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Abstract - This paper introduces an Enhanced Lane Departure Warning System (ELDWS) leveraging cutting-edge vision
technology to boost road safety for ADAS enabled vehicles. Our novel approach utilizes a combination of Phase Stretch
Transform for edge detection, Curved and Straight Lane Detectors for accurate lane Detection, and a modified Kalman Filter
for dynamic lane tracking, collectively aimed at improving vehicle safety through precise lane departure estimation. Unlike
traditional systems that rely heavily on clear lane markings and favorable environmental conditions, our model excels in
various lighting and road scenarios, including curved paths and challenging weather conditions. The research demonstrates
the system's efficacy in real-world simulations, where it outperforms existing technologies in detecting and alerting potential
lane departures. Through meticulous integration of advanced image processing techniques and machine learning algorithms,
our model offers a significant leap towards achieving robust lane-keeping assistance in autonomous and semi-autonomous
vehicles. Furthermore, the paper discusses the system's ability to adapt to different environmental conditions and road types,
making it a versatile tool for enhancing driving safety. By addressing the limitations of current LDWS technologies, such as
sensitivity to weather conditions and the reliance on high-contrast lane markings, our approach sets a new standard for safety
in the autonomous driving domain. This paper shows that by overcoming the problems of older lane departure warning systems,
like their struggle with bad weather and dependency on clear road markings, our system sets a new standard for keeping cars
safely within their lanes, especially in self-driving and semi-self-driving cars. We offer a detailed solution that combines new
detection methods with advanced tracking techniques for better accuracy and reliability. The accuracy of our ELDWS is
quantitatively measured using a custom dataset, revealing impressive results. During daytime conditions, our system achieved
ahigh accuracy rate of 95.81%, correctly detecting lanes in 7665 out of 8000 frames. This demonstrates the system's robustness
in optimal lighting conditions. The accuracy remains commendable in left and right departure scenarios during the day, with
rates of 83.26% and 84.83%, respectively, showcasing the system's capability to recognize lane departures effectively. This
research is important for making cars safer and provides useful information for developing better driving assistance systems
in the future.
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1. Introduction complex computer systems that are integrated into

In road transport systems, accidents can be avoided with ~ automobiles for the purpose of improving the driving
the Advanced Driver Assistance System (ADAS). This  experience by assisting the main driver in numerous ways.
usually involves combining different sensors, including ~ADAS plays a crucial role in monitoring the driver's
Radar, Lidar, Vision Cameras and Ultrasonic sensors. These ~ condition, such as detecting signs of fatigue or distraction and
are used to sense the environment around the vehicle, and the ~ consequently issuing timely warnings[1]. These systems are

information gathered is fed to the vehicle's control system to  @lso equipped to evaluate and advise on driving performance.
give the driver real-time information and/or alarms. Aid A notable feature of ADAS is its ability to assume control in

systems can be categorized into various levels. Level 1- ~ response to perceived threats, thereby aiding in simple
Systems that control a single operation, such as cruise control ~ Operations like cruise control or more complex tasks such as
and lane departure warning. Level 5- Systems that take full ~ overtaking and parking maneuvers[2]. The ADAS systems

control of the vehicle and can operate the car in all situations  lead to an enhanced exchange of information, which is crucial
without requiring any human input. ADAS systems refer to  for improved vision, accurate localization, and more strategic
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planning and decision-making for the vehicles, thereby
significantly contributing to safer and more efficient
driving[3].

In the literature [4], ADAS systems are categorized into
two primary types based on functionality: comfort-oriented
functions and vehicle centric safety functions. Comfort-
oriented functions are designed to alert the driver through
various mechanisms, such as visual signals (flashing lights),
auditory alerts (sounds), tactile feedback (vibrations), or
subtle guidance (gentle steering suggestions). These
notifications serve to enhance the driving experience by
providing timely and user-friendly warnings. In contrast,
safety functions proactively intervene in vehicle operations
when the driver fails to respond to hazardous scenarios. This
intervention can manifest in several forms, including pre-
charging the brakes, readying the safety belts, raising the
hood, executing automatic braking, and implementing
evasive steering maneuvers. These actions are critical in
mitigating the risk of accidents and enhancing overall road
safety. Recently, there has been an extension of ADAS
technology called the Safety Driving Assistant System
(SDAS), which is increasingly catching the public's attention
and becoming a part of daily life. During typical driving
scenarios, if a sudden accident occurs, this smart assistant
driving system can instantly provide support through services
like emergency braking, driving assistance decisions, or
urgent warnings. This significantly enhances the safety and
stability of driving while also reducing the financial impact
and human toll of traffic accidents. It also assists in collision
avoidance by analyzing the surroundings and providing real-
time navigation support to evade potential hazards with other
vehicles, pedestrians, or obstacles. This system also includes
traffic sign recognition capabilities, ensuring drivers are
aware of important road information like speed limits or no-
entry signs. Additionally, the system enhances side collision
prevention through blind spot detection, alerting drivers to
unseen vehicles or objects. Within this system, the Lane
Departure Warning System (LDWS) is gaining growing
interest as an important subsystem. The LDWS is one of the
subsystems of the Safety Driving Assistant System (SDAS)
that significantly enhances vehicular safety and the overall
driving experience through lane departure alerts. LDWS
vigilantly monitors the vehicle's position, alerting drivers if
they unintentionally drift out of their lane, a crucial feature to
counteract inattention or drowsiness. The vital role of LDWS
helps to augment road safety, reduce accident rates, and
elevate the driving experience.

The LDWS is a safety system in today’s cars that assists
the driver in reminding the driver that the car is drifting away
from the lane it is in, except if the driver has signalled a turn.
This system employs some detectors, most of which are
cameras, to detect the lane markings on the road. If the system
recognizes the fact that the vehicle is moving towards the lane
markings without turning indicators being engaged, it alerts
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the driver. This warning can be in the form of an icon on the
car’s display, sound or haptic feedback, such as vibration in
the steering wheel or seat. The LDWS includes several
fundamental benefits. First of all, it helps to keep drivers in
their lane while driving with the help of a camera that
recognizes the lane markings. Secondly, when the vehicle is
near the markings mentioned above and is likely to swerve
out of the lane, a vibration is felt in the steering wheel.
Thirdly, the system goes into a dormant state when it detects
lane lines on its left and right sides, and the green LED light
on the dashboard blinks.

LDWS come in two main types: Road Infrastructure-
Based and Vehicle-Based. Road Infrastructure-Based
LDWS: These systems rely on road infrastructure to monitor
a vehicle's position. They use sensors to detect ferromagnetic
signals embedded in the road. By measuring the signal
strength, the system can determine the vehicle's position
within the lane. Vehicle-Based LDWS: In contrast, these
systems are built into the vehicle itself, using onboard sensors
to keep track of the vehicle's lane position independently of
any special road infrastructure. The road infrastructure-based
LDWS relies on infrastructure modifications, such as
embedding magnets or wires under roads, which vehicles
detect to determine their lateral position within a lane. This
method, though accurate, is expensive due to the need for
road alterations. The limitations of road infrastructure-based
Lane Departure Warning Systems (LDWS) include high
installation and maintenance costs due to the need for
physical modifications to the road infrastructure.
Additionally, their effectiveness can be compromised in areas
where such infrastructure updates are not feasible.

Vehicle-based Lane Departure Warning Systems
(LDWS) primarily rely on machine vision and image
processing to detect the position of lane markings. These
systems rely on cameras mounted on vehicles to capture and
analyze road images, identify lane markings and assess the
vehicle's position. A typical vision-based Lane Departure
Warning System (LDWS) has three main components: lane
detection, lane tracking, and lane departure warning. An
onboard camera mounted high on the windshield captures
sequences of road images. If the system detects a potential
lane departure, it alerts the driver to prevent unintentional
dangerous driving situations. The primary advantage of using
image information is its ability to adapt to different
environmental conditions and road types. This adaptability,
powered by advanced image processing and machine
learning algorithms, allows the system to function effectively
in various lighting and weather conditions, making it a
versatile and essential tool for modern driving safety.
Vehicle-based Lane Departure Warning Systems (LDWS)
primarily use vision sensors to detect lane edges, lane
markings, and road contours. These systems are most
effective on highways with clear lane markings. However,
they can struggle with poor visibility, varying lane
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conditions, and image resolution issues. Additionally, the
road conditions can sometimes render the system ineffective.
Detecting lanes using onboard sensors remains a challenging
task despite significant research and advancements. Because
environmental factors often hinder the accurate identification
of lanes, there is a need to develop a new framework for lane
departure estimation. This new approach would aim to
improve the system's robustness and reliability in handling
these challenges.

Numerous researchers and organisations have
investigated several vision-based approaches for the Lane
Departure Warning System (LDWS). In the last thirty years,
traditional methods have mainly dealt with image processing
and computer vision. However, these traditional algorithms
are not efficient enough to meet the needs of industrial
systems. Recently, there has been more focus on the
development of enhanced techniques. Some of the techniques
include the three-dimensional processing algorithms that
employ multiple sensors as well as the semantic segmentation
that employs deep learning and neural networks. These newer
methods are faster and better suited to the more current
LDWS.

The technique used by [5] for detecting and identifying
lane departure events in vehicles is as follows. First, a
Piecewise Linear Stretching Function (PLSF) is used to
improve the contrast of images within the Region of Interest
(ROI). The ROI is then divided into two subregions, and then
the Hough transform is applied to each of the subregions
separately. This segmentation approach really helps in the
efficient detection of the lanes as it minimizes the time
required for the process. Lane departure identification is
made by calculating a distance-based measure for every
frame that indicates the degree of departure from the lane.
Should this measurement be beyond a specified limit, the
system issues a warning to the driver.

In [6], a vision-based Lane Departure Warning System
(LDWS) that targets both day and night environments has
been designed. Their system includes two main components:
lane detection and the calculation of the lateral offset ratio.
The lane detection process has two stages: Pre-processing
and detection, which are another challenge because they
involve identifying the features of an image that need to be
extracted and analyzed, as well as determining the presence
of objects or anomalies in a video stream.

Pre-processing involves converting the color space of the
image, cropping the area of interest, and isolating the lane
markings. In the detection stage, the Hough transform is
employed to determine the position of lanes. Last of all, the
system is able to determine the lateral offset ratio by finding
the X coordinates of the lower part of each of the lane
boundaries in the picture. The above-stated ratio is then used
to create a lane departure warning.
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In [7], the author proposed a method that consists of
three primary components: Firstly, we employ a voting map
to determine a disappearing point and then construct an
adjustable Region of Interest (ROI) area to decrease the
computational load. Secondly, it effectively utilizes the
different colors of lanes to solve the problem of illumination
invariance in lane candidate detection. Last but not least,
using a clustering approach, we decide on the primary lane
out of the potential ones. While the vehicle moves out of the
lane, the technology provides a driver alarm signal. The
results of the experiment show a satisfactory level of
performance at different light conditions with an average
detection rate of 93%. In addition, the overall operation is
completed in 33 milliseconds per frame.

In [8], the author presents an approach for lane detection
using a road module and extended Kalman filter, which
includes the following steps. The first operation is to define
the road Region of Interest (ROI) from the input image. The
road ROI is again divided into different partitions, and a
model of the road structure is developed based on the width
of the lane and the distance between the lanes. The extended
Kalman filter is then applied to estimate the lane parameters,
which include the position of the lane, lane width and lane
curvature. The lane model is then employed to identify the
lane boundaries through an adaptive edge detection method.
Last, the lanes are delimited more accurately through post-
processing in which false positives are eliminated, and gaps
in the lane detection are closed.

This model proves to be insensitive to variations in
lighting conditions and the types of road surfaces, which
makes it ideal for real-life implementation. Nevertheless, the
model can fail to identify lanes in complex traffic situations,
for instance, at intersections or roundabouts, where lanes are
not well marked or even missing. However, the model will
not be able to accurately identify the lanes in particular
weather conditions, such as rainy or snowy weather, which
causes the lanes to be barely visible. Nevertheless, the
proposed model seems to have the capability to enhance the
performance of the lane detection system and, consequently,
the safety of self-driving cars.

In [9], the author suggests a model that comprises LDWS
alongside a frontal collision warning system that is functional
both day and night. This system employs a fixed camera that
is mounted on the windshield of the car. The algorithm starts
with the generation of the bird’s eye view of the road through
Inverse Perspective Mapping (IPM). Then, the Hough
transform is applied to this IPM to find out the points that
might belong to the lane. The RANSAC Bezier spline fitting
is used to identify the lanes precisely. For vehicle detection,
the Hough transform is used again to find the horizontal lines
that are likely to be vehicles. To increase the overall speed
and optimize the use of resources, the model employs
multithreading.
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In [10], the learning-based method was proposed to
detect the possible off-lane deviations and the probability of
drivers straying back to the intended lane. This method
involves two main steps: The approach begins by developing
a personalized driver model that incorporates both a Gaussian
mixture model and a hidden Markov model. This model
describes the driver's lane departure and lane-keeping
activities. Online Prediction Algorithm: Based on this model,
an online prediction algorithm is designed to predict the
future motion of the wvehicle. The algorithm determines
whether the driver is likely to maintain the current position or
change lanes. Also, they provided a warning strategy built on
the prediction algorithm. This strategy makes certain that the
alerts given by the lane-departure warning system are given
in a way that will be acceptable to the drivers based on the
predicted trajectory.

In [11], the author developed a lane detection and
tracking method based on monocular vision that was
specifically designed for urban environments. This system
integrates a Lane Departure Warning (LDW) to determine the
car's position relative to lane boundaries. The process
involves several key steps: First, the system establishes the
Region of Interest (ROI) by identifying and highlighting
relevant sections of the road images. Then, it preprocesses the
data by reducing image noise with a Gaussian filter and
enhancing lane boundaries using the Canny edge detector.
For lane boundary extraction, the system utilizes color
information and performs image segmentation with
histogram thresholding and the Hough transform to achieve
high accuracy in detecting lane boundaries. The system
continuously monitors the vehicle's position and detects any
drifting from the lane. When a lane departure is detected, it
alerts the driver with a warning message, thus contributing to
road safety.

In [12], the author introduced a method for identifying
and categorizing lane markers using a linear parabolic model.
This approach leverages the fact that the intensity of pixels
associated with lane markers is generally higher than that of
pavement pixels. The system distinguishes between lane
markers and pavement by analyzing small rectangular
patches to derive statistical values. In each frame, each pixel
within these patches is compared against a distribution of
pavement pixels to differentiate between asphalt and lane
marker pixels. After detecting the lane markers, a cascade
classifier is utilized for identification. Four binary classifiers
are then employed to categorize the identified lane markers
into five classes: dashed, dashed-solid, solid-dashed, single-
solid, and double-solid.

In [13], the author has worked on an in-vehicle system
that can detect and inform drivers of the lane markings. In
order to detect and recognize lane markings, such as lines and
pictograms, the system utilizes the combination of the MSER
technique and the Hough transform. The system operates
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through the use of the MSER method to get to the relevant
areas of interest. An enhancement processing algorithm of
three stages refines the MSER results and erases unnecessary
data, such as trees and vehicles. In real-time detection, the
Progressive Probabilistic Hough Transform technique is
employed for the detection of line markings. After that, the
system identifies the color and type of line markings using
the MSER results for the left and right lines. From the MSER
regions, another algorithm can identify High-Occupancy
Vehicle pictograms. Last but not least, a Kalman filter is used
to track both ends of each of the detected line markings.

In [14], the author used a method with Bayesian
inference theory to enhance lane detection. Their approach
uses Rao-Blackwellized Particle Filters (RBPF) to deal with
the linear and nonlinear properties of the road model. This
approach helps to minimize the number of samples that the
particle filters use as compared to other standard sampling
techniques. They employed real-time cameras to capture
images at 30Hz on an embedded computer. The Rao-
Blackwellization process is divided into two stages. The first
is the linear part, which consists of defining the position of
the vehicle in the transversal direction. Nonlinear Part: The
particle filters the hypotheses about the road curvature and
generates the new hypotheses. Their system is capable of
handling difficult situations, including rapidly fluctuating
lighting, night vision, absence of clear references and the
existence of other cars. It is highly accurate but is a
disadvantage as it entails numerous hypothesis calculations.

In [15], the author proposes a solution which begins with
converting the front view into a bird’s eye view. The
transformed image is then subjected to selective 2D Gaussian
spatial filters to smoothen it. Then, a simple and faster Hough
transform is used to determine the number of lines present in
the image. The RANSAC algorithm is used to estimate the
better lines for the given input data. These lines are then
passed through a more refined RANSAC that not only
outputs the points on the line but also outlines a region around
the line and fits a Bezier curve to the points in the region. It
is possible to state that the algorithm has a high degree of
accuracy. But there are some problems while driving on the
right side of the road. If the right lane marking is not present,
the algorithm may identify a ghost line.

Most of the papers reviewed in the literature reveal that
they used Hough transformation and its extension, such as
Progressive Probabilistic Hough Transform" (PPHT) based
approaches for lane detection. These techniques primarily
utilize probabilistic methods for detecting lane lines in
images. These techniques are efficient in environments with
clear lane markings but may struggle with complex road
geometries, varying weather, and lighting conditions.
Another drawback of these techniques is that they failed to
detect fully oriented curves and were successful for small
orientation curve lanes. Hence, in this paper, we propose to
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employ a Curved and Straight Lane detector (C&S Lane
Detector) to detect fully oriented and straight lanes. This
method significantly enhances lane departure analysis,
particularly in challenging environments and complex road
scenarios. The proposed method is best suited to overcome
the limitations of the PPHT method by providing better
performance even in different conditions, better real-time
tracking and thus more efficient lane departure warnings. To
implement LDWS, a vision-based LDWS is proposed in this
paper for estimating the lane departure event by capturing the
video from a vision sensor mounted on a vehicle for different
lighting conditions and different road types, such as straight
and curved roads.

The main contributions of the paper for the lane
departure warning system are given below.

1. The novel edge detector, such as Phase Stretch
Transform, is employed to detect edges, which
overcomes the drawback of the Canny Edge detector.

2. We proposed employing a Curved and Straight Lane
detector (C&S Lane Detector) to detect fully oriented
curved and straight lanes.

3. The modified Kalman filter is employed for lane
tracking.

4. The estimation of lane departure distance by calculating
the Euclidean distance of the midpoint of the ROI and
midpoint of the left and right lanes with the intention of
enhancing vehicular safety.

2. Proposed Model

The proposed model presents a novel integrated
approach for enhancing the functionality of lane departure
warning systems in vehicles aimed at reinforcing road safety.
The model's first step is to gather visual input through images
or video feeds, capturing the vehicle's immediate driving
environment. This input is then meticulously pre-processed
to improve the visual clarity and minimize any interference,
ensuring that the subsequent edge detection is both precise
and reliable. Utilizing the Phase Stretch Transform (PST)
algorithm[16], the model excels at detecting the lane edges
by highlighting critical structural features within the images.
To further refine the detection accuracy, a Curved & Straight
(C&S) Lane Detector algorithm is applied, which is adept at
distinguishing and classifying lane boundaries with high
precision. The model's sophistication is evident in the
Modified Kalman Filter for Lane Tracking, which predicts
and follows the lane's position dynamically, adapting to the
vehicle's manoeuvres and external environmental variations.
The culmination of this process is the Enhanced Lane
Departure assessment, which scrutinizes the lane tracking
data to evaluate if the vehicle is veering off course. If such a
deviation is detected, the system promptly initiates alerts,
thus enabling the driver to take swift corrective measures.
The strength of this proposed model is that the proposed
workflow is integrated and comprehensive and employs the
most advanced image processing techniques coupled with
efficient detection and tracking methodologies in order to
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keep the vehicle within the intended lane while at the same
time enhancing the safety of the driving experience. The flow
diagram of the proposed method is depicted below in Figure
1.

Frames

Edge
Detection
Using Phase
Stretch
Transform

i

Input Video ——»|  Preprocessing |

Modified Kalman filter for

) < Lane Detection Using
Lane Trackina Curved and Straiaht Lane
Left Lane .
v~ Departure —P Right
Departure p:
Estimation Departure

v

No Departure

Fig. 1 Proposed system of lane departure

2.1. Pre-processing of Input Image/Input Video

When images are taken in less-than-ideal conditions
such as low light, excessive brightness, or adverse weather
like rain or fog, they can end up with much noise. This noise
can significantly lower the quality of the images and make it
harder to process them effectively. To tackle this, a
preprocessing step is employed to clean up the images. This
involves smoothing out the noise without losing important
details in the image, which helps recover lost information and
enhance image details. However, when an image is not only
noisy but also lacks sharpness, a sharpening technique is
applied to make the details pop and improve the overall look
of the image. But there is a catch: sharpening a noisy image
can make the noise more pronounced.

Dehazing methods are used to blur images affected by
fog or haze, which can blur them and reduce contrast. Several
techniques have been developed, including some based on the
premise that the contrast should be higher in clear conditions
than in foggy ones and that light attenuation due to fog varies
smoothly with distance. One notable method is the Dark
Channel Prior (DCP) algorithm proposed by [17], which has
shown promise in addressing the limitations of earlier
dehazing techniques by focusing on the natural properties of
haze-free images. There is also a method tailored for traffic
videos that speeds up dehazing but still is not fast enough for
real-time application, highlighting the ongoing challenge of
making these methods faster and more universally applicable.
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To enhance contrast and reduce noise further, filters such
as median or Gaussian are used on the images. This is
followed by converting the images from RGB to grayscale,
which simplifies the images and reduces processing time. The
grayscale images are then segmented into binary images,
setting the stage for smoother, clearer images that are ready
for the next steps in processing for Edge Detection.

@ (b)
Fig. 2 (a)Left: Original image, (b) Right: Pre-processed image.

2.2. Edge Detection Using Phase Stretch Transform (PST)

Edge detection is the process of identifying and
pinpointing abrupt changes in an image. It may identify
regions with strong intensity contrasts. It is the area where the
image's intensity or contrast significantly changes. Because
edge detection helps emphasize and bring forth information
about a picture, it is used. These details include object
identification and highlighting, as well as the size, shape,
sharpening, and augmentation of the image. It can also be
used as an instrument for segmenting images, which modifies
their intensity. An edge is a shift in intensity between adjacent
pixels in a continuous picture.

Many researchers have used the Canny Edge detection
method for lane detection. It is used in these multi-level
algorithms to distinguish one edge from the other in the given
image. It is mainly applied for boundary detection and
intensity change detection in numerous computer vision-
related tasks. Should the gradient amount of a pixel be higher
than the gradient amount of the pixels on both sides in the
direction of change of intensity, this approach identifies the
pixel as an edge. To eliminate this noise, the image must be
smoothed. Subsequently, the region of interest with spatial
derivatives is identified through the picture gradient. After
identifying these areas, any pixel that does not have this value
is set to zero. Hysteresis is currently showing more losses in
the angle it presents at the given point in time. Hysteresis is
performed to detect the remaining suppressed pixels. In
hysteresis, there are two levels known as the upper and the
lower[18]. The extend is set to zero (made a non-edge) at the
point where it is below the main edge. Size turns into an
advantage as soon as it reaches the high edge. Furthermore,
if no path can be traced from this pixel to another pixel with
a slope greater than the second threshold, greatness is set to
zero when it is between two thresholds. From the above
process, we can deduce that Canny is one of the most
complex edge detection systems that require much time on
the computer in order to accomplish its objectives.
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(b)

(c)
Fig. 3 Result of edge detection (a) Pre-processed image (b) Result of
Canny edge detection (c) Result of PST edge detection.

Steps to compute PST Edge Detection for Pre-processed
Images:
Given a pre-processed image I(x,y), where x and y are
spatial coordinates, the PST edge detection can be
represented by the following steps:

1. Calculate the Fourier Transform F(u, v) of the image:
F(u,v) = F{I(x,y)} (€

2. Apply a phase function ¢ (k) to the Fourier Transform,
where k is the spatial frequency:

¢ (k) = log(k)
Fpw,v) = F(u,v) - e"9®

(2)
3

3. Perform the Inverse Fourier Transform I, (x,y) of the
phase-modified Fourier Transform:

Ip(x,y) = FY{Fy(u,v)} %

4. Apply a non-linear thresholding function T to extract

edges:

Edge(x,y) = T{I4(x,»)} (5)

Abbreviations:

I(x,y): Original image in spatial domain

F (u, v): Fourier Transform of the original image
¢ (k): Phase function applied to Fourier Transform

Fy(u,v) : Phase-modified Fourier Transform

14 (x,y) : Image after applying Inverse Fourier Transform to
F¢ (u, U)

Edge (x, y): Final edge-detected image
F: Fourier Transform operator
F~1 : Inverse Fourier Transform operator

T : Non-linear thresholding function

1. Fourier Transform (FT): Perform the Fourier Transform
on the input image to transform the image from the
spatial domain to the frequency domain.

2. Phase Function Application: Apply a phase function
d(k), typically a logarithmic function, to the Fourier
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Transform. This function is used to modify the phase
information of the transformed image.

3. Inverse Fourier Transform (IFT): Apply the Inverse
Fourier Transform to the phase modified Fourier image
to convert it back into the spatial domain.

4. Non-linear Thresholding: Finally, apply a non-linear
thresholding function to highlight the edges.

The Phase Stretch Transform (PST) is used in edge
detection by transforming an image to highlight transient
features like edges and texture. The Phase Stretch Transform
(PST)[19] can be more effective than the Canny edge detector
in certain scenarios due to its unique approach to edge
detection. While Canny uses gradient-based techniques, PST
focuses on the phase congruency of an image, which is less
sensitive to changes in illumination and contrast. This allows
PST to detect edges in conditions where the Canny method
might fail, particularly in low-contrast images or where the
edge information is subtle. PST's ability to capture finer
details and texture in images makes it a powerful tool in
scenarios requiring high fidelity edge detection, like complex
road lighting scenarios.

The PST works mathematically by applying a phase
function to the Fourier transform of an image. This function
is typically a logarithmic function, represented as @(k) =
log(k), where k is the spatial frequency. The transformed
image is then inverse Fourier transformed, and a nonlinear
thresholding is applied to extract edges. This approach
emphasizes the edges in images, making PST particularly
effective for detecting fine features in images where
traditional edge detection methods might struggle. This
method is beneficial for applications like lane detection in
autonomous driving, where clear edge delineation is crucial.

2.3 Curved and Straight Lane Detector (C&S Lane
Detector)

The traditional Hough Transform approach computes p
and 6. And transforms the Cartesian coordinates (x,y) into
(p, 0) space. It helps to detect straight lines but fails to
identify curved lines. In the C&S Lane Detector approach, we
COMPULE Peurvature @lONg with p and 8. And we transform the
Cartesian coordinates (x, y) into (p, 6, peurvature) tUples. We
discretize p, 8and p.yrvature Values to fit in the accumulator
array. In our method, we increment the corresponding cells
for peurvature IN the accumulator array. Therefore, this new
approach helps to detect both curved and straight lines. The
goal is to accurately identify and extract lane lines, which can

be either straight or curved, to facilitate tasks such as
autonomous driving or lane departure warning systems.

The algorithm starts by defining the parameter space
ranges for p (distance from the origin to the line), 6 (angle of
the line), and an additional parameter p curvature, which
represents the radius of curvature for curved lines. An
accumulator array is created to store votes for different
combinations of (p, 6, p_curvature) tuples. For each edge
pixel (X, y) in the input image, the algorithm iterates through
a range of 0 values (typically from -90° to 90°). For each
combination of (X, y) and 0, it calculates p using the equation
p =x * cos(0) + y * sin(0). The algorithm checks if the
calculated p value falls within a predefined limit (p_max) to
avoid capturing excessively long lines. If p is within the limit,
the algorithm proceeds to discretize p, 8, and p curvature
values to fit them into the accumulator array and increments
the corresponding cell to vote for that line. A threshold value
is set to determine which cells in the accumulator array are
considered potential lines.

Fig. 6 Results of BDD100K benchmark datasets
(a) Straight line detection (b) Curved line detection

For each cell in the accumulator array that exceeds the
threshold, the algorithm converts the (p, 6, p_curvature)
indices back to (p, 0, p_curvature) values. The list of detected
lines is sorted based on the accumulator values in descending
order. The algorithm iterates through the list and retains only
those lines that are not too close to each other in the parameter
space (p, 0, p_curvature). This step helps eliminate redundant
detections. For each remaining (p, 0, p_curvature) tuple in the
list of detected lines, the algorithm converts these parameters
into Cartesian coordinates:

For straight lines, the formula is used.

y = —(cos(0) /sin(B)) * x + (p/sin(0)). (6)

Table 1. The lane detection results of the proposed model under different road conditions using our Custom dataset

Video Road Geometr Total Number of True False Accuracy Detecting
Sequence y Frames Positive Negative Rate Time
1 Straight road in the day 600 587 13 97.83% 20 ms
5 Structured road with 600 584 16 97.33% 29 ms
Curves
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For curved lines, it employs the appropriate curvature
formula based on the method used for curvature estimation,
i.e.,, = 1/r, Where R =the radius calculated using the radius

of curvature.
3
2

[1+(2)’]

= a2y

=L

The algorithm then draws the detected line or curve on
the original image using the calculated points shown in
Figure 4 for both the curved lane and straight lane.

Radius of Curvature Formula (R)

(@) (b)
Fig. 4 Result of C&S lane detector
(a) For curved line detected (b) For Straight line detected

lanes road markings I

CULane BDDI100K

Py ——

TuSimple

Fig. 5 Images of TuSimple, CULane and BDD100K datasets

In this research, we randomly selected 600 frames from
the custom dataset that depict a variety of scenarios for our
lane detection experiments using the proposed algorithm. To
confirm the effectiveness of our methods, we conducted
quantitative assessments. The primary measure of evaluation
was accuracy, which determines the algorithm's overall
capability in correctly classifying images. Similarly, we
randomly chose 1000 images from the BDD100K dataset,
reflecting different conditions, to conduct lane detection tests
with our algorithm. The outcomes of these tests, as indicated
by the performance metrics with the BDD100K dataset, are
displayed in Table 3 . Table 2 evaluates the algorithm's
performance, and the following formulas are used in lane
detection.

In the context of lane detection, these abbreviations refer
to the outcomes of predictions made by a detection algorithm
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compared to the actual situation. They help in evaluating the
algorithm's accuracy and performance.

True Positive (TP): This occurs when the algorithm
correctly identifies a lane that is actually there. In other
words, the algorithm positively detects a lane, and in reality,
the lane is present.

False Positive (FP): This happens when the algorithm
identifies a lane that is not actually there. The algorithm
makes a positive prediction (thinks it has found a lane), but
this prediction is incorrect because no lane exists in that spot.

True Negative (TN): This is when the algorithm
correctly identifies that no lane is present. Although not as
common in lane detection contexts (since the focus is usually
on detecting the presence of lanes rather than their absence),
it essentially means the algorithm correctly predicts the
absence of a lane.

False Negative (FN): This occurs when the algorithm
fails to identify a lane that is present. The algorithm
negatively predicts (thinks there is no lane), but this
prediction is incorrect because there actually is a lane.

These metrics are crucial for understanding how well a
lane detection system is performing. High TP rates indicate
good detection of actual lanes, while low FP rates indicate
that the system is not mistakenly identifying non-lanes as
lanes. High TN rates would be relevant in systems that also
specifically identify areas where lanes are not present. Low
FN rates indicate that the system effectively recognizes most
of the lanes that are present.

As Shown in Table 3, a comparative study on the
effectiveness of various lane detection methods used in
structured road environments. It details an experiment
involving 1000 frames for each method calculated to identify
the accuracy of lane detection and compare their performance
in accurately detecting lanes.

The methods analysed include the Spatial Ray Feature
extractions, Hough transform, and a Proposed Method
labelled as C & S (Curved & Straight) lane Detector.

Table 2. Evaluates the algorithm's performance, and the following
formulas are used in lane detection

Sl. No. Metrics Formula ~
1 Accuracy(A) A = TN TP
2 Detection rate (DR) DR= %
3 False positive rate (FPR) | rer= %
4 False negative rate (FNR) | k- %
5 True negative rate (TNR) | mr-= %
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Table 3. Comparison of our results with existing literature

Total Accurac
Road Total y
Methods Geometry Number of Number of Rate
Detected
Frames
Lanes
[17] Spatial Ray
Feature Structured road 1000 889 88.9%
extractions
[18] Hough 0
transform Structured road 1000 897 89.7%
Proposed Method
(C &S lane
Detector) Structured road 1000 941 94.1%

Spatial Ray Feature extractions technique [19] showed
improvement over the traditional approach, with an accuracy
rate of 88.9%, successfully detecting 889 lanes. This method
utilizes spatial ray features for more effective lane detection.
[20] Hough transform method further enhanced detection
capabilities, identifying 897 lanes with an accuracy rate of
89.7%. This approach is known for its effectiveness in
detecting straight lines, which is beneficial for lane detection
on structured roads. The proposed Method (C & S lane
Detector) achieved the highest accuracy rate of 94.1%,
detecting 941 lanes. This method combines techniques for
detecting both curved and straight lines, indicating a
significant advancement in lane detection technology.

The progress in lane detection methods also underlines
the proposed method's superiority in handling structured road
scenarios. Additionally, it references several studies and
proceedings that have contributed to the development of
these methods, including works by [21][22]., which provide
a theoretical foundation and empirical evidence supporting
the evolution of lane detection technology. This comparative
analysis offers a clear view of how lane detection techniques
have evolved, emphasizing the proposed method's potential
to enhance road safety through improved lane detection
accuracy significantly.

2.4. Modified Kalman Filter for Lane Tracking

Kalman filtering can be used to track objects, including
tracking lanes on the road. Lane tracking typically involves
estimating the lane's position and orientation over time. The
standard Kalman filter is a mathematical approach used to
estimate the state of a dynamic system in the presence of
noise and uncertainty. It involves two steps: prediction and
correction. Lane tracking estimates the position and
orientation of lanes on the road by using a state vector, state
transition matrix, control input, and measurements. The
standard Kalman filter is ideal for linear systems with
Gaussian noise. The standard Kalman Filter has limitations,
particularly in handling non-linear systems, as it assumes a
linear relationship between the state and the measurements.
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It also presumes that the process and measurement noise are
Gaussian, which might not be the case in real-world
scenarios. Modified Kalman Filters address these limitations
by incorporating non-linearities into the state and
measurement models. They use different methods to
approximate the state distribution, allowing for more accurate
state estimation in complex scenarios where the standard
Kalman Filter might fail to provide a precise solution [23].

A modified Kalman filter, on the other hand, includes
adjustments or extensions to the standard Kalman filter
equations to handle better the specificities of the lane tracking
problem, which may include non-linearities or non-Gaussian
noise. Such modifications often aim to improve the accuracy
of the lane tracking system, especially in challenging
scenarios like curved roads or rapid lane changes, by better
accounting for the vehicle's dynamics and the environment's
unpredictability. These improvements might involve more
sophisticated models for state transition or measurement
noise or the inclusion of additional control inputs that
influence the system's state. It starts by initializing various
matrices and vectors that represent the system's state, such as
the lane's position and orientation and the expected noise in
the system. For each time step, it predicts the future state
based on the current state and control inputs like acceleration.
It then updates this prediction using new sensor
measurements to correct the state estimate. The Kalman gain
is calculated to minimize the estimation error. The updated
state and covariance matrices are then used in the next time
step, continually refining the vehicle's lane position and
orientation estimates. This process helps determine if a
vehicle is departing from its lane, enabling the system to alert
the driver accordingly.

Prediction Step:

Predicted state estimate:

Predicted_State_Estimate x[k | k — 1] = F[k]x[k — 1] +
B[k]u[k]. (8)
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Predicted covariance estimate:

Predicted_Covariance_Estimate ls[k | k—1] =
F[k]P[k — 1]F[k]T + Q[k]. (9)

Update Step:
Measurement matrix: H[k]
Measurement noise covariance: R[k]
Measurement update: z[k]
Kalman gain:
K[k] = P[k | k — 1]H[k]" (H[k]P[k | k — 1]H[K]T +
RIKD™  (10)
Updated state estimate:

x[k | k] = K[k | k — 1] + K[k](z[k] — H[K]&[k | k — 1])
(11)

Updated covariance estimate:

P[k | k] = (I — K[kJH[K])P[k | k — 1]
12)

In a lane departure system, mathematical equations are
used in a modified Kalman filter algorithm for lane tracking.
The state vector x[k] at each time step k contains the position
of the vehicle in the lane and the orientation of the lane. The
prediction step uses the state transition matrix F[Kk] and
control input u[k] along with the control input model B[K] to
project the current state into the next time step. The process
noise covariance Q[k] takes into consideration any variability
in the prediction process. The Kalman gain K[Kk] is computed
during the update step with the help of measurement matrix
H[k] and measurement noise covariance R[K].

This gain determines how much the predictions should
be corrected based on the new measurement’s z[K]. The state
vector and covariance matrix are then updated to yield x[k|k]
and P[k|k], which are better estimates of the position and
orientation of the lane. This process goes on iteratively, and
the vehicle’s position with respect to the lane is adjusted at
each step. These steps are performed recursively as more
measurements are taken, making it possible for the Kalman
filter to predict and update the lane’s position and orientation
in relation to the car while taking into account noise and
uncertainty involved in the process and measurements. The
modified Kalman filter provides a way to estimate the state
of a system recursively (in this case, the vehicle's lane
position and orientation) over time, taking into account both
the uncertainty in the system dynamics (process noise) and
the uncertainty in the measurements (measurement noise).
This is particularly useful for lane tracking as it allows the
system to filter out noise and inaccuracies in sensor data,
providing a more reliable and accurate estimate of the
vehicle's position relative to the lane.
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2.5. About Lane Departure Estimation

In [24], the author proposed a reliable lane departure
approach utilizing the distance of the vehicle from the lane
by employing the PLSF algorithm. In the study described
here, advanced computer vision methodologies are used to
design a system that can identify lanes and avoid road
accidents by providing lane departure alerts. This approach
employs the Canny edge detection method to find the edges
of the roadway and the median strip, while the Hough
transform method provides better detection. The distance of
the vehicle from the central divider is calculated using the
lateral distance formula, which is the Euclidean distance.
When this measurement is used together with the PLSF
(Phase Line Segment Fitting) algorithm, it improves accuracy
for various illumination conditions.

The proposed model for the lane departure estimation
includes the C&S Lane Detector and a Modified Kalman
Filter to determine the lateral position of the vehicle with
respect to the lane. The identification of lane lines and their
coordinates is critical to determining the likelihood of lane
departure. The assessment employs the Euclidean Distance
(ED) to measure the transverse movement of the vehicle with
reference to the lane markings. The ED between the midpoint
of the vehicle's front axle is projected onto the Region of
Interest (ROI). The midpoints of the detected lane lines are
computed as follows: The ED between the midpoint of the
vehicle's front axle projected onto the Region of Interest
(ROI) and the midpoints of the detected lane lines is
computed as follows:

1= J(Haf —mp)? + (B —mp})”  (13)
Where:

A : Euclidean distance between midpoints.

HE, HY : Horizontal and vertical coordinates of the vehicle's
projected midpoint within the ROI for x and y.

mp{, mp; : Horizontal and vertical coordinates of the

midpoint of the identified lane line for x and y.

To determine a potential lane departure, the EDs for both
the left and right lane lines are monitored over time. A
predefined threshold 6 is established to gauge significant
lateral shifts. If the ED to either lane line falls below 6, a lane
departure event is flagged:

o Left Departure: A, < 6

e Right Departure: A, < 6

The thresholds can be dynamically adjusted based on
vehicle speed, road conditions, or driver behavior to enhance
the accuracy and sensitivity of departure detection. By
incorporating threshold values along with the C&S Lane
Detector and Modified Kalman Filter analysis, the system
achieves a more nuanced detection of lane departure events,
which is essential for the activation of safety mechanisms in
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autonomous vehicles and Advanced Driver-Assistance
systems (ADAS).

2.6. Lane Departure Estimation of Enhanced Lane
Departure Warning System (ELDWA)

Algorithm: Enhanced Lane Departure Warning
System (ELDWA)

Input: Lane detection output (1))

Output: Lane deviation angle and direction
Procedure ELDWA(1):

1. Highlight the vehicle's travel path within the
detected lane from 1.

2. Perform C&S Lane Detector along with
modified Kalman filter on ) to obtain right (Pr) and
left (PI) lane boundaries.

3. Identify the lane's midpoint (p) using the
positions of Pr and PI.

4, Construct right triangles using the
boundaries (Pr, P1) and midpoint p.

5. Calculate angles o (relative orientation to the
right boundary) and 0 (relative orientation to the left
boundary) from the triangles.

6. Determine lane deviation direction:

a. If lane deviation (¢ > ) and
lane deviationRange(p - Zr <p - ZI), then vehicle will
deviation towards the left.

b. If lane deviation (¢ > ©) and
lane deviationRange (p - ZI1 < p - Zr), then vehicle
will deviation towards the right.

c. If Ilane deviation (¢ > 0) and
lane deviationRange (p - Zr < p - ZI), then vehicle
will deviation towards the left.

d. If lane deviation (¢ > 6) and
lane_deviationRange (p - Z1 < p - Zr), then the vehicle
will deviation towards the right.

e. Else, the vehicle is within the lane trajectory.

7. Calculate the offset from p on the side of
deviation.

8. Determine the departure angle indicative of
deviation severity.

End Procedure

lane

The Enhanced Lane Departure Warning System
(ELDWA) utilizes advanced computational methods to
ascertain lane departure. The core mathematical model
involves the calculation of lane boundaries Pr and Pl using
the C &S Lane Detector alongside a modified Kalman filter.
The midpoint p is calculated as the average position between
Pr and PL.

Geometrically, right triangles are constructed using these
points to derive angles w and 6, representing the vehicle's
orientation to the lane boundaries. The decision to flag a
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deviation is based on comparing these angles to a critical
angle ¢, with conditions such as ¢p > w indicating deviation.
Specifically, the algorithm evaluates if p — Zr < p — ZI for
leftward deviation or the inverse for rightward. The offset
from p on the deviated side is calculated, leading to the
determination of the departure angle, which quantifies the
deviation's severity. This mathematical approach allows for
precise and dynamic monitoring of lane discipline,
significantly enhancing vehicular safety.

The mathematical conditions in the Enhanced Lane
Departure Warning System

(ELDWA) algorithm is crucial for determining the
vehicle's lane position and detecting deviations. These
conditions involve comparing calculated angles ® and 6
against a predefined threshold angle ¢. The conditions for
detecting a deviation are as follows:

Table 4. Deviation conditions for lane detection
Leftward If $ > o and the distance from the
Deviation: midpoint to the right boundary (p - Zr)
is less than that to the left boundary ( p
- ZI), it indicates a leftward deviation.
Conversely, if ¢ > and p - Zl < p -
Zr, a rightward deviation is indicated.
The algorithm also considers 6
similarly to o for enhanced accuracy in
detecting the direction of deviation.

If none of the above conditions are
met, the vehicle is considered to be
moving within the lane trajectory.

Rightward
Deviation:

No Deviation:

These mathematical evaluations enable the system to
precisely identify when and in which direction the vehicle
deviates from its lane, enhancing the safety features of

autonomous and semi-autonomous vehicles.

3. Results and Discussion

There are many datasets available for lane detection. In
most of the Benchmark datasets, they have provided images
of road scenarios. Using images makes it difficult to calculate
departure. As it requires videos that contain the left and right
departure of the driving vehicle, in order to evaluate the
performance, we are using the Custom dataset to evaluate the
performance of the proposed model.

The algorithm underwent testing on a custom dataset
under three different scenarios. The outcomes include the
identified lanes and their respective vehicle offsets. This
custom dataset includes videos taken during the day, at night
and under foggy conditions.

Accuracy = Detected Correctly / Total Number of Frames.
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Table 5. Daytime departure accuracy

Total
. Number Detected
Conditions of Correctly Accuracy
Frames
Total o
Frames 8000 7665 95.81%

Left o
Departure 478 398 83.26%

Right o
Departure 554 470 84.83%

Table 6. Night-time departure accurac
Total
Conditions Number Detected Accuracy
of Correctly
Frames
Total o
Frames 1078 912 84.6%

Left o
Departure 200 130 65%

Right o
Departure 150 97 64.66%

The algorithm will be tested on a custom dataset across
three distinct scenarios: daytime, nighttime, and foggy
conditions. This approach aims to evaluate the model's
effectiveness in various driving environments. The
evaluation metric used is accuracy, calculated as the ratio of
correctly detected lanes to the total number of frames.

Daytime Departure Accuracy (Table 5): This table
shows the model's performance during the day across
different conditions, including total frames, left departures,
and right departures. Out of 8000 total frames, 7665 were
correctly detected, resulting in an accuracy rate of 95.81%.
For left departures, 398 out of 478 frames were accurately
identified (83.26% accuracy), and for right departures, 470
out of 554 frames were correctly detected (84.83% accuracy).

Night-time Departure Accuracy (Table 6): This table
presents the model's performance at night. The total number
of frames was 1078, with 912 correctly detected, yielding an
accuracy rate of 84.6%. The accuracy for left departures was
lower, with 130 out of 200 frames detected correctly (65%
accuracy), and for right departures, 97 out of 150 frames were
accurately identified (64.66% accuracy).

These tables collectively illustrate the proposed model's
capability to detect lane departures under varying conditions
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accurately. It is evident that the model has a high degree of
accuracy throughout the day but has a slightly lower
performance at night due to the difficulties arising from poor
visibility. The analysis of the performance, depending on the
type of departure, gives insights into the model’s
performance in different lighting conditions and reveals its
weak points. This evaluation underscores the importance of
comprehensive testing across various conditions to ensure the
reliability and robustness of lane detection models.

3.1. Limitations of the Proposed System

1. Firstly, the system's reliance on high-quality image and
video data may pose challenges in extremely adverse
weather conditions or scenarios where visibility is
severely compromised, such as heavy fog, torrential rain,
or blizzard conditions. These situations can hinder the
system's ability to accurately detect lane markings,
potentially reducing its effectiveness.

2. Additionally, the complexity and computational
requirements of the proposed algorithms, including the
Phase Stretch Transform for edge detection and the
Modified Kalman Filter for lane tracking, may limit the
system's real-time performance on less powerful
hardware. Optimizing these algorithms for faster
processing without sacrificing accuracy remains a
crucial area for future research.

3. Another limitation stems from the inherent variability in
road conditions and markings. The system's performance
in regions with poorly maintained roads, faded lane
markings, or unconventional road layouts could be less
reliable. Furthermore, the adaptation to different global
road standards and conditions presents an additional
layer of complexity that requires extensive validation
and customization.

4. Conclusion

This research presents a comprehensive study on the
development and evaluation of an Enhanced Lane Departure
Warning System (ELDWS) using cutting-edge vision
technology. The system, designed to improve road safety for
ADAS-enabled vehicles, incorporates a novel approach
utilizing Phase Stretch Transform for edge detection, Curved
and Straight Lane Detector for precise lane detection, and a
modified Kalman Filter for dynamic lane tracking. These
integrated technologies collectively aim to improve vehicle
safety through precise lane departure estimation. Our system
was rigorously tested under various lighting and road
conditions, including challenging weather scenarios and
curved paths, demonstrating its superior performance and
robustness compared to existing technologies. The evaluation
conducted using a custom dataset and the BDD100K dataset,
a general-purpose benchmark for lane detection, showcases
the system's high accuracy rates: 95. The main goal of this
paper is to identify the critical factors that affect the
performance of SMEs in the context of their interactions with
key suppliers. 81% in daytime conditions. These findings
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support the viability of ELDWS when used in practice and its ~ algorithms and the application of machine learning in
ability to operate in various environmental settings and road developing better driving assistance systems. Ultimately, the
surfaces. The advancements introduced in this paper are Enhanced Lane Departure Warning System marks a
useful for autonomous driving and establish a new safety  significant step towards achieving safer autonomous driving,
benchmark by overcoming the flaws of current LDWS offering a detailed and effective solution that enhances the
technologies. In this way, the proposed system can help to accuracy and reliability of lane detection and departure
provide safe lane-keeping assistance in both full- and high-  warnings. As we move forward, the insights and
level self-driving cars while considering factors like methodologies developed through this research will
sensitivity to meteorological conditions and reliance on undoubtedly play a crucial role in shaping the future of
proper striping. Apart from this, this research reveals the  vehicle safety and driving assistance technologies.
possibilities of utilizing the various image processing
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