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Abstract - The exponential rise in criminal activities necessitates advanced methods for suspect identification and surveillance. This research 

aims to tackle this issue through the development of a sophisticated video analytics system leveraging computer vision and deep learning. The 

primary objective is to accurately identify suspects based on body language patterns extracted from video inputs. We propose a CNN-LSTM 

based Body Language Rule System (BLRS) that integrates Convolutional Neural Networks (CNNs) for spatial feature extraction and Long 

Short-Term Memory (LSTM) networks for temporal sequence learning. The system processes video frames to identify key body language 

indicators such as gestures, postures, and facial expressions. Extensive evaluations using the UCF-Crime Dataset demonstrate the model's 

high accuracy, with a precision of 95.5%, recall of 95.7%, and overall accuracy of 95.3%. The results indicate that the BLRS significantly 

outperforms traditional human action recognition models, providing robust and reliable identification of suspicious activities. This research 

concludes that integrating CNN and LSTM networks within a unified framework enhances real-time surveillance capabilities. The proposed 

system holds substantial potential for improving public safety and security by enabling more effective monitoring and identification of suspects 

through advanced body language analysis. 

Keywords - Computer vision, Video analytics, Neural networks, Data analytics,  Deep learning.  

1. Introduction 
The rapid advancement of technology has brought about 

significant changes in how we approach security and 

surveillance. Traditional methods of monitoring human 

behaviour and activities have evolved from manual 

observation to highly sophisticated automated systems [1]. 

This evolution is particularly evident in the fields of computer 

vision and artificial intelligence, where the development of 

advanced algorithms has enabled more accurate and efficient 

analysis of visual data. Initially, surveillance systems relied 

heavily on manual monitoring, where human operators 

observed video feeds and identified suspicious activities[2]. 

This approach, while effective to some extent, was limited by 

human fatigue, subjective judgment, and the sheer volume of 

data that needed to be processed. As a result, semi-automated 

systems were introduced, which incorporated basic motion 

detection and alerting mechanisms to assist human operators. 

However, these systems still required significant human 

intervention and were prone to high false alarm rates[3]. 

 

The next level of development was the fully automated 

surveillance systems that were introduced into the market. 

These systems use image recognition technologies and 

artificial intelligence to process video feeds in real-time 

without the need for people’s intervention. These systems are 

capable of analyzing a large number of records within a short 

time and coming up with consistent results; this is important 

in areas such as public safety, border control and other critical 

infrastructure protection. Computer vision is a branch of 

artificial intelligence that is concerned with giving computers 

the ability to use sight. It comprises a number of objectives, 

including object detection, image categorization, and scene 

generation. Deep learning, especially Convolutional Neural 

Networks (CNNs)[4] and Long Short Term Memory (LSTM) 

networks[5], has changed the face of computer vision and has 

given the field powerful tools for feature learning and 

classification. 

 

CNNs are intended to learn spatial pyramids of features 

from input images automatically and flexibly. Some of the 

areas where they have displayed great competence include 

image recognition, which allows them to correctly categorize 

objects in an image. LSTMs, a form of Recurrent Neural 

Networks[6], are very effective at modeling the temporal 

characteristics of a sequence and, as such, are well suited for 

applications where there is a sequence of data, such as video 

analysis. Human Action Recognition (HAR)[7] is one of the 

important fields in computer vision that deals with the 
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recognition of human activities from videos. The uses of HAR 

are in video monitoring, interaction between humans and 

computers, sports, and health checks. However, the following 

is a challenge that HAR systems are likely to encounter, at 

least to some extent: changes in the environment, occlusion, 

changes in the camera angle, and, lastly, the natural variability 

in human actions. 

 

Body language analysis, a subset of HAR, specifically 

targets the non-verbal cues and movements of individuals to 

infer their intentions and actions. It involves studying 

gestures, postures, and facial expressions to understand a 

person's emotional state, intentions, and potential threat levels. 

Accurate body language analysis can significantly enhance the 

effectiveness of surveillance systems by providing additional 

context that is not captured through traditional motion 

detection methods. While deep learning models have greatly 

improved the accuracy of HAR, several challenges remain. 

One major challenge is the need for large, labeled datasets to 

train these models effectively. Collecting and annotating such 

datasets is both time-consuming and resource-intensive. 

Additionally, existing models may struggle with real-world 

scenarios where lighting conditions, background complexity, 

and subject occlusions vary significantly. 

 

Another critical gap is the integration of multiple 

modalities, such as combining visual data with other sensory 

inputs like audio or thermal imaging, to enhance the 

robustness of HAR systems. Current research also highlights 

the need for models that can generalize well across different 

environments and populations, reducing biases that may arise 

from training on limited datasets. In security applications, the 

ability to accurately analyze body language can be a game-

changer.  

 

Traditional surveillance systems often rely on facial 

recognition or simple motion detection, which may not 

provide sufficient information to identify suspicious activities. 

Body language analysis can add a deeper layer of 

understanding, allowing systems to detect subtle cues that 

indicate potential threats. For example, unusual postures, 

nervous movements, or aggressive gestures can be early 

indicators of criminal intent. 

 

Recent advancements in CNN and LSTM architectures 

have paved the way for more sophisticated body language 

analysis systems. CNNs can be used to extract spatial features 

from video frames, capturing details about body poses and 

movements. LSTMs can then analyze these features over time, 

identifying patterns that are indicative of specific actions or 

behaviors. The combination of CNNs and LSTMs in a unified 

framework, such as the proposed CNN-LSTM based Body 

Language Rule System (BLRS), offers a powerful approach to 

real-time suspect identification. 

 

 

1.1. Key Contributions 

This research paper offers significant advancements in 

automated surveillance and human action recognition through 

the analysis of body language using cutting-edge deep 

learning techniques. The primary contributions are as follows: 

1. Development of CNN-LSTM Based Body Language 

Rule System (BLRS): Introduction of a novel BLRS that 

combines CNNs for spatial feature extraction and LSTMs 

for temporal sequence learning, enabling the analysis and 

interpretation of body language from video inputs. This 

system identifies suspects based on body activity 

expressions, facial cues, and body pose estimations, 

providing a comprehensive tool for real-time 

surveillance.  

2. Enhanced Data Pre-processing Method: Presentation of 

an innovative data pre-processing technique that converts 

video inputs into high-quality image sequences, 

optimizing the input for deep learning analysis. This 

method includes novel approaches for handling varying 

window sizes and the application of a skip-gram model to 

improve feature extraction. 

3. Comprehensive Performance Evaluation: Extensive 

validation using multiple datasets, including the UCF-

Crime dataset, demonstrating superior performance in 

identifying suspicious activities compared to traditional 

methods. Performance metrics such as precision, recall, 

F1-score, and accuracy highlight the system's 

effectiveness. 

4. Implications for Future Research and Applications: The 

proposed BLRS framework can be integrated into 

existing security infrastructure, offering a scalable and 

efficient solution for enhancing public safety. The study 

lays the groundwork for future research on multimodal 

data integration and advanced deep learning applications 

in diverse surveillance contexts, paving the way for more 

robust and reliable automated surveillance systems. 

In summary, this research significantly advances 

automated surveillance technology by introducing a robust 

system for body language analysis, enhancing real-time 

suspect identification, and improving overall security 

measures in various applications. 

2. Literature Review 
HAR has been an active research field in the computer 

vision and AI domain and has witnessed substantial growth in 

methods and techniques in the last decade. The use of HAR, 

which is one of the active and popular fields in computer 

vision as well as artificial intelligence, has been evolving in 

terms of the techniques and their application in recent years. 

Starting in 2018, the research has been mainly directed 

towards fine-tuning the HAR systems with the help of Deep 

Learning techniques. 
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Among the recent works, [8] proposed an effective 

activity recognition method employing a lightweight CNN 

and DS-GRU network for surveillance videos. It established 

that the proposed method produced notably higher accurate 

results owing to deep feature extraction and sequence 

learning. Also, [9] presented a transferable two-stream 

convolutional neural network for HAR to capture both spatial 

and temporal features and use transfer learning for feature 

extraction. These methodologies reveal that, in recent years, 

there has been a shift in the field to enhance the performance 

of deep learning models in overcoming challenges that come 

with the use of traditional feature-based approaches. 

 

Despite these advancements, several gaps remain in the 

current literature. One of the primary challenges is the need 

for large, annotated datasets to train deep learning models 

effectively. Many existing studies rely on benchmark datasets 

such as UCF101 and Kinetics-400[10], which may not fully 

represent real-world scenarios with varying environmental 

conditions and occlusions. Furthermore, there is a need for 

more comprehensive evaluations that consider different 

lighting conditions, camera angles, and background 

complexities. 

 

Recent advancements have significantly addressed some 

of the limitations identified in earlier studies. The integration 

of multimodal data sources, such as combining visual data 

with audio or thermal imaging, has been a key breakthrough. 

For instance, [11] developed a framework that uses depth-

video sequences and weighted fusion of 2D and 3D 

autocorrelation gradient characteristics to improve classifier 

performance. This approach effectively enhances the 

robustness of HAR systems in varying environmental 

conditions. 

 

Another significant breakthrough is the development of 

hybrid models that combine different deep learning 

architectures. [12]  introduced a hybrid model that integrates 

CNNs with Grey Wolf Optimization (GWO) for action 

recognition, resulting in higher classification accuracy and 

reduced error rates. Additionally, the author proposed long-

term temporal convolutions for action recognition, which 

significantly improved the ability to capture long-range 

dependencies in video sequences. 

 

These advancements highlight the potential of deep 

learning to revolutionize HAR by providing more accurate and 

reliable systems. However, the complexity of these models 

often results in increased computational requirements, which 

can be a limitation for real-time applications. 

 

The areas of practical usage of HAR research are 

numerous and cover many fields, including security, 

healthcare, sports, and human-computer interaction. In the 

area of security, HAR systems are employed in real-time 

monitoring and identification of threats, thus boosting 

situational analysis and control. Nasir, Mahmood, A. S. M, & 

Shafique, K. (2020) applied HAR for pedestrian identification 

in real-time visual surveillance, and this is evidence of how 

HAR can be used to enhance public safety. 

 

In healthcare, HAR systems can monitor patient activities 

and detect abnormal behaviors, which is crucial for elderly 

care and rehabilitation. The study by [13]  on action 

recognition using depth-video sequences underscores the 

importance of accurate activity monitoring in clinical settings. 

Furthermore, in sports analysis, HAR systems can provide 

detailed insights into athletes' performance, enabling coaches 

to devise better training strategies. 

 

The implications of these applications are significant, as 

they can lead to improved safety, better healthcare outcomes, 

and enhanced athletic performance. However, the deployment 

of HAR systems in real-world settings also raises ethical and 

privacy concerns, which need to be addressed through 

appropriate regulatory frameworks. 

 

Despite the progress made, there are ongoing debates and 

controversies in the field of HAR. One major debate revolves 

around the ethical implications of surveillance technologies. 

While HAR systems can enhance security, they also raise 

concerns about privacy and the potential for misuse. 

Researchers like [14] argue for the need to balance security 

benefits with privacy protections, advocating for transparent 

and accountable use of surveillance technologies. 

 

Another problem is related to the bias of the HAR models. 

As many deep learning models are trained using datasets that 

may not include all persons of color, the outcomes are 

inherently bigoted. For example, [15] pointed out the 

prejudice of race and gender in action recognition systems and 

urged for larger and more diverse datasets. 

 

There are also differing perspectives on the best 

methodologies for HAR. While some researchers advocate for 

the use of deep learning models due to their high accuracy, 

others point out the challenges related to computational 

complexity and the need for large, annotated datasets. This 

debate underscores the importance of continued research and 

innovation to develop more efficient and scalable HAR 

systems. 

 

3. Development of CNN-LSTM Based Body 

Language Rule System (BLRS) 
In this section, we delineate the methodology employed 

in developing the CNN-LSTM based Body Language Rule 

System (BLRS). The proposed methodology is structured to 

leverage the strengths of both CNNs and LSTM networks to 

achieve robust and accurate body language analysis for real-

time surveillance applications. This section is organized into 

two primary subsections. 
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3.1. System Architecture  

This research introduces an innovative CNN-LSTM 

based Body Language Rule System (BLRS) specifically 

designed to analyze and interpret body language from video 

inputs. The architecture of the proposed system effectively 

integrates the spatial feature extraction capabilities of CNNs 

with the temporal sequence learning capabilities of LSTM 

networks, creating a robust framework for comprehensive 

human action recognition. To elucidate the processing 

capabilities of this architecture, we will consider a 

hypothetical sample video and explain the functionality of 

each layer within the BLRS. 

 

Fig. 1 Block diagram of the proposed CNN-LSTM based BLRS framework 

3.1.1. Convolutional Neural Networks (CNNs) for Spatial 

Feature Extraction 

Consider a sample video consisting of frames capturing a 

person walking, stopping abruptly, and exhibiting nervous 

gestures. The video is divided into individual frames, each 

representing a static image at a specific time point. 

 

Input Layer 

The video is fed into the system, which separates it into 

individual frames, {𝐼1, 𝐼2, … , 𝐼𝑇}, where 𝐼𝑡 represents the frame 

at time 𝑡. 
 

CNN Component 

Each frame 𝐼𝑡 is processed by CNN and is designed to 

extract high-level spatial features. The CNN comprises 

several convolutional layers, each applying a set of filters 𝐹 to 

detect local patterns. Mathematically, the convolution 

operation for a given filter 𝑓 on an input image 𝐼𝑡 can be 

expressed as: 

(𝐼𝑡 ∗ 𝑓)(𝑥, 𝑦) = ∑  𝑖 ∑  𝑗 𝐼𝑡(𝑥 + 𝑖, 𝑦 + 𝑗) ⋅ 𝑓(𝑖, 𝑗)          (1) 

Where (𝑥, 𝑦) are the spatial coordinates in the image, and 

(𝑖, 𝑗) are the filter dimensions. 

The output of the convolution operation is a feature map 𝐹𝑡, 
which captures spatial features such as edges, textures, and 

shapes: 

𝐹𝑡 = ReLU⁡(𝐼𝑡 ∗ 𝑓)                       (2) 

 

Where ReLU is the Rectified Linear Unit activation 

function that introduces non-linearity. 

Pooling Layers 

The feature maps 𝐹𝑡 are then passed through pooling 

layers, which reduce the spatial dimensions while retaining the 

most significant information. Typically, max pooling is used: 

𝑃𝑡(𝑥, 𝑦) = max
𝑖,𝑗

 𝐹𝑡(2𝑥 + 𝑖, 2𝑦 + 𝑗)       (3)  
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This results in a pooled feature map 𝑃𝑡, which is a 

condensed representation of the input image 𝐼𝑡. 

Feature Integration and Temporal Sequence Learning 

Feature Integration 

The pooled feature maps {𝑃1, 𝑃2, … , 𝑃𝑇} from all frames 

are compiled into a sequence that maintains the temporal order 

of the video frames. This sequence serves as the input to the 

LSTM network. 

 

LSTM Component 

The LSTM network processes the sequence of pooled 

feature maps to capture the temporal dependencies. Each 

LSTM cell contains an input gate, a forget gate, an output gate, 

and a cell state, which are mathematically defined as follows: 

 

Input Gate 𝑖𝑡 
𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑃𝑡] + 𝑏𝑖)            (4) 

Where 𝑊𝑖 and 𝑏𝑖 are the weights and biases for the input 

gate, ℎ𝑡−1 is the hidden state from the previous time step, 𝑃𝑡 
is the current pooled feature map, and 𝜎 is the sigmoid 

activation function. 

Forget Gate 𝑓𝑡 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑃𝑡] + 𝑏𝑓)             (5) 

Where 𝑊𝑓 and 𝑏𝑓 are the weights and biases for the forget 

gate. 

 

Cell State 𝐶𝑡 

    
𝐶̃𝑡 = tanh⁡(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑃𝑡] + 𝑏𝐶)

𝐶𝑡 = 𝑓𝑡 ⋅ 𝐶𝑡−1 + 𝑖𝑡 ⋅ 𝐶̃𝑡
               (6) 

Where 𝑊𝐶 and 𝑏𝐶  are the weights and biases for the cell 

state, and tanh is the hyperbolic tangent function. 

Output Layer 

The final hidden state ℎ𝑇 of the LSTM network is fed into 

a fully connected layer with a sigmoid activation function to 

produce a binary classification output: 𝑦 = 𝜎(𝑊𝑦 ⋅ ℎ𝑇 + 𝑏𝑦). 

where 𝑊𝑦 and 𝑏𝑦 are the weights and biases of the output 

layer. The output 𝑦 indicates whether the observed behavior 

matches predefined patterns of suspicious activity. A value 

close to 1 suggests a high likelihood of suspicious behavior, 

while a value close to 0 suggests normal behavior. The 

integration of CNN and LSTM networks within the BLRS 

architecture allows for a comprehensive analysis of body 

language by combining spatial and temporal feature 

extraction. This system is capable of recognizing static poses 

and understanding the progression and context of movements, 

thereby enhancing the accuracy of human action recognition 

in real-time surveillance applications. This detailed theoretical 

and mathematical explanation underscores the robustness and 

efficacy of the proposed BLRS framework in identifying 

suspicious activities based on body language analysis. 

 

Algorithm: CNN-LSTM Based Body Language Rule 

System (BLRS). 

Input: Video 𝑉 

Output: Binary classification output 𝑦 indicating suspicious 

activity 

Step 1: Frame Extraction: Divide the video 𝑉 into individual 

frames {𝐼1, 𝐼2, … , 𝐼𝑇}, where 𝐼𝑡 represents the frame at time 𝑡. 

Step 2: CNN Component: For each frame 𝐼𝑡 : Apply 

convolutional layers to extract high-level spatial features, 

resulting in feature maps⁡ 𝐹𝑡 : 

𝐹𝑡 = ReLU⁡(𝐼𝑡 ∗ 𝑓) 

where 𝑓 is the filter, and ReLU is the Rectified Linear Unit 

activation function. 

Step 3: Pooling Layers: For each feature map 𝐹𝑡 : Apply 

pooling layers to reduce spatial dimensions, resulting in 

pooled feature maps 𝑃𝑡 : 

𝑃𝑡(𝑥, 𝑦) = max
𝑖,𝑗

 𝐹𝑡(2𝑥 + 𝑖, 2𝑦 + 𝑗) 

Step 4: Feature Integration: Compile pooled feature maps 
{𝑃1, 𝑃2, … , 𝑃𝑇} into a sequence. 

Step 5: LSTM Component: 

• Initialize the LSTM network. 

• For each pooled feature map 𝑃𝑡 : 

• Compute the input gate 𝑖𝑡 : 𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑃𝑡] +
𝑏𝑖) 

• Compute the forget gate 𝑓𝑡 : 𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑃𝑡] +

𝑏𝑓) 

• Compute the cell state 𝐶̃𝑡 : 

𝐶̃𝑡 = tanh⁡(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑃𝑡] + 𝑏𝐶)

𝐶𝑡 = 𝑓𝑡 ⋅ 𝐶𝑡−1 + 𝑖𝑡 ⋅ 𝐶̃𝑡
 

• Compute the output gate 𝑜𝑡 : 𝑜𝑡 = 𝜎(𝑊𝑜 ⋅
[ℎ𝑡−1, 𝑃𝑡] + 𝑏𝑜) 

• Update the hidden state ℎ𝑡 : ℎ𝑡 = 𝑜𝑡 ⋅ tanh⁡(𝐶𝑡) 

Step 6: Output Layer: 

• Feed the final hidden state ℎ𝑇 into a fully connected 

layer with a sigmoid activation function to produce 

the binary classification output 𝑦 : 

𝑦 = 𝜎(𝑊𝑦 ⋅ ℎ𝑇 + 𝑏𝑦) 

Step 7: Output:  

• The output 𝑦 indicates whether the observed 

behavior matches predefined patterns of suspicious 

activity: 
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• If 𝑦 is close to 1, it suggests a high likelihood of 

suspicious behavior. 

• If 𝑦 is close to 0, it suggests normal behavior. 

 

3.2. Feature Extraction and Integration 

The BLRS framework is meticulously designed to 

identify suspects through a comprehensive analysis of body 

activity expressions, facial cues, and body pose estimations. 

During the feature extraction phase, the CNN extracts high-

level spatial features from the video frames, such as body 

postures, gestures, and facial expressions. These spatial 

features are then passed to the LSTM network, which captures 

the temporal dependencies and sequences inherent in body 

movements. The integration of CNN and LSTM networks 

within the BLRS framework ensures that the system can 

accurately interpret complex body language patterns 

indicative of suspicious behavior[16]. The CNN component 

excels in recognizing detailed spatial features, while the 

LSTM component effectively models the temporal dynamics 

of these features over time. This combined approach allows 

the system to understand not only static poses but also the 

progression and context of movements. By integrating these 

features into a unified model, the BLRS enables real-time 

surveillance applications, continuously monitoring video 

feeds to identify potential suspects based on their body 

language. This provides a robust tool for enhancing security 

and safety across various settings. The innovative 

combination of CNN and LSTM networks in the BLRS 

significantly improves the accuracy of body language 

interpretation while enabling effective real-time operation. 

This architecture represents a substantial advancement in the 

field of human action recognition, with the potential to 

transform how surveillance systems detect and respond to 

suspicious activities. 

 

3.3. Data Pre-processing Techniques 

This study introduces a modified data pre-processing 

method designed to convert video inputs into sequences of 

images optimized for deep learning analysis. The objective is 

to enhance the quality and relevance of extracted features, 

ensuring the CNN-LSTM model receives high-fidelity input 

data for accurate analysis. The data pre-processing pipeline 

involves several key steps, each underpinned by theoretical 

principles and mathematical models[17]. 

3.3.1. Frame Extraction 

Video 𝑉 is decomposed into individual frames 
{𝐼1, 𝐼2, … , 𝐼𝑇}, where 𝑇 represents the total number of frames. 

The frame extraction rate 𝑓𝑟 is selected to balance temporal 

resolution and computational efficiency, ensuring adequate 

temporal granularity[18]. 

 

3.3.2. Normalization 

Each frame 𝐼𝑡 is normalized to standardize pixel values. 

Let 𝐼𝑡(𝑥, 𝑦) be the pixel value at coordinates (𝑥, 𝑦). The 

normalized pixel value 𝐼𝑡
norm (𝑥, 𝑦) is given by: 

𝐼𝑡
norm (𝑥, 𝑦) =

𝐼𝑡(𝑥,𝑦)−𝜇

𝜎
                        (7) 

Where 𝜇 is the mean and 𝜎 is the standard deviation of 

pixel values in the frame 𝐼𝑡. 
 

Noise Reduction 

Frames undergo noise reduction to enhance feature clarity 

using Gaussian blurring or median filtering. For Gaussian 

blurring, the smoothed pixel value 𝐼𝑡
𝑠𝑚𝑜𝑜𝑡ℎ(𝑥, 𝑦) is calculated 

as: 

𝐼𝑡
smooth (𝑥, 𝑦) = ∑  𝑘

𝑖=−𝑘 ∑  
𝑗
𝑗=−𝑘 𝐼𝑡(𝑥 + 𝑖, 𝑦 + 𝑗) ⋅ 𝐺(𝑖, 𝑗)      (8) 

Where 𝐺(𝑖, 𝑗) is the Gaussian kernel. 

 

Data Augmentation 

To improve robustness, data augmentation applies 

transformations to frames, creating additional training 

samples. Let 𝒯 be a set of augmentation transformations (e.g., 

rotation, scaling). Each frame 𝐼𝑡 is transformed to 𝐼𝑡
′ by:  

𝐼𝑡
′ = 𝒯(𝐼𝑡)                                (9) 

 

Feature Scaling 

Feature scaling ensures that all features contribute 

equally to the learning process. The scaled pixel value 

𝐼𝑡
scale (𝑥, 𝑦) is computed as: 

𝐼𝑡
scale (𝑥, 𝑦) =

𝐼𝑡(𝑥,𝑦)−min(𝐼𝑡)

max(𝐼𝑡)−min(𝐼𝑡)
                            (10) 

3.4. Handling Varying Window Sizes 

A significant challenge in video data processing is 

managing sequences of varying lengths. The proposed pre-

processing technique addresses this issue through innovative 

approaches, adapting to different window sizes and enhancing 

feature extraction from sequential image data[19]. 

3.4.1. Fixed-Length Windowing 

The video data is segmented into fixed-length windows 

𝑊𝑖 of size 𝑛. Each window 𝑊𝑖 = {𝐼𝑖1, 𝐼𝑖2 , … , 𝐼𝑖𝑛} is a subset of 

frames, facilitating consistent input for the LSTM network. 

3.4.2. Dynamic Window Adjustment 

For sequences where fixed-length windowing is 

infeasible, dynamic window adjustment adapts window sizes 

based on content. Let 𝛿 be the window size, dynamically 

adjusted according to movement intensity: 𝛿 = 𝑓(𝑀), where 

𝑓 is a function mapping movement intensity to window size. 

3.4.3. Skip-Gram Model Application 

The skip-gram model enhances feature extraction by 

predicting surrounding frames in a sequence[20]. For a target 

frame 𝐼𝑡, the context frames 𝐼𝑡−𝑘, … , 𝐼𝑡+𝑘 (excluding 𝐼𝑡 ) are 

predicted using: 

max(
1

|𝐶|
∑  𝑐∈𝐶  log⁡ 𝑃(𝑐 ∣ 𝐼𝑡))                  (11) 
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Where 𝐶 is the context window and 𝑃(𝑐 ∣ 𝐼𝑡) is the 

probability of context frame 𝑐 given the target frame 𝐼𝑡. 
 

3.4.4. Padding and Truncation 

To manage sequences shorter or longer than the required 

input length, padding and truncation are applied. For shorter 

sequences, padding with zero frames 𝑃 = {0,0, … } ensures 

uniform length: 𝑊𝑖 = {𝐼𝑖1, 𝐼𝑖2, … , 𝐼𝑖𝑛 , 𝑃}⁡For longer sequences, 

truncation removes excess frames beyond the required length: 

𝑊𝑖 = {𝐼𝑖1, 𝐼𝑖2, … , 𝐼𝑖𝑛}. By implementing these innovative pre-

processing techniques[21], the study ensures that the CNN-

LSTM model receives high-quality, relevant input data. This 

approach enhances the model's ability to accurately interpret 

complex body language patterns, thereby improving its 

performance in real-time surveillance applications[22]. The 

meticulous handling of varying window sizes and the 

application of the skip-gram model for feature extraction 

significantly contribute to the robustness and adaptability of 

the BLRS framework. 

 

4. Result and Analysis  
For testing the proposed CNN-LSTM based Body 

Language Rule System (BLRS), the experimental setup was 

conducted on a high-end computing facility because of high 

computational complexity. The system configuration also 

involved a processor of Intel Xeon E5-2690 v4 with a clock 

frequency of 2. It features a 60GHz clock rate, 128 GB of 

DDR4 RAM, and an NVIDIA Tesla V100 GPU that has 32 

GB HBM2 memory. The operating system used for this 

project was Ubuntu 20. 04 LTS, and the deep learning 

framework used was TensorFlow 2. 5 with Keras 2. 4. 

 

To compare the suggested BLRS, the UCF-Crime Dataset 

[23] has been employed because this dataset contains various 

normal and suspect activities in surveillance conditions. It 

contains 1,900 untrimmed videos with a total duration of 128 

hours collected from 13 different camera views and 13 classes 

of anomalies, including fighting, robbery, shooting, and 

vandalism, besides normal activities. Every video is about 4 

minutes long and has a 320x240 pixel resolution with a frame 

rate of 30 frames per second. Each activity is categorized.  

The circumstances that the dataset presents, the various 

kinds of anomalies, the realism of the scenarios, and the 

detailed annotations are ideal for training and testing the 

proposed BLRS. Thus, the large number of videos and their 

duration make it possible to train deep learning models well, 

which allows models to learn intricate patterns and trends. The 

aspect of real surveillance footage used in the dataset 

improves the model’s transferability. Thus, the UCF-Crime 

Dataset is suitable for pushing the state-of-the-art in human 

action recognition and anomaly detection in surveillance 

systems. 

 
Fig. 2 Examples of different abnormalities from the training and testing videos in our dataset 

4.1. Hyperparameter Tuning 

The configuration of the network included a learning rate 

of 0. The network is trained with a learning rate of 0.001, a 

batch size of 64, and four convolutional layers with 64, 128, 

256 and 512 filters, respectively, with a 3x3 filter size to 

capture local spatial features at the locations of interest. A 

pooling layer of 2x2 was used to downsample the image and 

capture the important information. The authors utilized 256 
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LSTM units for the temporal feature learning of the pooled 

feature maps, with a dropout of 0. 5 to mitigate overfitting. 

The Adam optimizer was used as it has an adaptive learning 

rate and can handle sparse gradients, which leads to faster 

convergence. This detailed process of hyperparameter tuning 

ensured that the CNN-LSTM model would be in the best 

position to tackle the challenges involved in the analysis of 

body language for real-time surveillance systems while 

achieving high accuracy in the detection of suspicious 

movements [24]. 

 

4.2. Model Training and Evaluation 

The training process of the CNN-LSTM model involved 

multiple stages, starting with the extraction of spatial features 

from each video frame by the CNN component, which were 

then integrated into temporal sequences processed by the 

LSTM component. The model underwent training for 50 

epochs, resulting in a training accuracy of 96.8% and a 

validation accuracy of 95.1%, with corresponding training and 

validation losses of 0.084 and 0.112, respectively. These 

metrics demonstrate the model's robust performance and 

ability to generalize well to unseen data[25]. 

 

To further evaluate the model's performance, a confusion 

matrix was generated from the test set predictions. The matrix 

provides insight into the model's classification accuracy for 

each activity class. Additionally, a heatmap visualization of 

the confusion matrix was created to highlight the model's 

performance visually. 

 
Fig. 3 Confusion matrix heatmap 

Figure 3 visualizes the performance of the CNN-LSTM 

model in classifying normal and suspicious activities. The 

matrix consists of four cells where the rows represent actual 

classes (Normal and Suspicious), and the columns represent 

predicted classes (Normal and Suspicious). The top-left cell 

(950) denotes true negatives, indicating correctly predicted 

normal activities, while the top-right cell (50) represents false 

positives, indicating normal activities incorrectly predicted as 

suspicious. The bottom-left cell (45) shows false negatives, 

indicating suspicious activities incorrectly predicted as 

normal, and the bottom-right cell (955) denotes true positives, 

indicating correctly predicted suspicious activities. The high 

values in the true negative and true positive cells, coupled with 

relatively low values in the false positive and false negative 

cells, demonstrate the model's robust performance in 

accurately classifying activities with high precision and recall. 

 

4.3. Performance Metrics Analysis 

The suggested Body Language Rule System (BLRS), 

which is built on CNN-LSTM, was rigorously assessed 

depending on the standard classification measurements: 

precision, recall, F1-score, and accuracy. Table 1 presents an 

outstanding outcome with a precision of 95. 5%, suggesting it 

has a high ability to correctly predict positive cases and reduce 

the number of false positives. A recall of 95. 7%, which is an 

indication of the model’s ability to predict most of the true 

positive cases, thereby ensuring that nearly all the suspicious 

activity is detected. The F1-score, which is a function of 

precision and recall and is defined as the harmonic mean of 

the two, is at 95. 6%, this shows that the model has achieved 

a good balance between precision and recall since both are 

high. Last but not least, the model gave an overall accuracy of 

95. 3%, thus indicating the model’s efficiency in 

differentiating between normal and suspicious behavior with 

little to no error. All these metrics, therefore, provide evidence 

of the efficacy of the proposed CNN-LSTM model for real-

time surveillance application through efficient identification 

of abnormal behavior while at the same time limiting the 

generation of false alarms. 

Table 1. Performance Metrics of the CNN-LSTM based BLRS 

Model Metric Value (%) 

CNN-LSTM based BLRS 

Precision 95.5 

Recall 95.7 

F1-Score 95.6 

Accuracy 95.3 

 

 
Fig. 4 Performance metrics of the CNN-LSTM based BLRS 
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Table 2. Accuracy of various human action recognition models 

Model Accuracy (%) 

SVM [26] 85.4 

Random Forest [27] 88.2 

KNN[28] 82.6 

Basic CNN[29] 90.3 

CNN-LSTM (BLRS) 95.3 
 

Figure 4, the performance metrics of the proposed CNN-

LSTM based BLRS, clearly illustrates the high level of 

accuracy and balanced performance across all evaluated 

metrics. Precision is shown at 95.5%, reflecting the model's 

capability to correctly identify a high number of true positive 

instances with minimal false positives. Recall, depicted at 

95.7%, indicates the model's efficiency in capturing nearly all 

actual positive instances, ensuring comprehensive detection of 

suspicious activities. The F1-score, at 95.6%, demonstrates 

the model's balanced approach in maintaining both high 

precision and recall, effectively managing the trade-off 

between these two metrics. Finally, the accuracy of 95.3% 

confirms the model's overall reliability and effectiveness in 

correctly classifying both normal and suspicious activities. 

The consistently high values across all metrics highlight the 

robustness and reliability of the proposed CNN-LSTM model, 

making it highly suitable for real-time surveillance 

applications where accurate and dependable detection of 

suspicious activities is paramount. These metrics collectively 

validate the effectiveness of the proposed CNN-LSTM model 

for real-time surveillance applications, ensuring accurate and 

reliable detection of suspicious activities while minimizing 

false alarms. 
 

4.4. Comparative Analysis 

The performance of the proposed CNN-LSTM based 

Body Language Rule System (BLRS) was systematically 

compared with traditional human action recognition models, 

including SVM, RF, KNN, and a basic CNN model. The 

comparison focused on evaluating the accuracy and 

robustness of each model in identifying suspicious activities. 

The results presented in the table below indicate that the 

proposed BLRS significantly outperformed the traditional 

models across these metrics.The proposed CNN-LSTM based 

BLRS provided an accuracy of 95 percent. The proposed 

model achieved an F1-score of 3%, which is relatively better 

than the other models. It was observed that the SVM model’s 

accuracy was 85. For the LGB model, the accuracy was 84%, 

while for the Random Forest model, it was 88. 2%. The KNN 

model was the least effective, with an accuracy of 82. 6%. The 

baseline model that utilized CNN outperformed the other 

machine learning models with an average accuracy of 90. 3%. 

Thus, the presented results evidence the potential of the BLRS 

to capture the spatial and temporal patterns for enhanced 

identification of suspicious behavior. 
 

4.5. Findings and Limitations 

The proposed CNN-LSTM based BLRS demonstrated 

high accuracy and robustness in real-time human action 

recognition, making it well-suited for surveillance 

applications. The integration of spatial features extracted by 

the CNN and temporal dependencies captured by the LSTM 

allowed for a comprehensive analysis of body language, 

significantly enhancing the identification of suspicious 

activities. This dual approach enabled the model to capture 

intricate patterns and sequences in human behavior that 

traditional models might miss. 

 

However, there are areas for potential improvement. The 

model's performance could be further enhanced by 

incorporating additional data sources, such as audio and 

thermal imaging, which could provide complementary 

information and improve detection accuracy under various 

conditions. Additionally, the computational complexity of the 

CNN-LSTM model necessitates the use of high-performance 

hardware, which may limit its feasibility for deployment in 

resource-constrained environments. Addressing these 

limitations will be crucial for broader application and 

scalability. 

 

In conclusion, while the proposed CNN-LSTM based 

BLRS has shown promising results in terms of accuracy and 

robustness, future work should focus on enhancing its 

adaptability to different data sources and optimizing its 

computational efficiency. This will ensure that the model 

remains effective and practical for diverse and dynamic real-

world surveillance scenarios. 
 

5. Conclusion 
The study presents a significant advancement in 

automated surveillance technology through the development 

of a robust CNN-LSTM based Body Language Rule System 

(BLRS). By integrating CNNs for spatial feature extraction 

with LSTM networks for temporal sequence learning, the 

proposed system effectively analyzes body language from 

video inputs to identify suspicious activities. The 

experimental results, validated using the UCF-Crime dataset, 

demonstrate that the BLRS achieves high precision, recall, F1-

score, and accuracy, significantly outperforming traditional 

human action recognition models. The comprehensive 

evaluation underscores the system's robustness and 

effectiveness in real-time surveillance applications, offering a 

powerful tool for enhancing public safety and security 

measures. Despite its demonstrated success, the BLRS does 

face challenges related to computational complexity and 

resource requirements, necessitating further optimization for 

practical deployment in resource-constrained environments. 

Future research should focus on integrating additional sensory 

inputs such as audio and thermal imaging, optimizing 

computational efficiency for real-time applications, and 

enhancing the system's adaptability to diverse environmental 

conditions. Expanding and diversifying datasets will improve 

generalization and reduce biases. Addressing ethical and 

privacy considerations will ensure the responsible deployment 

of surveillance technologies. 
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