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Abstract - This paper introduces an Enhanced Lane Departure Warning System (ELDWS) leveraging cutting-edge vision 

technology to boost road safety for ADAS enabled vehicles. Our novel approach utilizes a combination of Phase Stretch 

Transform for edge detection, Curved and Straight Lane Detectors for accurate lane Detection, and a modified Kalman Filter 

for dynamic lane tracking, collectively aimed at improving vehicle safety through precise lane departure estimation. Unlike 

traditional systems that rely heavily on clear lane markings and favorable environmental conditions, our model excels in 

various lighting and road scenarios, including curved paths and challenging weather conditions. The research demonstrates 

the system's efficacy in real-world simulations, where it outperforms existing technologies in detecting and alerting potential 

lane departures. Through meticulous integration of advanced image processing techniques and machine learning algorithms, 

our model offers a significant leap towards achieving robust lane-keeping assistance in autonomous and semi-autonomous 

vehicles. Furthermore, the paper discusses the system's ability to adapt to different environmental conditions and road types, 

making it a versatile tool for enhancing driving safety. By addressing the limitations of current LDWS technologies, such as 

sensitivity to weather conditions and the reliance on high-contrast lane markings, our approach sets a new standard for safety 

in the autonomous driving domain. This paper shows that by overcoming the problems of older lane departure warning systems, 

like their struggle with bad weather and dependency on clear road markings, our system sets a new standard for keeping cars 

safely within their lanes, especially in self-driving and semi-self-driving cars. We offer a detailed solution that combines new 

detection methods with advanced tracking techniques for better accuracy and reliability. The accuracy of our ELDWS is 

quantitatively measured using a custom dataset, revealing impressive results. During daytime conditions, our system achieved 

a high accuracy rate of 95.81%, correctly detecting lanes in 7665 out of 8000 frames. This demonstrates the system's robustness 

in optimal lighting conditions. The accuracy remains commendable in left and right departure scenarios during the day, with 

rates of 83.26% and 84.83%, respectively, showcasing the system's capability to recognize lane departures effectively. This 

research is important for making cars safer and provides useful information for developing better driving assistance systems 

in the future. 

 
Keywords - ADAS, Curved and Straight lane detector, Enhanced lane departure warning system. 

1. Introduction  
In road transport systems, accidents can be avoided with 

the Advanced Driver Assistance System (ADAS). This 

usually involves combining different sensors, including 

Radar, Lidar, Vision Cameras and Ultrasonic sensors. These 

are used to sense the environment around the vehicle, and the 

information gathered is fed to the vehicle's control system to 

give the driver real-time information and/or alarms. Aid 

systems can be categorized into various levels. Level 1- 

Systems that control a single operation, such as cruise control 

and lane departure warning. Level 5- Systems that take full 

control of the vehicle and can operate the car in all situations 

without requiring any human input. ADAS systems refer to 

complex computer systems that are integrated into 

automobiles for the purpose of improving the driving 

experience by assisting the main driver in numerous ways. 

ADAS plays a crucial role in monitoring the driver's 

condition, such as detecting signs of fatigue or distraction and 

consequently issuing timely warnings[1]. These systems are 

also equipped to evaluate and advise on driving performance. 

A notable feature of ADAS is its ability to assume control in 

response to perceived threats, thereby aiding in simple 

operations like cruise control or more complex tasks such as 

overtaking and parking maneuvers[2]. The ADAS systems 

lead to an enhanced exchange of information, which is crucial 

for improved vision, accurate localization, and more strategic 
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planning and decision-making for the vehicles, thereby 

significantly contributing to safer and more efficient 

driving[3]. 

 

In the literature [4], ADAS systems are categorized into 

two primary types based on functionality: comfort-oriented 

functions and vehicle centric safety functions. Comfort-

oriented functions are designed to alert the driver through 

various mechanisms, such as visual signals (flashing lights), 

auditory alerts (sounds), tactile feedback (vibrations), or 

subtle guidance (gentle steering suggestions). These 

notifications serve to enhance the driving experience by 

providing timely and user-friendly warnings. In contrast, 

safety functions proactively intervene in vehicle operations 

when the driver fails to respond to hazardous scenarios. This 

intervention can manifest in several forms, including pre-

charging the brakes, readying the safety belts, raising the 

hood, executing automatic braking, and implementing 

evasive steering maneuvers. These actions are critical in 

mitigating the risk of accidents and enhancing overall road 

safety. Recently, there has been an extension of ADAS 

technology called the Safety Driving Assistant System 

(SDAS), which is increasingly catching the public's attention 

and becoming a part of daily life. During typical driving 

scenarios, if a sudden accident occurs, this smart assistant 

driving system can instantly provide support through services 

like emergency braking, driving assistance decisions, or 

urgent warnings. This significantly enhances the safety and 

stability of driving while also reducing the financial impact 

and human toll of traffic accidents. It also assists in collision 

avoidance by analyzing the surroundings and providing real-

time navigation support to evade potential hazards with other 

vehicles, pedestrians, or obstacles. This system also includes 

traffic sign recognition capabilities, ensuring drivers are 

aware of important road information like speed limits or no-

entry signs. Additionally, the system enhances side collision 

prevention through blind spot detection, alerting drivers to 

unseen vehicles or objects. Within this system, the Lane 

Departure Warning System (LDWS) is gaining growing 

interest as an important subsystem. The LDWS is one of the 

subsystems of the Safety Driving Assistant System (SDAS) 

that significantly enhances vehicular safety and the overall 

driving experience through lane departure alerts. LDWS 

vigilantly monitors the vehicle's position, alerting drivers if 

they unintentionally drift out of their lane, a crucial feature to 

counteract inattention or drowsiness. The vital role of LDWS 

helps to augment road safety, reduce accident rates, and 

elevate the driving experience. 

   

The LDWS is a safety system in today’s cars that assists 

the driver in reminding the driver that the car is drifting away 

from the lane it is in, except if the driver has signalled a turn. 

This system employs some detectors, most of which are 

cameras, to detect the lane markings on the road. If the system 

recognizes the fact that the vehicle is moving towards the lane 

markings without turning indicators being engaged, it alerts 

the driver. This warning can be in the form of an icon on the 

car’s display, sound or haptic feedback, such as vibration in 

the steering wheel or seat. The LDWS includes several 

fundamental benefits. First of all, it helps to keep drivers in 

their lane while driving with the help of a camera that 

recognizes the lane markings. Secondly, when the vehicle is 

near the markings mentioned above and is likely to swerve 

out of the lane, a vibration is felt in the steering wheel. 

Thirdly, the system goes into a dormant state when it detects 

lane lines on its left and right sides, and the green LED light 

on the dashboard blinks.  

 

LDWS come in two main types: Road Infrastructure-

Based and Vehicle-Based. Road Infrastructure-Based 

LDWS: These systems rely on road infrastructure to monitor 

a vehicle's position. They use sensors to detect ferromagnetic 

signals embedded in the road. By measuring the signal 

strength, the system can determine the vehicle's position 

within the lane. Vehicle-Based LDWS: In contrast, these 

systems are built into the vehicle itself, using onboard sensors 

to keep track of the vehicle's lane position independently of 

any special road infrastructure. The road infrastructure-based 

LDWS relies on infrastructure modifications, such as 

embedding magnets or wires under roads, which vehicles 

detect to determine their lateral position within a lane. This 

method, though accurate, is expensive due to the need for 

road alterations. The limitations of road infrastructure-based 

Lane Departure Warning Systems (LDWS) include high 

installation and maintenance costs due to the need for 

physical modifications to the road infrastructure. 

Additionally, their effectiveness can be compromised in areas 

where such infrastructure updates are not feasible. 

    

Vehicle-based Lane Departure Warning Systems 

(LDWS) primarily rely on machine vision and image 

processing to detect the position of lane markings. These 

systems rely on cameras mounted on vehicles to capture and 

analyze road images, identify lane markings and assess the 

vehicle's position. A typical vision-based Lane Departure 

Warning System (LDWS) has three main components: lane 

detection, lane tracking, and lane departure warning. An 

onboard camera mounted high on the windshield captures 

sequences of road images. If the system detects a potential 

lane departure, it alerts the driver to prevent unintentional 

dangerous driving situations. The primary advantage of using 

image information is its ability to adapt to different 

environmental conditions and road types. This adaptability, 

powered by advanced image processing and machine 

learning algorithms, allows the system to function effectively 

in various lighting and weather conditions, making it a 

versatile and essential tool for modern driving safety. 

Vehicle-based Lane Departure Warning Systems (LDWS) 

primarily use vision sensors to detect lane edges, lane 

markings, and road contours. These systems are most 

effective on highways with clear lane markings. However, 

they can struggle with poor visibility, varying lane 
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conditions, and image resolution issues. Additionally, the 

road conditions can sometimes render the system ineffective. 

Detecting lanes using onboard sensors remains a challenging 

task despite significant research and advancements. Because 

environmental factors often hinder the accurate identification 

of lanes, there is a need to develop a new framework for lane 

departure estimation. This new approach would aim to 

improve the system's robustness and reliability in handling 

these challenges. 

 

Numerous researchers and organisations have 

investigated several vision-based approaches for the Lane 

Departure Warning System (LDWS). In the last thirty years, 

traditional methods have mainly dealt with image processing 

and computer vision. However, these traditional algorithms 

are not efficient enough to meet the needs of industrial 

systems. Recently, there has been more focus on the 

development of enhanced techniques. Some of the techniques 

include the three-dimensional processing algorithms that 

employ multiple sensors as well as the semantic segmentation 

that employs deep learning and neural networks. These newer 

methods are faster and better suited to the more current 

LDWS. 

 

The technique used by [5] for detecting and identifying 

lane departure events in vehicles is as follows. First, a 

Piecewise Linear Stretching Function (PLSF) is used to 

improve the contrast of images within the Region of Interest 

(ROI). The ROI is then divided into two subregions, and then 

the Hough transform is applied to each of the subregions 

separately. This segmentation approach really helps in the 

efficient detection of the lanes as it minimizes the time 

required for the process. Lane departure identification is 

made by calculating a distance-based measure for every 

frame that indicates the degree of departure from the lane. 

Should this measurement be beyond a specified limit, the 

system issues a warning to the driver. 

  

In [6], a vision-based Lane Departure Warning System 

(LDWS) that targets both day and night environments has 

been designed. Their system includes two main components: 

lane detection and the calculation of the lateral offset ratio. 

The lane detection process has two stages: Pre-processing 

and detection, which are another challenge because they 

involve identifying the features of an image that need to be 

extracted and analyzed, as well as determining the presence 

of objects or anomalies in a video stream.  

 

Pre-processing involves converting the color space of the 

image, cropping the area of interest, and isolating the lane 

markings. In the detection stage, the Hough transform is 

employed to determine the position of lanes. Last of all, the 

system is able to determine the lateral offset ratio by finding 

the X coordinates of the lower part of each of the lane 

boundaries in the picture. The above-stated ratio is then used 

to create a lane departure warning. 

In [7], the author proposed a method that consists of 

three primary components: Firstly, we employ a voting map 

to determine a disappearing point and then construct an 

adjustable Region of Interest (ROI) area to decrease the 

computational load. Secondly, it effectively utilizes the 

different colors of lanes to solve the problem of illumination 

invariance in lane candidate detection. Last but not least, 

using a clustering approach, we decide on the primary lane 

out of the potential ones. While the vehicle moves out of the 

lane, the technology provides a driver alarm signal. The 

results of the experiment show a satisfactory level of 

performance at different light conditions with an average 

detection rate of 93%. In addition, the overall operation is 

completed in 33 milliseconds per frame. 

 

In [8], the author presents an approach for lane detection 

using a road module and extended Kalman filter, which 

includes the following steps. The first operation is to define 

the road Region of Interest (ROI) from the input image. The 

road ROI is again divided into different partitions, and a 

model of the road structure is developed based on the width 

of the lane and the distance between the lanes. The extended 

Kalman filter is then applied to estimate the lane parameters, 

which include the position of the lane, lane width and lane 

curvature. The lane model is then employed to identify the 

lane boundaries through an adaptive edge detection method. 

Last, the lanes are delimited more accurately through post-

processing in which false positives are eliminated, and gaps 

in the lane detection are closed.  

 

This model proves to be insensitive to variations in 

lighting conditions and the types of road surfaces, which 

makes it ideal for real-life implementation. Nevertheless, the 

model can fail to identify lanes in complex traffic situations, 

for instance, at intersections or roundabouts, where lanes are 

not well marked or even missing. However, the model will 

not be able to accurately identify the lanes in particular 

weather conditions, such as rainy or snowy weather, which 

causes the lanes to be barely visible. Nevertheless, the 

proposed model seems to have the capability to enhance the 

performance of the lane detection system and, consequently, 

the safety of self-driving cars. 

 

In [9], the author suggests a model that comprises LDWS 

alongside a frontal collision warning system that is functional 

both day and night. This system employs a fixed camera that 

is mounted on the windshield of the car. The algorithm starts 

with the generation of the bird’s eye view of the road through 

Inverse Perspective Mapping (IPM). Then, the Hough 

transform is applied to this IPM to find out the points that 

might belong to the lane. The RANSAC Bezier spline fitting 

is used to identify the lanes precisely. For vehicle detection, 

the Hough transform is used again to find the horizontal lines 

that are likely to be vehicles. To increase the overall speed 

and optimize the use of resources, the model employs 

multithreading. 
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In [10], the learning-based method was proposed to 

detect the possible off-lane deviations and the probability of 

drivers straying back to the intended lane. This method 

involves two main steps: The approach begins by developing 

a personalized driver model that incorporates both a Gaussian 

mixture model and a hidden Markov model. This model 

describes the driver's lane departure and lane-keeping 

activities. Online Prediction Algorithm: Based on this model, 

an online prediction algorithm is designed to predict the 

future motion of the vehicle. The algorithm determines 

whether the driver is likely to maintain the current position or 

change lanes. Also, they provided a warning strategy built on 

the prediction algorithm. This strategy makes certain that the 

alerts given by the lane-departure warning system are given 

in a way that will be acceptable to the drivers based on the 

predicted trajectory. 

 

In [11], the author developed a lane detection and 

tracking method based on monocular vision that was 

specifically designed for urban environments. This system 

integrates a Lane Departure Warning (LDW) to determine the 

car's position relative to lane boundaries. The process 

involves several key steps: First, the system establishes the 

Region of Interest (ROI) by identifying and highlighting 

relevant sections of the road images. Then, it preprocesses the 

data by reducing image noise with a Gaussian filter and 

enhancing lane boundaries using the Canny edge detector. 

For lane boundary extraction, the system utilizes color 

information and performs image segmentation with 

histogram thresholding and the Hough transform to achieve 

high accuracy in detecting lane boundaries. The system 

continuously monitors the vehicle's position and detects any 

drifting from the lane. When a lane departure is detected, it 

alerts the driver with a warning message, thus contributing to 

road safety. 

 

In [12], the author introduced a method for identifying 

and categorizing lane markers using a linear parabolic model. 

This approach leverages the fact that the intensity of pixels 

associated with lane markers is generally higher than that of 

pavement pixels. The system distinguishes between lane 

markers and pavement by analyzing small rectangular 

patches to derive statistical values. In each frame, each pixel 

within these patches is compared against a distribution of 

pavement pixels to differentiate between asphalt and lane 

marker pixels. After detecting the lane markers, a cascade 

classifier is utilized for identification. Four binary classifiers 

are then employed to categorize the identified lane markers 

into five classes: dashed, dashed-solid, solid-dashed, single-

solid, and double-solid. 

 

In [13], the author has worked on an in-vehicle system 

that can detect and inform drivers of the lane markings. In 

order to detect and recognize lane markings, such as lines and 

pictograms, the system utilizes the combination of the MSER 

technique and the Hough transform. The system operates 

through the use of the MSER method to get to the relevant 

areas of interest. An enhancement processing algorithm of 

three stages refines the MSER results and erases unnecessary 

data, such as trees and vehicles. In real-time detection, the 

Progressive Probabilistic Hough Transform technique is 

employed for the detection of line markings. After that, the 

system identifies the color and type of line markings using 

the MSER results for the left and right lines. From the MSER 

regions, another algorithm can identify High-Occupancy 

Vehicle pictograms. Last but not least, a Kalman filter is used 

to track both ends of each of the detected line markings. 

 

In [14], the author used a method with Bayesian 

inference theory to enhance lane detection. Their approach 

uses Rao-Blackwellized Particle Filters (RBPF) to deal with 

the linear and nonlinear properties of the road model. This 

approach helps to minimize the number of samples that the 

particle filters use as compared to other standard sampling 

techniques. They employed real-time cameras to capture 

images at 30Hz on an embedded computer. The Rao-

Blackwellization process is divided into two stages. The first 

is the linear part, which consists of defining the position of 

the vehicle in the transversal direction. Nonlinear Part: The 

particle filters the hypotheses about the road curvature and 

generates the new hypotheses. Their system is capable of 

handling difficult situations, including rapidly fluctuating 

lighting, night vision, absence of clear references and the 

existence of other cars. It is highly accurate but is a 

disadvantage as it entails numerous hypothesis calculations. 

 

In [15], the author proposes a solution which begins with 

converting the front view into a bird’s eye view. The 

transformed image is then subjected to selective 2D Gaussian 

spatial filters to smoothen it. Then, a simple and faster Hough 

transform is used to determine the number of lines present in 

the image. The RANSAC algorithm is used to estimate the 

better lines for the given input data. These lines are then 

passed through a more refined RANSAC that not only 

outputs the points on the line but also outlines a region around 

the line and fits a Bezier curve to the points in the region. It 

is possible to state that the algorithm has a high degree of 

accuracy. But there are some problems while driving on the 

right side of the road. If the right lane marking is not present, 

the algorithm may identify a ghost line. 

 

Most of the papers reviewed in the literature reveal that 

they used Hough transformation and its extension, such as 

Progressive Probabilistic Hough Transform" (PPHT) based 

approaches for lane detection. These techniques primarily 

utilize probabilistic methods for detecting lane lines in 

images. These techniques are efficient in environments with 

clear lane markings but may struggle with complex road 

geometries, varying weather, and lighting conditions. 

Another drawback of these techniques is that they failed to 

detect fully oriented curves and were successful for small 

orientation curve lanes. Hence, in this paper, we propose to 
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employ a Curved and Straight Lane detector (C&S Lane 

Detector) to detect fully oriented and straight lanes. This 

method significantly enhances lane departure analysis, 

particularly in challenging environments and complex road 

scenarios. The proposed method is best suited to overcome 

the limitations of the PPHT method by providing better 

performance even in different conditions, better real-time 

tracking and thus more efficient lane departure warnings. To 

implement LDWS, a vision-based LDWS is proposed in this 

paper for estimating the lane departure event by capturing the 

video from a vision sensor mounted on a vehicle for different 

lighting conditions and different road types, such as straight 

and curved roads. 
 

The main contributions of the paper for the lane 

departure warning system are given below. 

1. The novel edge detector, such as Phase Stretch 

Transform, is employed to detect edges, which 

overcomes the drawback of the Canny Edge detector. 

2. We proposed employing a Curved and Straight Lane 

detector (C&S Lane Detector) to detect fully oriented 

curved and straight lanes.  

3. The modified Kalman filter is employed for lane 

tracking.  

4. The estimation of lane departure distance by calculating 

the Euclidean distance of the midpoint of the ROI and 

midpoint of the left and right lanes with the intention of 

enhancing vehicular safety. 
 

2. Proposed Model  
The proposed model presents a novel integrated 

approach for enhancing the functionality of lane departure 

warning systems in vehicles aimed at reinforcing road safety. 

The model's first step is to gather visual input through images 

or video feeds, capturing the vehicle's immediate driving 

environment. This input is then meticulously pre-processed 

to improve the visual clarity and minimize any interference, 

ensuring that the subsequent edge detection is both precise 

and reliable. Utilizing the Phase Stretch Transform (PST) 

algorithm[16], the model excels at detecting the lane edges 

by highlighting critical structural features within the images. 

To further refine the detection accuracy, a Curved & Straight 

(C&S) Lane Detector algorithm is applied, which is adept at 

distinguishing and classifying lane boundaries with high 

precision. The model's sophistication is evident in the 

Modified Kalman Filter for Lane Tracking, which predicts 

and follows the lane's position dynamically, adapting to the 

vehicle's manoeuvres and external environmental variations. 

The culmination of this process is the Enhanced Lane 

Departure assessment, which scrutinizes the lane tracking 

data to evaluate if the vehicle is veering off course. If such a 

deviation is detected, the system promptly initiates alerts, 

thus enabling the driver to take swift corrective measures. 

The strength of this proposed model is that the proposed 

workflow is integrated and comprehensive and employs the 

most advanced image processing techniques coupled with 

efficient detection and tracking methodologies in order to 

keep the vehicle within the intended lane while at the same 

time enhancing the safety of the driving experience. The flow 

diagram of the proposed method is depicted below in Figure 

1. 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Proposed system of lane departure 

2.1. Pre-processing of Input Image/Input Video  

When images are taken in less-than-ideal conditions 

such as low light, excessive brightness, or adverse weather 

like rain or fog, they can end up with much noise. This noise 

can significantly lower the quality of the images and make it 

harder to process them effectively. To tackle this, a 

preprocessing step is employed to clean up the images. This 

involves smoothing out the noise without losing important 

details in the image, which helps recover lost information and 

enhance image details. However, when an image is not only 

noisy but also lacks sharpness, a sharpening technique is 

applied to make the details pop and improve the overall look 

of the image. But there is a catch: sharpening a noisy image 

can make the noise more pronounced. 

 

Dehazing methods are used to blur images affected by 

fog or haze, which can blur them and reduce contrast. Several 

techniques have been developed, including some based on the 

premise that the contrast should be higher in clear conditions 

than in foggy ones and that light attenuation due to fog varies 

smoothly with distance. One notable method is the Dark 

Channel Prior (DCP) algorithm proposed by [17], which has 

shown promise in addressing the limitations of earlier 

dehazing techniques by focusing on the natural properties of 

haze-free images. There is also a method tailored for traffic 

videos that speeds up dehazing but still is not fast enough for 

real-time application, highlighting the ongoing challenge of 

making these methods faster and more universally applicable. 
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To enhance contrast and reduce noise further, filters such 

as median or Gaussian are used on the images. This is 

followed by converting the images from RGB to grayscale, 

which simplifies the images and reduces processing time. The 

grayscale images are then segmented into binary images, 

setting the stage for smoother, clearer images that are ready 

for the next steps in processing for Edge Detection. 

 

  
(a) (b) 

Fig. 2 (a)Left: Original image, (b) Right: Pre-processed image. 

2.2. Edge Detection Using Phase Stretch Transform (PST)  

Edge detection is the process of identifying and 

pinpointing abrupt changes in an image. It may identify 

regions with strong intensity contrasts. It is the area where the 

image's intensity or contrast significantly changes. Because 

edge detection helps emphasize and bring forth information 

about a picture, it is used. These details include object 

identification and highlighting, as well as the size, shape, 

sharpening, and augmentation of the image. It can also be 

used as an instrument for segmenting images, which modifies 

their intensity. An edge is a shift in intensity between adjacent 

pixels in a continuous picture. 

 

Many researchers have used the Canny Edge detection 

method for lane detection. It is used in these multi-level 

algorithms to distinguish one edge from the other in the given 

image. It is mainly applied for boundary detection and 

intensity change detection in numerous computer vision-

related tasks. Should the gradient amount of a pixel be higher 

than the gradient amount of the pixels on both sides in the 

direction of change of intensity, this approach identifies the 

pixel as an edge. To eliminate this noise, the image must be 

smoothed. Subsequently, the region of interest with spatial 

derivatives is identified through the picture gradient. After 

identifying these areas, any pixel that does not have this value 

is set to zero. Hysteresis is currently showing more losses in 

the angle it presents at the given point in time. Hysteresis is 

performed to detect the remaining suppressed pixels. In 

hysteresis, there are two levels known as the upper and the 

lower[18]. The extend is set to zero (made a non-edge) at the 

point where it is below the main edge. Size turns into an 

advantage as soon as it reaches the high edge. Furthermore, 

if no path can be traced from this pixel to another pixel with 

a slope greater than the second threshold, greatness is set to 

zero when it is between two thresholds. From the above 

process, we can deduce that Canny is one of the most 

complex edge detection systems that require much time on 

the computer in order to accomplish its objectives. 

 

   
(a) (b) (c ) 

Fig. 3 Result of edge detection (a) Pre-processed image (b) Result of 

Canny edge detection (c) Result of PST edge detection. 

Steps to compute PST Edge Detection for Pre-processed 

Images: 

Given a pre-processed image 𝐼(𝑥, 𝑦), where 𝑥 and 𝑦 are 

spatial coordinates, the PST edge detection can be 

represented by the following steps: 

 

1. Calculate the Fourier Transform 𝐹(𝑢, 𝑣) of the image: 

𝐹(𝑢, 𝑣) = ℱ{𝐼(𝑥, 𝑦)}                           (1) 

 

2. Apply a phase function 𝜙(𝑘) to the Fourier Transform, 

where 𝑘 is the spatial frequency: 

 
𝜙(𝑘) = log(𝑘)                        (2)

𝐹𝜙(𝑢, 𝑣) = 𝐹(𝑢, 𝑣) ⋅ 𝑒𝑖⋅𝜙(𝑘)                       (3)
 

 

3. Perform the Inverse Fourier Transform 𝐼𝜙(𝑥, 𝑦) of the 

phase-modified Fourier Transform: 

   𝐼𝜙(𝑥, 𝑦) = ℱ−1{𝐹𝜙(𝑢, 𝑣)}                        (4) 

4. Apply a non-linear thresholding function 𝑇 to extract 

edges: 

                        Edge(𝑥, 𝑦) = 𝑇{𝐼𝜙(𝑥, 𝑦)}                       (5) 

Abbreviations: 

𝐼(𝑥, 𝑦): Original image in spatial domain 

𝐹(𝑢, 𝑣): Fourier Transform of the original image 

𝜙(𝑘): Phase function applied to Fourier Transform 

𝐹𝜙(𝑢, 𝑣) : Phase-modified Fourier Transform 

𝐼𝜙(𝑥, 𝑦) : Image after applying Inverse Fourier Transform to 

𝐹𝜙(𝑢, 𝑣) 

Edge (𝑥, 𝑦): Final edge-detected image 

ℱ: Fourier Transform operator 

ℱ−1 : Inverse Fourier Transform operator 

𝑇 : Non-linear thresholding function 

 

1. Fourier Transform (FT): Perform the Fourier Transform 

on the input image to transform the image from the 

spatial domain to the frequency domain. 

2. Phase Function Application: Apply a phase function 

ϕ(k),  typically a logarithmic function, to the Fourier 



S. D. Vidya Sagar & C. J. Prabhakar  / IJECE, 11(9), 22-35, 2024 

 

28 

Transform. This function is used to modify the phase 

information of the transformed image. 

3. Inverse Fourier Transform (IFT): Apply the Inverse 

Fourier Transform to the phase modified Fourier image 

to convert it back into the spatial domain. 

4. Non-linear Thresholding: Finally, apply a non-linear 

thresholding function to highlight the edges. 

 

The Phase Stretch Transform (PST) is used in edge 

detection by transforming an image to highlight transient 

features like edges and texture. The Phase Stretch Transform 

(PST)[19] can be more effective than the Canny edge detector 

in certain scenarios due to its unique approach to edge 

detection. While Canny uses gradient-based techniques, PST 

focuses on the phase congruency of an image, which is less 

sensitive to changes in illumination and contrast. This allows 

PST to detect edges in conditions where the Canny method 

might fail, particularly in low-contrast images or where the 

edge information is subtle. PST's ability to capture finer 

details and texture in images makes it a powerful tool in 

scenarios requiring high fidelity edge detection, like complex 

road lighting scenarios.  

 

The PST works mathematically by applying a phase 

function to the Fourier transform of an image. This function 

is typically a logarithmic function, represented as φ(k) = 

log(k), where k is the spatial frequency. The transformed 

image is then inverse Fourier transformed, and a nonlinear 

thresholding is applied to extract edges. This approach 

emphasizes the edges in images, making PST particularly 

effective for detecting fine features in images where 

traditional edge detection methods might struggle. This 

method is beneficial for applications like lane detection in 

autonomous driving, where clear edge delineation is crucial. 

 

2.3 Curved and Straight Lane Detector (C&S Lane 

Detector) 

The traditional Hough Transform approach computes 𝜌 

and 𝜃. And transforms the Cartesian coordinates (𝑥, 𝑦) into 

(𝜌, 𝜃) space. It helps to detect straight lines but fails to 

identify curved lines. In the C&S Lane Detector approach, we 

compute 𝜌curvature along with 𝜌 and 𝜃. And we transform the 

Cartesian coordinates (𝑥, 𝑦) into (𝜌, 𝜃, 𝜌curvature) tuples. We 

discretize 𝜌, 𝜃and 𝜌curvature values to fit in the accumulator 

array. In our method, we increment the corresponding cells 

for 𝜌curvature in the accumulator array. Therefore, this new 

approach helps to detect both curved and straight lines. The 

goal is to accurately identify and extract lane lines, which can 

be either straight or curved, to facilitate tasks such as 

autonomous driving or lane departure warning systems. 

 

The algorithm starts by defining the parameter space 

ranges for ρ (distance from the origin to the line), θ (angle of 

the line), and an additional parameter ρ_curvature, which 

represents the radius of curvature for curved lines. An 

accumulator array is created to store votes for different 

combinations of (ρ, θ, ρ_curvature) tuples. For each edge 

pixel (x, y) in the input image, the algorithm iterates through 

a range of θ values (typically from -90° to 90°). For each 

combination of (x, y) and θ, it calculates ρ using the equation 

ρ = x * cos(θ) + y * sin(θ). The algorithm checks if the 

calculated ρ value falls within a predefined limit (ρ_max) to 

avoid capturing excessively long lines. If ρ is within the limit, 

the algorithm proceeds to discretize ρ, θ, and ρ_curvature 

values to fit them into the accumulator array and increments 

the corresponding cell to vote for that line. A threshold value 

is set to determine which cells in the accumulator array are 

considered potential lines. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 6 Results of BDD100K benchmark datasets 

(a) Straight line detection (b) Curved line detection 

 

For each cell in the accumulator array that exceeds the 

threshold, the algorithm converts the (ρ, θ, ρ_curvature) 

indices back to (ρ, θ, ρ_curvature) values. The list of detected 

lines is sorted based on the accumulator values in descending 

order. The algorithm iterates through the list and retains only 

those lines that are not too close to each other in the parameter 

space (ρ, θ, ρ_curvature). This step helps eliminate redundant 

detections. For each remaining (ρ, θ, ρ_curvature) tuple in the 

list of detected lines, the algorithm converts these parameters 

into Cartesian coordinates: 

 

For straight lines, the formula is used.  

 

𝑦 =  −(cos(θ) / sin(θ))  ∗  x + (ρ / sin(θ)).       (6) 
 

Table 1. The lane detection results of the proposed model under different road conditions using our Custom dataset 

Video 

Sequence 
Road Geometry 

Total Number of 

Frames 

True 

Positive 

False 

Negative 

Accuracy 

Rate 

Detecting 

Time 

1 Straight road in the day 600 587 13 97.83% 20 ms 

2 
Structured road with 

Curves 
600 584 16 97.33% 22 ms 
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For curved lines, it employs the appropriate curvature 

formula based on the method used for curvature estimation, 

i.e., = 1/𝑟 , Where R = the radius calculated using the radius 

of curvature. 

Radius of Curvature Formula (𝑅) =
[1+(

𝑑𝑦

𝑑𝑥
)

2
]

3
2

|
𝑑2𝑦

𝑑𝑥2|
    (7) 

The algorithm then draws the detected line or curve on 

the original image using the calculated points shown in 

Figure 4 for both the curved lane and straight lane.  
 

 

  
(a) (b) 

Fig. 4 Result of C&S lane detector 

(a) For curved line detected (b)  For Straight line detected 

 
Fig. 5 Images of TuSimple, CULane and BDD100K datasets 

 

In this research, we randomly selected 600 frames from 

the custom dataset that depict a variety of scenarios for our 

lane detection experiments using the proposed algorithm. To 

confirm the effectiveness of our methods, we conducted 

quantitative assessments. The primary measure of evaluation 

was accuracy, which determines the algorithm's overall 

capability in correctly classifying images. Similarly, we 

randomly chose 1000 images from the BDD100K dataset, 

reflecting different conditions, to conduct lane detection tests 

with our algorithm. The outcomes of these tests, as indicated 

by the performance metrics with the BDD100K dataset, are 

displayed in Table 3 . Table 2 evaluates the algorithm's 

performance, and the following formulas are used in lane 

detection. 

 

In the context of lane detection, these abbreviations refer 

to the outcomes of predictions made by a detection algorithm 

compared to the actual situation. They help in evaluating the 

algorithm's accuracy and performance. 

 

True Positive (TP): This occurs when the algorithm 

correctly identifies a lane that is actually there. In other 

words, the algorithm positively detects a lane, and in reality, 

the lane is present. 

 

False Positive (FP): This happens when the algorithm 

identifies a lane that is not actually there. The algorithm 

makes a positive prediction (thinks it has found a lane), but 

this prediction is incorrect because no lane exists in that spot. 

 

True Negative (TN): This is when the algorithm 

correctly identifies that no lane is present. Although not as 

common in lane detection contexts (since the focus is usually 

on detecting the presence of lanes rather than their absence), 

it essentially means the algorithm correctly predicts the 

absence of a lane. 
 

False Negative (FN): This occurs when the algorithm 

fails to identify a lane that is present. The algorithm 

negatively predicts (thinks there is no lane), but this 

prediction is incorrect because there actually is a lane. 
 

These metrics are crucial for understanding how well a 

lane detection system is performing. High TP rates indicate 

good detection of actual lanes, while low FP rates indicate 

that the system is not mistakenly identifying non-lanes as 

lanes. High TN rates would be relevant in systems that also 

specifically identify areas where lanes are not present. Low 

FN rates indicate that the system effectively recognizes most 

of the lanes that are present.     

 

As Shown in Table 3, a comparative study on the 

effectiveness of various lane detection methods used in 

structured road environments. It details an experiment 

involving 1000 frames for each method calculated to identify 

the accuracy of lane detection and compare their performance 

in accurately detecting lanes.  

 

The methods analysed include the Spatial Ray Feature 

extractions, Hough transform, and a Proposed Method 

labelled as C & S (Curved & Straight) lane Detector.   

  
Table 2. Evaluates the algorithm's performance, and the following 

formulas are used in lane detection 

Sl. No. Metrics Formula  ∗ 

1 Accuracy(A) A =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 

2 Detection rate (DR) DR =
(𝑇𝑃)

(𝑇𝑃 + 𝐹𝑁)
 

3 False positive rate (FPR) FPR =
(𝐹𝑁)

(𝑇𝑃 + 𝐹𝑁)
 

4 False negative rate (FNR) FNR =
(𝐹𝑁)

(𝐹𝑁 + 𝑇𝑃)
 

5 True negative rate (TNR) TNR =
(𝑇𝑁)

(𝑇𝑁 + 𝑇𝑃)
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Table 3. Comparison of our results with existing literature 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Spatial Ray Feature extractions technique [19] showed 

improvement over the traditional approach, with an accuracy 

rate of 88.9%, successfully detecting 889 lanes. This method 

utilizes spatial ray features for more effective lane detection. 

[20] Hough transform method further enhanced detection 

capabilities, identifying 897 lanes with an accuracy rate of 

89.7%. This approach is known for its effectiveness in 

detecting straight lines, which is beneficial for lane detection 

on structured roads. The proposed Method (C & S lane 

Detector) achieved the highest accuracy rate of 94.1%, 

detecting 941 lanes. This method combines techniques for 

detecting both curved and straight lines, indicating a 

significant advancement in lane detection technology. 

 

The progress in lane detection methods also underlines 

the proposed method's superiority in handling structured road 

scenarios. Additionally, it references several studies and 

proceedings that have contributed to the development of 

these methods, including works by [21][22]., which provide 

a theoretical foundation and empirical evidence supporting 

the evolution of lane detection technology. This comparative 

analysis offers a clear view of how lane detection techniques 

have evolved, emphasizing the proposed method's potential 

to enhance road safety through improved lane detection 

accuracy significantly. 

 

2.4. Modified Kalman Filter for Lane Tracking  

Kalman filtering can be used to track objects, including 

tracking lanes on the road. Lane tracking typically involves 

estimating the lane's position and orientation over time. The 

standard Kalman filter is a mathematical approach used to 

estimate the state of a dynamic system in the presence of 

noise and uncertainty. It involves two steps: prediction and 

correction. Lane tracking estimates the position and 

orientation of lanes on the road by using a state vector, state 

transition matrix, control input, and measurements. The 

standard Kalman filter is ideal for linear systems with 

Gaussian noise. The standard Kalman Filter has limitations, 

particularly in handling non-linear systems, as it assumes a 

linear relationship between the state and the measurements. 

It also presumes that the process and measurement noise are 

Gaussian, which might not be the case in real-world 

scenarios. Modified Kalman Filters address these limitations 

by incorporating non-linearities into the state and 

measurement models. They use different methods to 

approximate the state distribution, allowing for more accurate 

state estimation in complex scenarios where the standard 

Kalman Filter might fail to provide a precise solution [23]. 

 

A modified Kalman filter, on the other hand, includes 

adjustments or extensions to the standard Kalman filter 

equations to handle better the specificities of the lane tracking 

problem, which may include non-linearities or non-Gaussian 

noise. Such modifications often aim to improve the accuracy 

of the lane tracking system, especially in challenging 

scenarios like curved roads or rapid lane changes, by better 

accounting for the vehicle's dynamics and the environment's 

unpredictability. These improvements might involve more 

sophisticated models for state transition or measurement 

noise or the inclusion of additional control inputs that 

influence the system's state. It starts by initializing various 

matrices and vectors that represent the system's state, such as 

the lane's position and orientation and the expected noise in 

the system. For each time step, it predicts the future state 

based on the current state and control inputs like acceleration. 

It then updates this prediction using new sensor 

measurements to correct the state estimate. The Kalman gain 

is calculated to minimize the estimation error. The updated 

state and covariance matrices are then used in the next time 

step, continually refining the vehicle's lane position and 

orientation estimates. This process helps determine if a 

vehicle is departing from its lane, enabling the system to alert 

the driver accordingly. 

 

Prediction Step: 

Predicted state estimate: 

 Predicted_State_Estimate 𝐱[𝑘 ∣ 𝑘 − 1] = 𝐅[𝑘]𝐱[𝑘 − 1] +
𝐁[𝑘]𝐮[𝑘]. (8)                                              

Methods 
Road 

Geometry 

Total 

Number of 

Frames 

Total 

Number of 

Detected 

Lanes 

Accuracy 

Rate 

 
 

[17] Spatial Ray 

Feature 

extractions 

Structured road 1000 889 88.9% 

[18] Hough 

transform Structured road 1000 897 89.7% 

Proposed Method 

(C & S lane 

Detector) 
Structured road 1000 941 94.1% 
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Predicted covariance estimate: 

 Predicted_Covariance_Estimate �̂�[𝑘 ∣ 𝑘 − 1] =
𝐅[𝑘]𝐏[𝑘 − 1]𝐅[𝑘]⊤ + 𝐐[𝑘].    (9)                                             

Update Step: 

Measurement matrix: 𝐇[𝑘] 

Measurement noise covariance: 𝐑[𝑘] 

Measurement update: 𝐳[𝑘] 

Kalman gain:  

𝐊[𝑘] = �̂�[𝑘 ∣ 𝑘 − 1]𝐇[𝑘]⊤(𝐇[𝑘]�̂�[𝑘 ∣ 𝑘 − 1]𝐇[𝑘]⊤ +

𝐑[𝑘])
−1

             (10) 

Updated state estimate:  

𝐱[𝑘 ∣ 𝑘] = �̂�[𝑘 ∣ 𝑘 − 1] + 𝐊[𝑘](𝐳[𝑘] − 𝐇[𝑘]�̂�[𝑘 ∣ 𝑘 − 1])                

(11) 

Updated covariance estimate:  

𝐏[𝑘 ∣ 𝑘] =
↓

(𝐼 − 𝐊[𝑘]𝐇[𝑘])�̂�[𝑘 ∣ 𝑘 − 1]                                                 
(12) 

In a lane departure system, mathematical equations are 

used in a modified Kalman filter algorithm for lane tracking. 

The state vector x[k] at each time step k contains the position 

of the vehicle in the lane and the orientation of the lane. The 

prediction step uses the state transition matrix F[k] and 

control input u[k] along with the control input model B[k] to 

project the current state into the next time step. The process 

noise covariance Q[k] takes into consideration any variability 

in the prediction process. The Kalman gain K[k] is computed 

during the update step with the help of measurement matrix 

H[k] and measurement noise covariance R[k].  

 

This gain determines how much the predictions should 

be corrected based on the new measurement’s z[k]. The state 

vector and covariance matrix are then updated to yield x[k|k] 

and P[k|k], which are better estimates of the position and 

orientation of the lane. This process goes on iteratively, and 

the vehicle’s position with respect to the lane is adjusted at 

each step. These steps are performed recursively as more 

measurements are taken, making it possible for the Kalman 

filter to predict and update the lane’s position and orientation 

in relation to the car while taking into account noise and 

uncertainty involved in the process and measurements. The 

modified Kalman filter provides a way to estimate the state 

of a system recursively (in this case, the vehicle's lane 

position and orientation) over time, taking into account both 

the uncertainty in the system dynamics (process noise) and 

the uncertainty in the measurements (measurement noise). 

This is particularly useful for lane tracking as it allows the 

system to filter out noise and inaccuracies in sensor data, 

providing a more reliable and accurate estimate of the 

vehicle's position relative to the lane. 

2.5. About Lane Departure Estimation 

In [24], the author proposed a reliable lane departure 

approach utilizing the distance of the vehicle from the lane 

by employing the PLSF algorithm. In the study described 

here, advanced computer vision methodologies are used to 

design a system that can identify lanes and avoid road 

accidents by providing lane departure alerts. This approach 

employs the Canny edge detection method to find the edges 

of the roadway and the median strip, while the Hough 

transform method provides better detection. The distance of 

the vehicle from the central divider is calculated using the 

lateral distance formula, which is the Euclidean distance. 

When this measurement is used together with the PLSF 

(Phase Line Segment Fitting) algorithm, it improves accuracy 

for various illumination conditions. 

 

The proposed model for the lane departure estimation 

includes the C&S Lane Detector and a Modified Kalman 

Filter to determine the lateral position of the vehicle with 

respect to the lane. The identification of lane lines and their 

coordinates is critical to determining the likelihood of lane 

departure. The assessment employs the Euclidean Distance 

(ED) to measure the transverse movement of the vehicle with 

reference to the lane markings. The ED between the midpoint 

of the vehicle's front axle is projected onto the Region of 

Interest (ROI). The midpoints of the detected lane lines are 

computed as follows: The ED between the midpoint of the 

vehicle's front axle projected onto the Region of Interest 

(ROI) and the midpoints of the detected lane lines is 

computed as follows: 

 

𝜆 = √(𝐻0
𝑥 − 𝑚𝑝1

𝑥)2 + (𝐻0
𝑦

− 𝑚𝑝1
𝑦

)
2

             (13) 

Where: 

𝝀 : Euclidean distance between midpoints. 

𝐻0
𝑥 , 𝐻0

𝑦
 : Horizontal and vertical coordinates of the vehicle's 

projected midpoint within the ROI for x and y. 

𝑚𝑝1
𝑥 , 𝑚𝑝1

𝑦
 : Horizontal and vertical coordinates of the 

midpoint of the identified lane line for x and y. 

To determine a potential lane departure, the EDs for both 

the left and right lane lines are monitored over time. A 

predefined threshold 𝜃 is established to gauge significant 

lateral shifts. If the ED to either lane line falls below 𝜃, a lane 

departure event is flagged: 

• Left Departure: 𝜆left < 𝜃 

• Right Departure: 𝜆right < 𝜃 

The thresholds can be dynamically adjusted based on 

vehicle speed, road conditions, or driver behavior to enhance 

the accuracy and sensitivity of departure detection. By 

incorporating threshold values along with the C&S Lane 

Detector and Modified Kalman Filter analysis, the system 

achieves a more nuanced detection of lane departure events, 

which is essential for the activation of safety mechanisms in 
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autonomous vehicles and Advanced Driver-Assistance 

systems (ADAS). 

 

2.6. Lane Departure Estimation of Enhanced Lane 

Departure Warning System (ELDWA) 

Algorithm: Enhanced Lane Departure Warning 

System (ELDWA)  

Input: Lane detection output (η) 

Output: Lane deviation angle and direction 

Procedure ELDWA(η): 

    1. Highlight the vehicle's travel path within the 

detected lane from η. 

    2. Perform C&S Lane Detector along with 

modified Kalman filter on η to obtain right (Pr) and 

left (Pl) lane boundaries. 

    3. Identify the lane's midpoint (ρ) using the 

positions of Pr and Pl. 

    4. Construct right triangles using the lane 

boundaries (Pr, Pl) and midpoint ρ. 

    5. Calculate angles ω (relative orientation to the 

right boundary) and θ (relative orientation to the left 

boundary) from the triangles. 

    6. Determine lane deviation direction: 

        a. If lane_deviation (ϕ > ω) and 

lane_deviationRange(ρ - Zr < ρ - Zl), then vehicle will 

deviation towards the left. 

        b. If lane_deviation (ϕ > ω) and 

lane_deviationRange (ρ - Zl < ρ - Zr), then vehicle 

will deviation towards the right. 

        c. If lane_deviation (ϕ > θ) and 

lane_deviationRange (ρ - Zr < ρ - Zl), then vehicle 

will deviation towards the left. 

        d. If lane_deviation (ϕ > θ) and 

lane_deviationRange (ρ - Zl < ρ - Zr), then the vehicle 

will deviation towards the right. 

        e. Else, the vehicle is within the lane trajectory. 

    7. Calculate the offset from ρ on the side of 

deviation. 

    8. Determine the departure angle indicative of 

deviation severity. 

End Procedure 

 

 
The Enhanced Lane Departure Warning System 

(ELDWA) utilizes advanced computational methods to 

ascertain lane departure. The core mathematical model 

involves the calculation of lane boundaries 𝑃𝑟 and 𝑃𝑙 using 

the C &𝑆 Lane Detector alongside a modified Kalman filter. 

The midpoint 𝜌 is calculated as the average position between 

𝑃𝑟 and 𝑃𝑙.  
 

Geometrically, right triangles are constructed using these 

points to derive angles 𝜔 and 𝜃, representing the vehicle's 

orientation to the lane boundaries. The decision to flag a 

deviation is based on comparing these angles to a critical 

angle 𝜙, with conditions such as 𝜙 > 𝜔 indicating deviation. 

Specifically, the algorithm evaluates if 𝜌 − 𝑍𝑟 < 𝜌 − 𝑍𝑙 for 

leftward deviation or the inverse for rightward. The offset 

from 𝜌 on the deviated side is calculated, leading to the 

determination of the departure angle, which quantifies the 

deviation's severity. This mathematical approach allows for 

precise and dynamic monitoring of lane discipline, 

significantly enhancing vehicular safety. 

 

The mathematical conditions in the Enhanced Lane 

Departure Warning System 

 

(ELDWA) algorithm is crucial for determining the 

vehicle's lane position and detecting deviations. These 

conditions involve comparing calculated angles ω and θ 

against a predefined threshold angle ϕ. The conditions for 

detecting a deviation are as follows: 

 
Table 4. Deviation conditions for lane detection 

Leftward 

Deviation: 

If ϕ > ω and the distance from the 

midpoint to the right boundary (ρ - Zr) 

is less than that to the left boundary ( ρ 

- Zl ), it indicates a leftward deviation. 

Rightward 

Deviation: 

Conversely, if ϕ > ω and ρ - Zl < ρ - 

Zr, a rightward deviation is indicated. 

The algorithm also considers θ 

similarly to ω for enhanced accuracy in 

detecting the direction of deviation. 

No Deviation: If none of the above conditions are 

met, the vehicle is considered to be 

moving within the lane trajectory. 

 

These mathematical evaluations enable the system to 

precisely identify when and in which direction the vehicle 

deviates from its lane, enhancing the safety features of 

autonomous and semi-autonomous vehicles. 

 

3. Results and Discussion 
There are many datasets available for lane detection. In 

most of the Benchmark datasets, they have provided images 

of road scenarios. Using images makes it difficult to calculate 

departure. As it requires videos that contain the left and right 

departure of the driving vehicle, in order to evaluate the 

performance, we are using the Custom dataset to evaluate the 

performance of the proposed model.  

 

The algorithm underwent testing on a custom dataset 

under three different scenarios. The outcomes include the 

identified lanes and their respective vehicle offsets. This 

custom dataset includes videos taken during the day, at night 

and under foggy conditions. 

 

Accuracy = Detected Correctly / Total Number of Frames.

  



S. D. Vidya Sagar & C. J. Prabhakar  / IJECE, 11(9), 22-35, 2024 

 

33 

Table 5. Daytime departure accuracy 

Conditions 

Total 

Number 

of 

Frames 

Detected 

Correctly 
Accuracy 

Total 

Frames 
8000 7665 95.81% 

Left 

Departure 
478 398 83.26% 

Right 

Departure 
554 470 84.83% 

 

Table 6. Night-time departure accuracy 

Conditions 

Total 

Number 

of 

Frames 

Detected 

Correctly 
Accuracy 

Total 

Frames 
1078 912 84.6% 

Left 

Departure 
200 130 65% 

Right 

Departure 
150 97 64.66% 

 
The algorithm will be tested on a custom dataset across 

three distinct scenarios: daytime, nighttime, and foggy 

conditions. This approach aims to evaluate the model's 

effectiveness in various driving environments. The 

evaluation metric used is accuracy, calculated as the ratio of 

correctly detected lanes to the total number of frames. 

 

Daytime Departure Accuracy (Table 5): This table 

shows the model's performance during the day across 

different conditions, including total frames, left departures, 

and right departures. Out of 8000 total frames, 7665 were 

correctly detected, resulting in an accuracy rate of 95.81%. 

For left departures, 398 out of 478 frames were accurately 

identified (83.26% accuracy), and for right departures, 470 

out of 554 frames were correctly detected (84.83% accuracy). 

 

Night-time Departure Accuracy (Table 6): This table 

presents the model's performance at night. The total number 

of frames was 1078, with 912 correctly detected, yielding an 

accuracy rate of 84.6%. The accuracy for left departures was 

lower, with 130 out of 200 frames detected correctly (65% 

accuracy), and for right departures, 97 out of 150 frames were 

accurately identified (64.66% accuracy). 

 

These tables collectively illustrate the proposed model's 

capability to detect lane departures under varying conditions 

accurately. It is evident that the model has a high degree of 

accuracy throughout the day but has a slightly lower 

performance at night due to the difficulties arising from poor 

visibility. The analysis of the performance, depending on the 

type of departure, gives insights into the model’s 

performance in different lighting conditions and reveals its 

weak points. This evaluation underscores the importance of 

comprehensive testing across various conditions to ensure the 

reliability and robustness of lane detection models. 

 

3.1. Limitations of the Proposed System 

1. Firstly, the system's reliance on high-quality image and 

video data may pose challenges in extremely adverse 

weather conditions or scenarios where visibility is 

severely compromised, such as heavy fog, torrential rain, 

or blizzard conditions. These situations can hinder the 

system's ability to accurately detect lane markings, 

potentially reducing its effectiveness. 

2. Additionally, the complexity and computational 

requirements of the proposed algorithms, including the 

Phase Stretch Transform for edge detection and the 

Modified Kalman Filter for lane tracking, may limit the 

system's real-time performance on less powerful 

hardware. Optimizing these algorithms for faster 

processing without sacrificing accuracy remains a 

crucial area for future research. 

3. Another limitation stems from the inherent variability in 

road conditions and markings. The system's performance 

in regions with poorly maintained roads, faded lane 

markings, or unconventional road layouts could be less 

reliable. Furthermore, the adaptation to different global 

road standards and conditions presents an additional 

layer of complexity that requires extensive validation 

and customization. 

 

4. Conclusion 
This research presents a comprehensive study on the 

development and evaluation of an Enhanced Lane Departure 

Warning System (ELDWS) using cutting-edge vision 

technology. The system, designed to improve road safety for 

ADAS-enabled vehicles, incorporates a novel approach 

utilizing Phase Stretch Transform for edge detection, Curved 

and Straight Lane Detector for precise lane detection, and a 

modified Kalman Filter for dynamic lane tracking. These 

integrated technologies collectively aim to improve vehicle 

safety through precise lane departure estimation. Our system 

was rigorously tested under various lighting and road 

conditions, including challenging weather scenarios and 

curved paths, demonstrating its superior performance and 

robustness compared to existing technologies. The evaluation 

conducted using a custom dataset and the BDD100K dataset, 

a general-purpose benchmark for lane detection, showcases 

the system's high accuracy rates: 95. The main goal of this 

paper is to identify the critical factors that affect the 

performance of SMEs in the context of their interactions with 

key suppliers. 81% in daytime conditions. These findings 
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support the viability of ELDWS when used in practice and its 

ability to operate in various environmental settings and road 

surfaces. The advancements introduced in this paper are 

useful for autonomous driving and establish a new safety 

benchmark by overcoming the flaws of current LDWS 

technologies. In this way, the proposed system can help to 

provide safe lane-keeping assistance in both full- and high-

level self-driving cars while considering factors like 

sensitivity to meteorological conditions and reliance on 

proper striping. Apart from this, this research reveals the 

possibilities of utilizing the various image processing 

algorithms and the application of machine learning in 

developing better driving assistance systems. Ultimately, the 

Enhanced Lane Departure Warning System marks a 

significant step towards achieving safer autonomous driving, 

offering a detailed and effective solution that enhances the 

accuracy and reliability of lane detection and departure 

warnings. As we move forward, the insights and 

methodologies developed through this research will 

undoubtedly play a crucial role in shaping the future of 

vehicle safety and driving assistance technologies.
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