marine clutter. STC curve estimation begins from the Radar transmit cover pulse on the received 

radar data. Attenuation is kept to the maximum during the on time transmit cover pulse. Rather than beginning curve estimation 

at the real coastal point (or range offset), the third order STC estimation using the raw input data for the mitigation of the sea 

clutter is approximated from the radar location for all the azimuth change pulse (ACP). Because of this, the calculated curve 

cannot adequately capture the abrupt transients at the land-water contact. Hence, a method is proposed for near range clutter 

mitigation using geographic map sources, like Global Self Consistent Hierarchical High Resolution Geographical (GSHHG) 

maps for finding coastal intersection points and Wavelet Transforms for finding erroneous sharp peaks. 

Keywords - STC, GSHHG, Radar data, ACP, Clutter. 

1. Introduction  
Target detection and tracking is a critical step in ensuring 

the safety and security of the coastal environment. The 

primary goal of the radar system is to detect and track objects 

of interest, such as ships, small boats, buoys and low-flying 

aircraft. The majority of radar reflections come from land and 

marine areas. Radar waves could be reflected off of land, 

terrain, flora, man-made structures, vessels, and other objects. 

In general, echoes from the land and dynamic sea surface, etc., 

are typically regarded as undesired reflections or clutter 

because they obscure reflections from targets of interest, such 

as small boats and ships. Since waves, tides, and other external 

variables affect sea clutter, clutter characteristics are more 

dynamic. Its dynamic nature necessitates adaptive detection 

approaches since it might cause short-term shifts in the 

characteristics of the clutter. Therefore, a significant issue in 

radar data processing is separating actual targets from 

common false targets or clutters. Sensitivity Time Control 

(STC) is one of the several clutter reduction strategies [1] used 

by radar surveillance systems to reduce near-range 

interference from the land and rough water surface. 

Sensitivity Time Control (STC) is a technique used in 

coastal radar systems to control the radar receiver's sensitivity 

over time following a transmission pulse. The main purpose 

of STC is to mitigate the undesired near range reflected 

signals, such as sea clutter or ground reflections. These 

undesired reflections are strongest near the Radar. They can 

also mask the presence of smaller or long-distance targets. At 

the moment when clutter is most likely to happen, right after 

the pulse is transmitted, STC lowers the receiver gain or 

maximizes the threshold. By gradually increasing the gain or 

decreasing the threshold, the STC enables the surveillance 

radar to detect weaker signals from long-distance targets. The 

output curve generated in the STC clutter suppression model 

is inversely proportional to the increase in Range(R) with 

reduction factor 'A' as shown in Figure 1. The STC curve must 

be calibrated correctly. Close-range targets may go undetected 

by the radar processor if the sensitivity is drastically lowered. 

On the other hand, clutter could still overwhelm the receiver 

and, in-turn, display if it is not reduced optimally. Gain control 

over time can be dynamically modified in response to current 

conditions or predefined in accordance with the particular 

operating environment. 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1 Sensitivity time control 

The crucial point is that the sea equivalent RCS is 

proportionate to R since the illuminated area is proportional to 

the range R. Unlike ordinary targets, the sea's RCS grows with 

distance. For rain, the variation in reduction of intensity over 

distance may be on the order of 𝑅2, whereas for marine or 

ground clutter scenarios, it will be of the order 𝑅3[2]. 

Typically, STC curve estimation begins from the Radar 

transmit cover pulse on the received raw intensity values.  

Attenuation is kept to the maximum during the on time 

transmit cover pulse. Rather than beginning curve estimation 

at the real coastal intersection point, the third order STC 

estimation using the raw input data for the mitigation of the 

sea clutter is approximated from the radar location. Because 

of this, the calculated curve cannot adequately capture the 

abrupt transients at the land-water contact at the coastal 

border. Consequently, the output of the STC curve fitting [3-

4] on the sensor data input will have undesired leftover of 

clutter signals distributed across all the azimuth at the near 

range of the Radar, which negatively impacts target detection 

and visual representation. By using GSHHG maps [13], 

coastal intersection points can be identified. 

High-resolution, publicly available shoreline data was 

combined from two widely recognized database sources, 

World Vector Shorelines (WVS) and World Data Bank II 

(WDB), to create GSHHG Maps [1]. The complete GSHHG 

data set can be downloaded from the U.S. National Oceanic 

and Atmospheric Administration (NOAA). Rivers, lakes, 

political boundaries, and coastlines are all included in the 

WDBII database. Shorelines at land/ocean interfaces are 

found in WVS. Geography data are in five resolutions: crude, 

low, intermediate, high, and full. Shorelines are organized 

into four levels: boundary between land and ocean, boundary 

between lake and land, boundary between island-in-lake and 

lake and boundary between pond-in-island and island. 

GSHHG Maps aid in defining the coast and starting the 

estimate of the STC curve from coastal boundary points [13]. 

Erroneous peaks present in the near range reflections will 

contribute majorly to the curve estimation. The presence of 

these peaks may lead to a wrong estimation of the curve. 

Peaks with higher intensity may overestimate the curve, 

resulting in the masking of the target. Peak and valley point 

identification across all the azimuth angles can be 

accomplished using Wavelet Transform. The Continuous 

Wavelet Transform (CWT) is particularly useful for detecting 

peaks and valleys because it provides a continuous analysis of 

the signal across different scales. By observing the wavelet 

coefficients at different scales, the presence of peaks and 

valleys can be identified. A positive peak in the echoed signal 

normally corresponds to a large positive wavelet coefficient 

at finer scales. Finding peaks and valleys of different sizes is 

made easier by examining the signal at different scales. This 

is especially helpful for complex signals like reflections from 

varying sea surfaces, as features may occur at multiple scales. 

 

The STC curve estimation might be constant throughout 

radar azimuth angular resolution beam width since, typically, 

it is assumed that the clutter model is isotropic [5]. But in real 

time scenarios, the radar reflections from the sea surface vary 

with each ACP due to varying sea conditions. Typical 

reflections from the sea surface and target for an ACP are 

shown in Figure 2.  

 
Fig. 2 Typical radar returns of an ACP 

Each azimuth angle estimation should begin at the edge 

of the coastline region. Coastal boundary varies for each 

azimuth angle with respect to the radar location. Therefore, in 

comparison to a constant range offset for all angles, the 

GSHHG Map aids in the determination of these boundary 

locations and offers improved curve estimation. These coastal 

intersection points can also be used to mask the unwanted 

Follows 1/R3 



R. Navya et al. / IJECE, 11(8), 294-300, 2024 

 

296 

reflections from the land. Complete masking of reflections 

from land reduces the number of unwanted detections and 

false tracks. Due to the reduction in false plots, the track load 

on the processing module will be reduced. 

 

In this paper, a novel method is proposed for polynomial 

STC curve estimation from coastal intersection points using 

Wavelet Transforms and GSHHG maps. Intersection points 

of seawater with land are extracted for every ACP angle 

resolution. These points are used for STC curve estimation. 

Peaks along with the Valley points in the ACP are found using 

wavelet transform, which is removed before estimation of the 

curve. 

 

2. Literature Survey 
A. Parsa et al. [6] present the comparison of target 

detection in sea clutter and analysis of its performance with 

horizontally and vertically polarized radar antennas. The work 

analyses the target detection in the existence of rough sea 

clutter with 72% accuracy and interference-controlling 

strategies with an experimental setup. M. Martorella et al. [7] 

discuss the method to minimize the marine clutter effect on 

the target of interest using the fractal dimension of sea surface 

backscattered signal at low grazing angle. 

 

Xianwen Ding et al. [2] explain how to suppress marine 

clutter, utilizing sensors intended for radar navigation to 

acquire a temporal series of radar pictures. These sensors 

mostly operate in the X-band and are utilized in coherent 

radars with horizontal polarization. It was suggested that the 

best way to minimize the impact of sea clutter on targets was 

to use time-based navigation image sequences for the CFAR 

approach.  

 

Yong Yang et al. [8] introduce an Orthogonal 

Projection(OP) approach to suppress the sea clutter and 

combine OP with the Constant False Alarm Rate (CFAR) of 

Cell Averaging (CA). An experiment was carried out to 

demonstrate and compare the complexity of OP and clutter 

suppression averaging with Singular Value Decomposition 

(SVD).  

 

Wei Jing et al. [9] provide a thorough analysis of a novel 

algorithm known as the Extreme Learning Machine [ELM] for 

target locating in the presence of sea clutter. The algorithm 

classifies the features of the sea clutter and analyzes it by 

taking into account its correlation characteristics, which are 

further separated into temporal and spatial correlation. It was 

ultimately determined that an extreme learning machine is 

capable of effectively separating the target in the presence of 

clutters from the sea returns.  

 

According to a new approach proposed by W. Biamino et 

al., Sobel edge extraction is used to identify the edges of all 

objects from KOMPSAT-5 X-band SAR images. The edges 

of the land objects are then combined with the edges from the 

ENC coasts. Geometrically corrected SAR pictures were 

masked using the land mask data before a ship detection 

technique was applied. Thus, in coastal waters, this technique 

can help with accurate ship recognition utilizing SAR photos. 

 

3. Proposed Polynomial Curve Fitting Method to 

Implement Sensitivity Time Control (STC)  
The proposed method to suppress the near range clutter 

has been implemented in the following steps: 

 
3.1. STC Curve Estimation  

In general, for estimation of STC on return, clutter is 

typically assumed to be uniform throughout the radar's 

azimuth angle. Because it is assumed that the clutter model is 

isotropic, the STC estimation [2] [11] might be constant 

throughout radar azimuth angular resolution beam width. A 

non-isotropic clutter model is applied in real-time scenarios 

to improve the results of clutter suppression because the 

strength of the clutter fluctuates greatly with changes in 

azimuth angles. As a result, STC curve estimation is done at 

all radar angles. 

 

By using wavelet transform, erroneous peaks are 

detected in the data set for each ACP. Locating an ACP's local 

maxima and minima is the process of peak detection. There 

are typically both high-frequency and low-frequency 

components in returned signals. It is necessary to have coarse 

time resolution but fine frequency resolution for low-

frequency components because they fluctuate slowly over 

time. High-frequency components need coarse frequency 

resolution but high time resolution because they change 

quickly with time. As a result, when examining a signal that 

has both low- and high-frequency components, a 

multiresolution method of analysis is helpful. 

 

The Continuous Wavelet Transform (CWT) of a signal 

x(t) with respect to a wavelet function ψ(t) is given by [10] 

 

𝑊𝑥 (a, b) = 
1

√|𝑎|
  ∫ 𝑥(𝑡)ᴪ ∗

∞

−∞
 (

 𝑡−𝑏

𝑎
) 𝑑𝑡 

Where ‘a’ and ‘b’ are the scale and translation parameters 

 

Peaks and valleys are found in the wavelet transform 

coefficients following the acquisition of the CWT [12] 

coefficients Wx (a, b). Typically, valleys denote local minima, 

while peaks imply abrupt shifts or local maxima. Once Sharp 

peaks and sudden dips are found, intensity in these points is 

normalized with subsequent range bin intensity value before 

estimating the polynomial STC curve. 

 

Polynomial STC curve estimate is a curve fitting method 

that approximates a curve over the provided "n" data points in 

order to capture the trend in the data. Fitting a 𝑘𝑡ℎ order 

polynomial with the available coefficients 𝑎i., for the required 

“n” number of points (xi, yi) is given as [2] [16], 
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 𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ +𝑎k𝑥k 

For the minimal residual values, curve fitting can be 

represented in Matrix format Xa = Y as below, 

 

Here, “X” represents the Vandermonde matrix. With an 

equation such as 𝑎 = X−1𝑌, the resultant vector 'a' can be 

calculated. For the polynomial curve estimation of the input 

data, matrix ‘X’ is the value of the range resolution cell set. 

Equivalent intensity values for the same range resolution and 

Azimuth resolution cell are used in matrix ‘Y’. 

 

3.2. Finding Coastal Intersection Points 

The boundaries of land and sea can be found for each 

minimal azimuth angle by utilizing the coastal map. The 

GSHHG map data was obtained from the official source. The 

GSHHG dataset is available from NOAA [13]. It is available 

in a variety of formats, including shapefiles and binary 

formats.  

 

A map of roughly 150 km is downloaded from the radar 

location. Radar position is found using GPS, which gives the 

latitude and longitude information of the radar location. Data 

is available in five resolution levels. High resolution is chosen 

to find the coastal intersection points. 

 

Downloaded map files are extracted and analyzed using 

the Mat Lab ‘Mapping toolbox’. Libraries are used to 

decompress and unzip the data file. Scrutinize the extracted 

data set to select the required level of data. Overlay the 

extracted shoreline points with raw data using open-source 

GIS software QGIS. Visualize the intersection points on a 

map within the Geographic Information System (GIS) 

software to verify correctness.        

 

Any discrepancy between the map and the presentation 

could be caused by a variety of factors, including dynamic 

changes in sea level, recently constructed man-made 

structures, changes in geography brought on by natural 

disasters, inaccurate representations of map data, inaccurate 

radar beam widths, etc. Coastal points can be adjusted as per 

the observation to cater for any misalignment of the shoreline 

with a presentation on GIS display. 
 

Since the STC Curve represents an estimate of the sea 

clutter [14] [16], the intensity value of the STC curve is 

deducted from the corresponding real-time radar sensor data. 

Optimal estimation of the STC curve will result in lesser 

residual of the returned signals. 

A functional flow diagram is explained in Figure 3. First, 

coastal intersection points are extracted using the Mat Lab 

functions. These land and sea intersection points are stored 

for each Azimuth angle. The unprocessed raw data set is 

processed to remove sharp peaks using wavelet transform. 

After this stage, using the coastal intersection points, the STC 

curve [15] is estimated only on the sea portion. Estimation is 

done for all ACPs independently. Finally, intensity values of 

the estimated curve are detected from the original 

unprocessed raw intensity of the same corresponding data 

points. 

 

Fig. 3 Processing flow diagram of STC 

 

4. Results and Discussion  
The proposed scheme of near range clutter mitigation is 

applied to the sensor data set, which is captured by fixing the 

radar location on the coastline.  

 

The coastal map is extracted, and land water intersection 

points are calculated using Mat Lab functions. Intersection 

points can be readjusted by mapping land and sea surfaces 

with the geographical map of the Radar installed location 

using a GIS display.  

 

Google map and GSHHG map for the radar location are 

shown in Figure 4. Label ’A’ and ‘B’ denote the points of 

association between the two images. Returns from the land 

are denoted by ‘A’, and ‘B’ represents the returns from the 

sea. The coastline limit from where the polynomial STC curve 

computation should start is indicated on the map. Every 

azimuth angle has its own set of coastline spots calculated.

Raw data set 
Peak & Valley point 

extraction 

Masking of data as per 

Coastal points & Sharp 

peaks 

Polynomial STC curve 

estimation 

Removal of curve 

intensity points from 

original data set 

STC Processing 

Residual 

Coastal points 

from GSHHG 

Map 

Raw data set 
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(a) 

 

 
(b)                           

Fig. 4(a) Coastal area google map (b) The same geographic shown using 

the GSHHG map 

As shown in Figure 4(b), strong near range reflections 

from varying sea conditions can saturate the receiver and in-

turn display. One full scan data set is presented on the GIS 

display, as shown in Figure 5. It displays the unprocessed raw 

data, which is loaded for about a 100 km radius from the radar 

installation location. Strong reflections from the land portion 

are predominantly present on the display, which may lead to 

false target detection and tracking. As shown in Figure 5(b), 

using the GSHHG map, land returns from the land portion are 

completely masked.  

 

This resulted in reduced processing load as well as the 

reduction in fall detection and tracking of unwanted clutter as 

the target. The STC curve is estimated for each azimuth angle 

on the data from sea reflection [8]. Display saturation happens 

when the Radar receives signals that are so strong that they 

overpower the display, making it challenging to distinguish 

between various return types. This frequently manifests as 

big, bright patches on a radar screen that obstruct or distort 

the image of other objects. Strong signals may overpower the 

screen due to saturation, potentially hiding the existence of 

smaller or weaker targets and creating a cluttered radar 

display.  

 
(a) 

 
(b) 

Fig. 5 (a) Raw data of full 3600 azimuth coverage (b) Land masked 

raw data 

In Figure 6, The input signal raw data intensity for an 

azimuth count pulse at a 90-degree angle is represented by the 

red color curve. The black colored line represents the 

estimated polynomial STC Curve. The residue is represented 

using blue color. There is a denser residue in the range cells, 

which are nearer to the Radar because the third order STC 

estimation on the raw input data is approximated from the 

transmit cover pulse of the Radar, as in Figure 6(a). Figure 

6(b) represents polynomial curve estimation using coastal 

intersection points. Using wavelet transform, local maxima 

and minima are found and removed before the curve is 

estimated from the input data. The residual plot is represented 

in blue color. Since the estimation of the curve is started from 

the coastal point, the land portion is masked, and no residue 

is left till the coast. The curve is not erroneous due to the 

removal of local maxima from the input data. 

 

A distinct land body is identified for each segment of an 

azimuth count pulse if there are several coastline locations 

present, as shown in Figure 7. Without taking into account 

intermediate breakpoints, a single STC curve is predicted for 

the whole data set in an azimuth count pulse and displayed as 

a black colored line, as shown in Figure 7(a). The computation 

of residue is done by considering the intermediate land patches 

using map points, as shown in Figure 7(b). 

 
(a) 
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(b) 

Fig. 6 Near range clutter suppression (a) Suppression from radar 

location (b) Suppression from coastal boundary using map 

               
(a) 

 
(b) 

Fig. 7 STC-based clutter mitigation (a) Suppression from radar location 

up to full range(b) Mitigation by masking intermediate land patch using 

the map 

Sharp peaks present in the data set are shown in Figure 8. 

Without removing the sharp peaks in the input data set, the 

STC curve is predicted for the whole data set in an azimuth 

count pulse and displayed as a black colored line, as shown in 

Figure 8(a). Using wavelet transform, sharp peaks are 

identified and removed before the estimation of STC, as 

shown in Figure 8(b). 

 
(a) 

 
(b) 

Fig. 8 STC-based clutter mitigation (a) Suppression from radar location 

(b) Suppression from coastal boundary using the map and by 

eliminating sharp peak 

5. Conclusion 
Polynomial curve fitting based STC is implemented 

using a GSHHG map and Wavelet Transform. When 

compared to the conventional STC method, map-based 

and Wavelet transform-based polynomial STC offers 

superior clutter suppression inner ranges. Map points 

aided in masking unwanted echo from the land region 
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completely, which improved the better display visibility 

and proceeding load. The discrepancy between the map 

and the data is due to the dynamic changes in sea level. 

Recently constructed man-made structures have been 

readjusted using GIS software. Sharp peaks and valleys 

are found using wavelet transform, which helped in the 

exact estimation of the curve for each azimuth angle. 
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