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Abstract - Utilization of the Brain-Computer Interfaces (BCI) is done via Electroencephalogram (EEG) signals that 

provide several environmental interactions among individuals having restricted movements owing to neurodegenerative 

diseases or strokes. However, the BCI system was based on Motor Imagery (MI). It was not used for any form of real-life 

application owing to a decrease in the performance of various Common Spatial Pattern (CSP) algorithms, especially while 

the actual number of channels was high. A multi-channel structure of such EEG signals can increase cost and bring down 

speed. Due to this, a reduction in the system cost by the detection of active electrodes during the process can increase 

accessibility. This way, optimization techniques in choosing electrodes can be used to determine other effective channels by 

employing a method of random selection. For this work, a Stochastic Diffusion Search (SDS) algorithm based on herd 

optimization techniques was used with four different classifiers, which were the AdaBoost, the Classification and 

Regression Tree (CART), the Naive Bayes (NB) as well as the K-Nearest Neighbor (KNN). The channels that were chosen 

frequently were determined to improve the system performance with regard to accuracy and speed. The results proved that 

the approach proposed was successful in bringing down the channel number and run time without affecting the accuracy of 

classification. 

Keywords - Channel selection, Common Spatial Pattern (CSP), Stochastic Diffusion Search (SDS), Naive Bayes (NB), 

Classification and Regression Tree (CART), K-Nearest Neighbor (KNN), Adaboost. 

1. Introduction 
BCI establishes a communication pathway, enabling 

direct interaction between the brain and various external 

devices. This is quite distinct from the conventional 

communication channels, which are dependent on 

neuromuscular pathways in the peripheral muscles and 

nerves. Electroencephalogram (EEG)-based BCIs use 

neural activities like visual evoked potentials, auditory 

evoked potentials, the ERD/ERS,  visual attention, and the 

event-related potentials [1]. 

Motor Imagery (MI)-based BCI relies on imagining 

movement in lieu of physically executing it to send control 

commands to external devices connected to the BCI. 

Unlike in the case of the BCI, the neurofeedback will use 

visual and, in certain cases, auditory feedback that enables 

participants to ensure self-regulation, especially for the 

neural substrate systems. Further, there was an 

improvement in motorways or pathways among post-

stroke subjects. MI-based neurofeedback training was 

useful in amending motor function among healthy [2]. 

Among these brain signals, the EEG signal was quite 

commonly used in the BCI systems due to its portableness, 

low cost, non-invasiveness, and higher temporal resolution. 

Even though several EEG channels provide better 

information on neural activity, redundancy is increased 

owing to noise, thus resulting in high-dimensional data. 

Aside from these above-mentioned reasons, the BCI 

implementation and feasibility, the BCI cost reduction, and 

the BCI performance improvement are the major reasons 

for the minimization of the actual number of EEG signal 

channels. Channel selection is the term used for this 

process.  

The extraction of information from these recorded 

EEG signals was carried out to identify certain patterns of 

activation that have a major role to play in BCI-based 

research. A system of the BCI that can be successful will 

have two requirements that are an efficient set of EEG 

features that can differentiate any form of the task-induced 

brain. As both frequency and time information of the EEG 

is very important, a multi-resolution-based wavelet 

transform can be well-suited in analyzing the EEG 

compared to a frequency-based Fourier domain. Several 

studies have been incorporated using the extraction of 

wavelet transform-based features for BCI applications. 

One more very popular method of feature extraction 

employed among MI applications includes the Common 

Spatial Patterns (CSP). The CSP constructs some more 

additive sub-windows that have maximum difference 

invariance. Such extracted features include a time-domain 
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signal’s statistical traits to reduce computational 

complexity [3]. Classification techniques and their 

application to statistical features are useful in the 

determination of a BCI-based EEG activation pattern. 

Therefore, an evaluation of the various ML tools has been 

done to identify the best and optimum solution for MI task 

recognition. There has been a remarkable improvement 

that was observed among conventional algorithms of 

classification like the Artificial Neural Network (ANN), 

the Linear Discriminant Analysis (LDA), the Support 

Vector Machine (SVM), the Bayesian classifier, the K-

Nearest Neighbor (KNN) as well as the Quadratic 

Discriminant Analysis (QDA).  

Studies have identified a set of relevant EEG channels 

that an earlier neural correlate had determined. However, a 

more discriminative set of EEG channels was later found, 

showing inconsistencies with the preselected channels. The 

selection of EEG channels is a major challenge in BCI 

research. Such conflicts were looked at as a form of 

multiobjective optimization problems wherein there was 

more than a single solution to meet the criteria. At times, 

certain solutions satisfy a single criterion without rendering 

the other one worse. There may not be one single dominant 

solution for this, and in place of this, there can be multiple 

solutions that are Pareto dominant. These multiobjective 

problems were addressed by making use of evolutionary 

algorithms that were explored for a paradigm of EEG 

channel selection. Another Genetic Algorithm (GA) based 

evolutionary approach to choose discriminative channels. 

However, the GA will need to carefully consider 

parameters that can affect the accuracy of classification. 

The PSO is yet another popular nature-inspired algorithm 

used in BCI channel selection [4]. In this work, the 

Stochastic Diffusion Search (SDS) algorithm is chosen for 

its efficiency, robustness, scalability, and capability to 

handle complex multi-objective optimization problems. 

These characteristics make it suitable for EEG channel 

selection in BCIs, where optimal solutions need to be 

found within a noisy and high-dimensional environment. 

The focus of this work is channel selection using the 

SDS for the EEG, which is based on the BCI system. There 

are trade-off coefficients that must undergo adjustments to 

pick the optimal channel set, which is not feasible for real-

time online BCI. The remainder of this investigation has 

been structured as follows: Section 2 will detail the related 

literary works. Section 3 will elaborate on the methods 

employed. Section 4 will describe the experimental 

outcomes, while Section 5 will offer the conclusion. 

2. Related Works 
Antoniou et al. [5] presented another novel system 

with BCI utilization for the capture of every EEG signal 

during the human subjects’ eye movement that can be 

classified into six different categories by the application of 

a Random Forest (RF). The RF refers to an ensemble 

method of learning constructing a decision tree series 

wherein every tree gives a class prediction. The definition 

of the proposed RF-BCI classes was given in accordance 

with the subject’s position of the eyes: open, closed, down, 

up, left, and right. This approach’s key goal was to utilize 

an EEG-based control system for operating an 

electromechanical wheelchair. A dataset with 219 records 

from a total of 10 patients was employed for testing this 

approach. This system was compared to the NB, the K-

NN, the Bayes Network, the SVM, the Decision Tree, the 

Multi-Layer Perceptron (MLP), and the J48-C4.5. The 

results of the experiment proved that the RF algorithm 

could outperform this in comparison with other approaches 

that have higher accuracy (85.39%) for its 6-class 

classification.  

 

Li et al. [6] presented the Fisher Linear Discriminant 

Analysis classification algorithm with the incorporation of 

the Naïve Bayes (B-FLDA) for ERP-BCI in order to 

perform a concurrent recognition of the targets for the 

working state as well as the idle state. This approach 

employed a visual-evoked potential’s spectral traits 

together with the ERP’s time-domain traits for detection of 

the brain states as well as the target stimulus to acquire the 

results of the discrimination with probability fusion 

utilization. The accuracy of the information transfer rates 

will rise to 98.61% and 62.80 bits/min under 10 

repetitions, as well as for one repetition. The receiver 

operator characteristic curve would involve three different 

parameters having better performance.  

 

Sharma et al. [7] provided a more comprehensive 

comparison between the traditional methods of 

classification and also suggested the significance of deep 

learning-based techniques, particularly for MLP. To 

summarize this, the EEG signals in a task of motor 

imagery, the SVM, show a short training time with 

prediction speed having good accuracy. There was the 

classification of a subject-independent generalized MLP 

model in the form of signals with an accuracy of 90% 

within half the time required for the other conventional 

ML-based models’ classification. The outcome suggested 

that the chances of better accuracy with a robust as well as 

generalized BCI (which, in turn, was independent of the 

subject) were available in the case of the model’s 

integration with a sophisticated optimization.   

 

Shahlaei et al. [8] presented the Hilbert Transform 

(HT) that was used to detect the ERPs along with ML 

classifiers to implement the classification of the left MI 

task as well as the right MI task. The following two 

distinct steps constituted the proposed method: the first 

was a sensorimotor frequency band (8-30 Hz) that was 

associated with the MI activities and had undergone signal 

extraction. From the HT, extremely critical features such as 

ERPs and Band Power (BP) were extracted. Additionally, 

other key features were acquired prior to being fed into ML 

classifiers, such as the Linear Discriminant Analysis 

(LDA), the NB, and the SVM. The BCI-competition 2008 

Graz dataset (II-b) was used for the testing of the proposed 

method. The outcomes proved that HT’s extracted features 

showed better performance (with values of % CA=82.22%, 

K=0.63, as well as Auc =0.81) compared to other methods. 

This demonstrates that the approach can enhance BCI.  
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Rajashekhar et al. [9] presented a two-class motor 

imagery electroencephalogram signal with several 

automated ML algorithms. In this, data had been 

decomposed into frequency bands that were identified 

using the wavelet transform spanning between the range of 

0 and 30 Hz. The statistical measures were applied to such 

frequency bands to train classifiers. Also, the assessment 

of parameters such as entropy, mean, SD, and SNR was 

computed to analyze the proposed work and its 

performance. It was evident from experimental results that 

the proposed technique had better classifier accuracy when 

compared to other more technologically advanced 

techniques. 

 

Zhang and Wei [10] proposed the binary quantum-

behaved Particle Swarm Optimization (PSO), which was 

yet another novel evolutionary search algorithm. This was 

employed for channel selection, using a wrapping manner 

coupled with the CSP (for feature extraction) as well as the 

SVM (for classification purposes). This algorithm’s fitness 

function was defined in the form of a weighted sum, which 

constituted a classification error rate and a relative channel 

set. Evaluation of a binary quantum-behaved PSO-based 

CSP’s classification performance was done on the basis of 

an electroencephalograph dataset together with an 

Electrocorticography dataset. Later, it was compared with 

three other distinct types of CSP methods by making use of 

channels chosen by the binary PSO, the channels in a raw 

dataset with manually chosen channels.  

 

The results proved that the proposed binary quantum-

behaved PSO-based CSP method was able to outperform 

three other CSP methods and bring about a decrease in the 

rate of error as well as the channels in comparison to the 

CSP method with channels for raw datasets. The method 

improved the practicability of motor imagery-based BCI 

systems. 
 

Zhang et al. [11] presented the quantum PSO to ensure 

a frequency band’s sole selection through the selection of a 

frequency band as well as a time segment, which was 

realized via the utilization of a wrapping technique that had 

duly incorporated the CSP to extract features within the 

classification model. The rate of error classification was 

used in the form of a fitness function for the quantum PSO. 

Evaluation of the classification performance of the 

quantum PSO-based CSP algorithm, which was used for a 

joint selection of the time segment as well as the frequency 

band, was done by making a comparison with three CSP 

algorithms.  
 

The PSO and the quantum-behaved PSO are used for 

frequency selection. Two MI datasets that had several trials 

and channels were used for evaluation. The outcomes 

proved the algorithm’s superiority over others in terms of 

their classification error rates. For the proposed algorithm, 

the averaged error rate was 7.45%, 2.97%, and 2.05% 

lower than the CSP with a fixed time segment and 

frequency band with the chosen frequency bands by the 

PSO and the chosen bands by the quantum PSO. The 

algorithm could facilitate all real-world BCI applications. 

Abenna et al. [12] put forward a novel method for 

quality improvement of the classification of the EEG 

motor imagery by means of the utilization of the BCI 

competition IV 2a, 2b, as well as the PhysioNet EEG-MI 

datasets. The study used a bandpass filter for the removal 

of unused signals so as to improve prediction accuracy 

from 50% to over 96% for both binary and multi-class 

scenarios. This was done with the knowledge that the 

application of the PSO optimizer to the LightGBM 

classifier parameters would allow for stability in the status 

of the classification of the EEG signals. The DT algorithm 

(DT) had permitted the degree of importance of the 

acquisition electrodes that are used in the stage of 

classification. Also, the study utilized a correlation matrix 

to determine the artifacts between various electrodes, such 

that there was an increase in the prediction accuracy with a 

higher prediction speed that would continuously stay above 

63703 and 2395 samples for each second. A comparison 

was made, and the maximum accuracy value was found to 

be 85.5%. 

In summary, various algorithms, including Random 

Forest, GAs, and PSO, have shown effectiveness in EEG 

signal classification and BCI applications, each 

demonstrating strengths in specific areas like accuracy, 

speed, or multi-class classification. The challenges remain 

in developing generalized models that balance accuracy, 

computational efficiency, and real-time processing. 

However, the SDS is used in this work for its efficiency in 

handling complex search spaces and ability to effectively 

manage multi-objective optimization problems, making it a 

suitable choice for EEG channel selection in BCIs. 

3. Methodology 
The BCI IVa is the dataset employed in this section. 

Common Spatial Patterns (CSP) [13] technique is used for 

feature extraction from the EEG data. CSP will 

discriminate the EEG signals by decomposing them into 

various spatial patterns to enhance the distinctions between 

classes. The primary purpose of applying the CSP was to 

maximize the variance for one class of EEG signals while 

minimizing it for the others. The section includes a 

discussion of such classification with the NB, CART, 

AdaBoost, and KNN. 

3.1. Channel Selection Using SDS 

However, the method employed for performance 

improvement of the EEG-based BCIs will utilize suitable 

channels. This is owing to the fact that both redundant and 

noisy channels will be removed, and their computation 

complexity will be reduced. Using large numbers of 

channels may not always be practical since it may require a 

long time to be set up. There was a method for identifying 

any subject-specific and optimal channels that are crucial 

to the application of the BCI and its performance, as there 

may be suitable channels that are different from each other 

[14]. The main challenge in the selection of an EEG 

channel can be feature selection. The methods involved in 

channel selection have been characterized primarily as 

either filter or wrapper. In contrast, the methods of feature 
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selection based on less intensive features for computation 

that do not select an optimal subset feature are also 

included. Another EEG-specific approach that makes use 

of CSP coefficients has been used. The protocol serves 

efficiently while differentiating two areas that measure the 

EEG in the BCI. The selection of a channel using the CSP 

coefficients will not select any optimal subsets with 

suitable channels. This is because the CSP is very sensitive 

to the outliers, while the EEG signals are very noisy due to 

the artifacts.  
 

This work aimed to assess several other techniques, 

such as the CSP and specify SDS usage. This will indicate 

a population-based algorithm with the implementation of 

direct communication patterns that were attributed 

originally to the Bishop in the year 1989. This was in the 

form of a population-based matching algorithm using 

direct patterns of communication in search space 

evaluation [15]. 
 

In the SDS, the population of the agent will have a 

‘hypothesis’ about the possible solutions; this hypothesis 

will be evaluated to give proper feedback that will ensure 

convergence on promising solutions. With the SDS’s 

utilization, the agents’ communication with their partial 

evaluation of the hypothesis will play a key role in the 

performance as well as the emergence of intelligence. 

Below is the description of the SDS’s three different 

phases in Algorithm 1:  

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖 𝑠𝑖𝑛 𝑔  𝑎𝑔𝑒𝑛𝑡𝑠 () 
𝑊ℎ𝑖𝑙𝑒 (𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑚𝑒𝑡) 
𝑇𝑒𝑠𝑡𝑖𝑛𝑔 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑒𝑠 () 
𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑒𝑠 () 
𝐸𝑛𝑑 

The initialization phase takes place when every agent 

will pick from the search space a random selection of 

hypotheses (i.e., the index of the element for a dataset or 

the instance number). Later, these points were utilized to 

take the lead in the SDS population’s search procedure. 

Upon completion of the initialization, each agent will be 

provided with a random hypothesis within the search space 

as well as in the test space, wherein there is an objective 

function-based evaluation of the hypothesis of each agent. 

In case there is a successful hypothesis evaluation, the 

agent will be set as active. Otherwise, it will get set as 

inactive. Hence, each agent will adopt either one of the two 

Boolean possible outcomes at the end of the test phase. In 

the diffusion phase, all hypothesis information will be 

exchanged. Here, a passive strategy for recruitment will be 

used wherein every inactive agent will randomly pick one 

more agent. In case of this agent being active, there will be 

diffusion of this agent’s hypothesis, and then, a hypothesis 

will be chosen by the inactive agent from the search space. 

3.2. Naïve Bayes (NB) Classifier 

The NB classifier refers to a very simple and effective 

technique used in a classifier algorithm [16]. The Bayes 

theorem further permits one to compute a posteriori 

probability (which is the probability for a hypothesis 

taking into consideration the value of the variable). It is on 

the basis of a priori probability (a hypothesis’s frequency) 

of the detected data as well as the total data in accordance 

with (1): 

𝑃(𝑣𝑗/𝐴) =
𝑃(𝐴/𝑣𝑗)×𝑃(𝑣𝑗)

𝑃(𝐴)
  (1) 

Wherein: 𝑣𝑗will indicate the hypothesis,j = 1, 2, 3, for 

a hypothesis set V, while A will indicate a feature set <
𝑥1, 𝑥2, . . . . , 𝑥𝑛 > that will describe the data.   

When A is composed of more than a single attribute, it 

becomes important to evaluate 𝑃 = (𝑥1, 𝑥2, . . . , 𝑥𝑛|𝑣𝑗) for 

calculation 𝑃 = (𝑣𝑗|𝑥1, 𝑥2, . . . , 𝑥𝑛). This estimate P (A | vj) 

will be expensive computationally if the samples are large. 

It may be possible to get a good performance classification 

if the attributes are not independent in (2). 

𝑃 = (𝑥1, 𝑥2, . . . . , 𝑥𝑛|𝑣𝑗) = ∏ 𝑃(𝑥𝑖/𝑣𝑖)𝑖  (2) 

For this, the classifier output has been given by 

(3):  

𝑣𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑣𝑗∈𝑉

{𝑃(𝑣𝑗) × ∏ 𝑃(𝑥𝑖/𝑣𝑖)𝑖 } (3) 

Wherein,𝑣𝑀𝐴𝑃will indicate the maximum a posteriori 

probability that is evaluated inside the space of hypothesis, 

V. 

3.3. K-Nearest Neighbors (KNN) Classifier 

The K-NN algorithm can be well-suited for classifying 

the EEG data as it has been proven to be a technique that is 

quite robust for dealing with huge and noisy data [17]. All 

the data samples would have undergone classification by 

means of the majority vote in the neighbor’s class. To 

determine such a class, the algorithm will need training 

data with a predefined k value until it searches the sample 

space to obtain the k-most similar samples on the basis of a 

similarity measure as well as a distance function. The k 

value and the distance metric impact the outcomes of the 

classification. Euclidean distance refers to a measure of 

finding distance existing between two distinct points. For 

Cartesian coordinates, if x and y refer to the two distinct 

points, the Pythagoras theorem will be used for the 

definition of the distance (d) either from x to y or from y to 

x as per (4):  

𝑑(𝑥, 𝑦) = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑘
𝑖=1   (4) 

 

 

 

 

 

 

 

Fig. 1 The K-NN algorithm’s classification through utilization of the 

Euclidean distance and k=9 
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Figure 1 further illustrates the K-NN algorithms while 

applying the distance metric to determine the new data’s 

suitable class along with k = 9. There is a classification of 

the data at point (0.6, 0.45), and this is depicted as an “X” 

mark. A big circle, as well as a dotted line, will represent a 

distance metric that makes use of the computation of 

Euclidean distance. This includes two different classes 

representing the circle class that has six instances, with a 

triangle class having three instances. This algorithm further 

classifies the “X” mark to a new circle class due to the 

circle class having most of the data within the radius. 

3.4. Classification and Regression Tree (CART) 

Here, the CART makes use of the Gini Index to 

engender binary classification trees that make decisions 

[18]. Firstly, dataset adulteration is assessed. D will refer 

to the probability, Pn, which is evaluated by |cl, D| / |D| as 

per Equation (5). In this, the sum over C classes is 

computed for every instance of 𝑥𝑛 ∈ 𝐷 class cl. 

𝐺𝑖𝑛𝑖(𝐷) = 1 − ∑ 𝑃𝑛
2𝑁

𝑛=1                (5) 

The dataset is split, and D will take into account a 

binary split with a weighted sum of about 305 

adulterations, which will result in the sub-data. As an 

example, a split of the dataset, D, as D1as well as D2 with 

computation of the D’s Gini Index in accordance with the 

below Equation (6): 

𝐺𝑖𝑛𝑖𝐴(𝐷) =
|𝐷1|

|𝐷|
𝐺𝑖𝑛𝑖(𝐷1) +

|𝐷2|

|𝐷|
𝐺𝑖𝑛𝑖(𝐷2)               (6) 

For every attribute, Af will take into consideration that 

sub-data and this is nominated as a splitting attribute to 

ameliorate reduction impurities in the following Equation 

(7): 

𝛥𝐺𝑖𝑛𝑖(𝐴) = 𝐺𝑖𝑛𝑖(𝐷) − 𝐺𝑖𝑛𝑖𝐴(𝐷)  (7) 

As per the Gini Index impurity attribute, there is a split 

of the dataset as well as the creation of the leaf nodes till 

all the splitting data fall under an equivalent class. 

Algorithm 1 depicts the CART algorithm according to this. 

3.5. Adaboost Classifier 

AdaBoost refers to a technology used to combine 

weak classifiers to generate a single strong classifier. This 

weak classifier refers to a simple classifier that will 

outperform a poor-performing random extraction. Yet 

another simple example will involve using a person’s 

height to differentiate between men and women. While a 

man will be considered to be a person above a height of 

159 cm, a woman will be considered to be a person with a 

lower height. In spite of the misclassification of several 

people, its accuracy is at least about 50%. For a stronger 

classifier’s creation, it can train other weak classifiers and, 

thus, accordingly combine their results [19].  

Firstly, let us take a look at Equation (8), which 

indicates the last classifier: 

𝐻(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑡ℎ𝑡(𝑥)𝑇
𝑡=1 )   (8) 

H (x), the last classifier, will include “T” weak 

classifiers. Here,ℎ𝑡will be the t-th weak classifier’s output 

𝛼𝑡will be the t-th weak classifier’s weight by the 

AdaBoost. So, the final output H (x) will be a linear sum of 

every one of these weak classifiers. Upon completion of 

each classifier’s training, the probability of training data 

will be updated to the succeeding classifier. There is 

training of the first classifier (t = 1), and the entire data will 

utilize the same probability. Now, each classifier’s output 

weight,𝛼𝑡, will be computed as below (9): 

𝛼𝑡 =
1

2
𝑙𝑛 (

1−𝜀𝑡

𝜀𝑡
)  (9) 

Output weight,αt, is based on an error rate (∈t). ∈twill 

be the error or misclassification probability. Once α is 

computed, the training data weight is updated by using 

Equation (10): 

𝐷𝑡+1(𝑖) =
𝐷𝑡(𝑖) 𝑒𝑥𝑝(−𝛼𝑡+1𝑦𝑖ℎ𝑡(𝑥𝑖))

𝑍𝑡
  (10) 

𝑍𝑡refers to the sum of 
: ( ).t t tD Z D i= 

𝐷𝑡  which is 

the vector for every weight in the training data. The 

variable “i” refers to an index of training data. All 

equations prove the manner in which the weights for ith 

training data have been updated. 

4. Results and Discussion 
In this section, the SDS-NB, SDS-KNN, SDS-CART, 

and SDS-Adaboost methods are used. Table 1 shows the 

summary of the results. The classification accuracy, 

precision, recall, and f measure (features like right and left) 

are shown in Figures 2 to 5. 

Table 1. Summary of results 

 SDS- 

NB 

SDS- 

KNN 

SDS- 

CART 

SDS-

Adaboost 

Classification 

accuracy 
0.8422 0.8356 0.8444 0.8667 

Precision for 

right 
0.8683 0.8636 0.8719 0.8926 

Precision for  

foot 
0.8116 0.8029 0.8125 0.8365 

Recall for 

right 
0.844 0.836 0.844 0.864 

Recall for  

foot 
0.84 0.835 0.845 0.87 

F measure 

for right 
0.856 0.8496 0.8577 0.8781 

F measure 

for foot 
0.8256 0.8186 0.8284 0.8529 

 
Figure 2 shows that SDS-Adaboost demonstrates a 

higher classification accuracy compared to other methods 

by 2.86% for SDS-NB, 3.65% for SDS-KNN, and 2.61% 

for SDS-CART, respectively. The ensemble nature of 

Adaboost likely contributes to its superior performance, as 

it combines the strengths of multiple weak classifiers to 

improve the final prediction. 
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Fig. 2 Classification Accuracy for SDS-Adaboost 

Figure 3 shows that SDS-Adaboost demonstrates a 

higher precision compared to other methods for right by 

2.76% for SDS-NB, 3.3% for SDS-KNN, and 2.34% for 

SDS-CART, respectively. The SDS-Adaboost has higher 

precision for left by 3.02% for SDS-NB, 4.09% for SDS-

KNN, and 2.91% for SDS-CART, respectively. The 

proposed SDS-Adaboost is more reliable in minimizing 

false positives. 

Figure 4 shows that SDS-Adaboost demonstrates a 

higher recall compared to other methods for right by 

2.34% for SDS-NB, 3.29% for SDS-KNN, and 2.34% for 

SDS-CART, respectively. The SDS-Adaboost has a higher 

recall for left by 3.51% for SDS-NB, 4.1% for SDS-KNN, 

and 2.91% for SDS-CART, respectively. The results show 

that SDS-Adaboost is effective in identifying most of the 

true positives. 

 
Fig. 3 Precision for SDS-Adaboost 

 
Fig. 4 Recall for SDS-Adaboost 

 
Fig. 5 F measure for SDS-Adaboost 

Figure 2 shows that SDS-Adaboost demonstrates a 

higher f measure compared to other methods for right by 

2.54% for SDS-NB, 3.29% for SDS-KNN, and 2.35% for 

SDS-CART, respectively. The SDS-Adaboost has a higher 

f measure for left by 3.25% for SDS-NB, 4.1% for SDS-

KNN, and 2.91% for SDS-CART, respectively. The SDS-

Adaboost achieves the highest f measure, demonstrating its 

overall performance in both precision and recall. 

The SDS algorithm played a critical role in improving 

EEG channel selection by optimizing the identification of 

the most relevant channels for classification. SDS enables 

efficient search across the complex, high-dimensional 

space of EEG channels, identifying the optimal set of 

channels leading to better classification. Unlike traditional 

methods, SDS’s population-based approach and its ability 

to handle multi-objective optimization ensured that both 
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the variance and discriminative power of selected channels 

were maximized. 

5. Conclusion 
Several BCI studies have overlooked the optimization 

of the channel owing to their inherent complexity. 

However, a careful selection of the channel can increase 

user comfort and performance, thus reducing cost. 

Evolutionary meta-heuristics are useful in solving complex 

problems. Here, the channel selection algorithm with the 

AdaBoost, NB, CART, and KNN has been proposed. The 

SDS is an efficient generic search method and serves as a 

population-based approach for best-fit pattern matching. It 

employs a one-to-one recruitment system similar to the 

tandem-running behavior observed in certain ant species. 

The NB classifier is a probabilistic model based on Bayes' 

theorem. KNN classifiers, on the other hand, are simple 

and common but can perform as well as most complex 

classifiers. Another very important feature of the CART is 

its ability to generate regression trees. For this, the CART 

splits and minimizes its prediction squared error. The 

AdaBoost combines several classifiers and their weighted 

votes for classification. The results show that an SDS-

Adaboost has better accuracy of classification by about 

2.86% for the SDS-NB, by 3.65% for the SDS-KNN, and 

finally by 2.61% for the SDS-CART, respectively. 
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