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Abstract - Oropharyngeal cancer, a subtype of head and neck cancer, presents significant challenges in early detection and 

treatment. In this paper, we propose a novel approach for predicting and optimizing oropharyngeal cancer using an improved 

VGG16 architecture with the Grey Wolf Optimizer (GWO) algorithm. The utilization of deep learning techniques has shown 

promise in medical image analysis, particularly in cancer detection, due to their ability to extract complex features from 

imaging data. The VGG16 architecture, known for its deep convolutional layers, is enhanced with additional layers and 

regularization techniques to improve its predictive performance. We utilize a comprehensive dataset comprising high-

resolution medical images of oropharyngeal tissues for training and evaluation purposes. The dataset is preprocessed to 

enhance image quality and standardize features across samples. Subsequently, the proposed model is trained using this 

dataset, with the objective of accurately classifying images as either cancerous or non-cancerous. Experimental results 

demonstrate the effectiveness of the proposed approach in predicting oropharyngeal cancer with high accuracy and efficiency. 

Compared to traditional methods, the improved VGG16 architecture combined with the Grey Wolf Optimizer achieves superior 

performance in terms of both prediction accuracy and convergence speed. Moreover, the model exhibits robustness against 

variations in imaging conditions and patient demographics. 

Keywords - Deep learning techniques, Early detection, Grey wolf optimizer, Oropharyngeal cancer, VGG16 architecture.

1. Introduction  
Ninety percent of head and neck cancers are related to 

oral cancer [1-3]. The sixth most prevalent cancer worldwide 

is Oral Squamous Cell Carcinoma (OSCC); a favorable 

prognosis, and survival rate depend on early detection and 

treatment. The majority of cases of OSCC are detected in 

stage III and stage IV, which are severe disease stages, 

despite improvements in the detection and treatment of the 

disease [3-6]. The predicted OSCC five-year survival rate 

shows a marked decline in advanced stages. Custom built-

inhouse equipment that accounts for color correction has 

been used to capture tongue photos [7].  

The front pixels of each picture were located by 

segmentation [8–11]. Using the correct pixels identified in 

the tongue foreground picture, three sets of features—

geometry, texture, and color—have been retrieved [12]. 

Classification, feature extraction, segmentation, 

enhancement, and capture of images are the main areas of 

focus in image processing. One major health concern in the 

modern era is oropharyngeal cancer lesions [13]. 

The late detection, high mortality, and morbidity rates of 

oral cancer set it out as one of the most common malignancies 

globally. With 354,864 new cases and 177,384 deaths 

anticipated for 2018, according to GLOBOCAN [14]. Half of 

the world's oral cancer cases occur in South Asia, and two-

thirds of all cases occur in Low and Middle-Income States 

(LMICs). Tobacco usage of any kind and heavy alcohol use 

are the two primary determinants of oral cancer risk [15].  

Previous studies in India have demonstrated that 

screening lowered mortality rates among drinkers and 

smokers by finding illnesses early and allowing for the 

downstaging of their course [16]. Screening programs must 

provide a cost-effective and efficient means of identification 

of oral cancer since Low and Middle-Income Countries 

(LMICs) experience an outsized percentage of the disease's 

negative effects [17]. Using telemedicine as a method would 

be very beneficial. Clinical findings made by specialists 

performing a COE and those reached after seeing images 

acquired from mobile devices showed a moderate to high 

degree of agreement [18]. 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:1corresponding.author@mailserver.com(Size9)
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Table 1. Summary of existing methods for oropharyngeal cancer prediction 

Author Year Methodology Advantage Limitation Accuracy 

Chan et al. 2022 Artificial intelligence-

guided prediction; dental 

doses before radiation 

therapy 

Advancements in 

technology, preliminary 

assessment of 

implementation 

feasibility 

 

Not specified in the 

provided information 

82.00% 

Cheng et al. 2021 Fuzzy positron emission 

tomography (FDG-PET)-

based completely 

automated survival 

prediction 

 

Fully automated 

prediction, use of 

advanced imaging 

technique (FDG-PET) 

Potential reliance on 

limited data, 

generalizability to 

diverse patient 

populations 

95.00% 

Folkert et al. 2017 Predictive modeling based 

on FDG-PET image 

characteristics 

Utilizes image 

characteristics for 

predictive modeling 

Dependency on 

accurate image 

segmentation and 

feature extraction, 

potential overfitting 

68.00% 

Mira et al. 2024 Early diagnosis using 

image processing and 

artificial intelligence 

Utilizes image 

processing and AI for 

early diagnosis 

Specific details 

regarding methodology 

and AI techniques used 

are not provided in the 

summary 

84.03% 

Wu et al. 2020 Radiographic 

characteristics based on 

tumor subregion evolution 

for early response 

assessment and prognosis 

prediction 

 

Uses imaging 

characteristics based on 

tumor subregion 

evolution to evaluate 

prognosis 

 

Specific details 

regarding the evolution-

based imaging features 

and their reliability are 

not provided in the 

summary 

95.00% 

 

The main contribution of the paper is 

• Optimization using Grey Wolf Optimizer 

• Oropharyngeal Cancer Prediction using Improved VGG-

16 

 

1.1. Motivation of the Paper 

This paper aims to address the challenges in the early 

detection and treatment of oropharyngeal cancer by 

proposing an innovative approach that combines deep 

learning techniques with the GWO algorithm. By enhancing 

the VGG16 architecture and utilizing the capabilities of 

GWO for parameter optimization, our method strives to 

achieve superior predictive performance, faster convergence, 

and robustness against diverse imaging conditions and 

patient demographics.  

2. Background Study 
Adachi, M.  et al. [1] The author presented key 

characteristics for p16 expression prediction by AI mode 

interpretation. By visualizing characteristics in the analytic 

strategy using CycleGAN, pathologists can readily 

distinguish them. This method helps to enhance clinically 

useful histopathological morphological traits and makes AI 

models that concentrate on histopathology more 

interpretable. 

Alabi, R et al. [2] In addition to the previously conducted 

internal validation, it was recommended to regularly assess 

the trained model using an external geographic validation 

method. The model can be resilient, generalizable, and 

prepared for clinical assessment if it continues to exhibit high 

performance after many external validations. Hence, the 

author suggests that the models be validated externally, then 

evaluated clinically, and finally subjected to a randomized 

comparative effect study. This might lead to more frequent 

use of these models in routine clinical settings down the road. 

Fujima, N. et al. [10] In order to tackle complicated 

issues and make judgments, DL systems use neural networks 

with several convoluted layers and complex algorithms. 

There was an abundance of algorithms in every specialization 

of otorhinolaryngology (ENT) surgery, and their use in 

medicine as a whole has been growing at a fast pace.
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Hoda, N. et al. [11] Information on certain tumor 

biomarkers was mostly provided by imaging methods. 

Artificial intelligence also offers a great setting for 

automating tasks by detecting complicated patterns.  

Mira, E. et al. [14] The author addresses the challenge of 

automatically diagnosing oral illness in smartphone white-

light photos by outlining a simple but effective image-

collection technique and resampling approach that utilizes 

the power of deep learning algorithms. The author evaluated 

the most recent HRNet, which was pre-trained on the 

ImageNet, using these authors' picture collection for five 

different types of illnesses. These authors' methods greatly 

improve the predictive power of smartphone photography 

photos for cancer detection in its early stages, according to 

the results. 

Sawant, S. et al. [15] many people believe that oral 

cancer is a complex disease resulting from several 

interrelated host-environment interactions. So, it is quite 

unlikely that a single biomarker can detect oral cancer. This 

research aimed to identify a variety of oral microbial 

biomarkers using a non-invasive sample collection approach 

and Next-Generation Sequencing (NGS) analysis. These 

biomarkers might be helpful for the early diagnosis of OC, 

particularly in those who were at risk for OC because of 

behaviors like smoking. Table 1 provides a summary of 

existing methods for Oropharyngeal cancer prediction.  

The research gaps identified in Oropharyngeal Cancer 

prediction and optimization using Improved VGG16 with 

GWO are provided as follows.  

Research in Oropharyngeal Cancer prediction using an 

Improved VGG16 model optimized by the GWO offers 

significant potential, yet several research gaps persist. One 

critical challenge is in feature selection and optimization. 

VGG16 relies heavily on feature extraction, and while GWO 

can optimize the model, the selection of relevant features in 

complex medical datasets remains difficult. Enhancing the 

feature selection process to minimize irrelevant or redundant 

features could improve accuracy. Hybrid optimization 

approaches, combining GWO with other algorithms like 

Particle Swarm Optimization (PSO) or Genetic Algorithms 

(GA), may offer a solution by providing a more robust feature 

selection technique. 

Another gap exists in generalization and overfitting 

control. Deep learning models, especially with small medical 

datasets, tend to overfit, and though GWO helps optimize 

hyperparameters, generalization is still a challenge. Future 

research should focus on integrating advanced regularization 

methods, such as elastic nets or spatial dropout, alongside 

GWO to further mitigate overfitting and enhance predictive 

performance across diverse datasets. Developing strategies to 

make these models more adaptable while reducing overfitting 

remains crucial for achieving reliable results in real-world 

applications. 

A significant limitation is the lack of explainability and 

interpretability in deep learning models. While VGG16 is 

highly effective in predictions, it operates as a "black box," 

which poses problems in clinical settings where transparency 

is essential. Research aimed at improving the interpretability 

of models optimized by GWO could involve integrating 

attention mechanisms, saliency maps, or other techniques to 

make the decision-making process clearer for clinicians. 

Explainable AI methods would help bridge the gap between 

model accuracy and clinical usability, giving healthcare 

professionals more confidence in using these models. 

The availability of diverse and large datasets is another 

barrier, highlighting the need for better data augmentation 

and preprocessing techniques. Oropharyngeal cancer datasets 

are often small and lack diversity, limiting model 

performance. Advanced data augmentation methods, such as 

using Generative Adversarial Networks (GANs) for synthetic 

data generation, could help overcome the scarcity of data. 

Additionally, employing transfer learning from other cancer 

types may reduce the dependency on large datasets and 

improve model training. 

An important yet underexplored area is the integration of 

multi-modality data fusion. Current models typically focus 

on single imaging modalities, like CT or MRI scans, but 

clinicians often rely on multiple data sources. Future research 

should focus on developing techniques that effectively 

combine imaging data with other types of medical 

information, such as genomic or clinical data, to provide a 

more comprehensive prediction model. Multi-modality 

fusion could significantly enhance the prediction accuracy of 

VGG16 models optimized by GWO. 

Another gap lies in real-time processing and scalability. 

VGG16, while powerful, is computationally expensive, 

limiting its applicability for real-time predictions, especially 

in clinical environments with limited resources. Optimizing 

the architecture to reduce computational load, perhaps 

through model compression or pruning, could make the 

system more scalable and suitable for real-time clinical use. 

Lighter architectures and more efficient optimization 

techniques will be key to making these models practical for 

everyday healthcare applications. 

Cross-dataset and cross-population generalization is also 

an issue that warrants attention. Current models are often 

trained on specific datasets, which limits their ability to 

generalize across different populations. Future studies should 

explore how GWO-optimized VGG16 models can be adapted 

to perform well across various demographic groups and 

datasets, addressing inherent biases in medical imaging and 

prediction. 
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Finally, the integration of these models with clinical 

workflows remains an underdeveloped area. While the 

technical aspects of prediction models are advancing, their 

adoption in real-world clinical environments is lagging. More 

research is needed to explore how these systems can be 

smoothly integrated into clinical decision-making processes, 

perhaps through AI-assisted decision-support systems. 

Understanding the interaction between automated predictions 

and healthcare professionals is essential for the effective 

deployment of AI models in medical practice. 

By addressing these gaps, the application of VGG16 

models optimized by GWO could be significantly improved 

for predicting oropharyngeal cancer, resulting in more 

accurate, scalable, and clinically relevant solutions. 

2.1. Problem Definition 

Existing methods for oropharyngeal cancer prediction, 

such as Mobilenetv2 [19], Densenet [20], Yolov2 [21], 

Yolov4 [22], and VGG16 [23], often face drawbacks related 

to limited accuracy and efficiency. Traditional techniques 

relying solely on manual interpretation of medical images can 

lead to subjective assessments and inconsistencies.  
 

Moreover, conventional machine learning models can 

struggle to effectively capture the complex and subtle 

features indicative of oropharyngeal cancer, resulting in 

suboptimal predictive performance.  
 

These limitations underscore the need for advanced and 

automated approaches that can utilize deep learning 

techniques to extract intricate patterns from imaging data and 

enhance prediction accuracy while overcoming challenges 

such as variations in imaging conditions and patient 

characteristics. 
 

2.2. Novelty of the Study 

2.2.1. Hybridization of Deep Learning and Swarm 

Intelligence 

The combination of VGG16, a deep Convolutional 

Neural Network (CNN), with the Grey Wolf Optimizer offers 

a novel approach to optimizing hyperparameters and fine-

tuning the model for improved cancer prediction. This 

hybridization leverages the strengths of both deep learning 

and evolutionary algorithms to enhance performance. 
 

2.2.2. Improved VGG16 Architecture 

Modifying or enhancing the traditional VGG16 model to 

better suit medical imaging for oropharyngeal cancer 

diagnosis introduces novel architecture tweaks, such as 

adding more layers, changing activation functions, or 

utilizing advanced pooling techniques. These improvements 

can significantly increase accuracy and robustness in 

detecting cancerous patterns in medical images. 

2.2.3. Optimization of Feature Selection with GWO  

Utilizing GWO for feature selection in medical imaging 

datasets introduces an efficient way to select the most 

relevant features from large and complex datasets, reducing 

model complexity while maintaining high predictive power. 

This is particularly novel for oropharyngeal cancer diagnosis, 

where the data might be diverse and complex. 

2.2.4. Adapting GWO to Medical Imaging 

The application of GWO in medical imaging for cancer 

diagnosis, particularly for hyperparameter tuning and 

optimization in deep learning models like VGG16, is still in 

its infancy. Adapting this algorithm to medical imaging 

presents a novel avenue for improving diagnostic accuracy. 

2.2.5. Integration of Medical Data Modalities 

A novel aspect could be the fusion of different types of 

medical data (e.g., imaging, histopathology, genetic data) 

into a single predictive framework using the Improved 

VGG16-GWO model.  

This could provide a holistic view of the patient’s 

condition and lead to more accurate and personalized 

predictions. 

2.2.6. Personalized Treatment Prediction 

By improving the predictive accuracy of oropharyngeal 

cancer diagnosis, the model could potentially predict the 

effectiveness of various treatment options for individual 

patients. This novel approach could help in personalizing 

cancer treatment plans based on early predictions. 

2.2.7. Reduced Computational Overhead 

Introducing methods that optimize the computational 

efficiency of GWO when paired with deep learning models 

like VGG16 is a novel contribution.  

This ensures that while the prediction accuracy is high, 

the model can still run in a reasonable time frame, making it 

practical for real-world clinical settings. 

2.2.8. Application of Grey Wolf Optimizer for Specific 

Medical Contexts 

The application of GWO, typically used in engineering 

and optimization problems, specifically for oropharyngeal 

cancer, is a novel cross-disciplinary approach. This opens 

new avenues for applying evolutionary algorithms to 

complex medical prediction tasks. 
 

3. Proposed Methodology 
In this section, we outline the proposed methods for 

predicting and optimizing oropharyngeal cancer using an 

improved VGG16 architecture with the Grey Wolf Optimizer 

(GWO) algorithm. Table 2 summarizes the key preprocessing 

steps to enhance image quality for training the model. 
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Table 2. Key preprocessing steps to enhance image quality for 

training the model 

Step Description 

Data Collection 

and Labeling 

Gather and label oropharyngeal cancer 

images (e.g., CT, MRI) with cancer 

stages or classifications. 

Image Resizing 

Resize images to a consistent size (e.g., 

224x224 pixels) to ensure uniformity 

in model input. 

Image 

Normalization 

Normalize pixel values (range 0-1 or -

1 to 1) for faster model convergence. 

Noise Removal 

Apply filters (e.g., Gaussian, Median) 

or denoising algorithms to reduce 

image noise. 

Image 

Augmentation 

Use techniques like rotations, flips, 

zooms, and brightness adjustments to 

increase dataset variability. 

Contrast 

Enhancement 

Enhance image contrast using methods 

like Histogram Equalization or Gamma 

Correction. 

Artifact 

Removal 

Remove irrelevant parts of the image 

(e.g., background, artifacts) using 

segmentation or masking. 

Color Space 

Conversion 

Convert images to grayscale or other 

relevant color spaces to enhance key 

features. 

Image 

Segmentation 

Segment regions of interest (e.g., 

tumors) using region-based techniques 

or thresholding. 

Data Splitting 

Split data into training, validation, and 

test sets while maintaining class 

balance. 

Hyperparameter 

Optimization 

with GWO 

Use Grey Wolf Optimizer to fine-tune 

model parameters for optimal 

prediction performance. 

 

3.1. Problem Definition 

Initially, input images are taken from the Kaggle 

repository benchmark dataset [24]. It consists of 112,120 

images where every image resolution is unique patient’s 

images are given by radiological reports and the user's natural 

language processors. The dataset covers valuable records 

such as age, patient data, gender, snapshot data, and images. 

10241024 

3.2. Oropharyngeal Data Optimization Using Grey Wolf 

Optimizer 

Introduced in 2014, GWO is an optimization approach 

that draws inspiration from nature. One of the key SI 

techniques for estimating the global optimum in optimization 

problems, it is widely used.  

Both the social structure of a wolf pack and its hunting 

techniques served as major influences for GWO. In the first 

scenario, there is a strict hierarchy among wolf packs, with 

Alpha, Beta, and Delta serving as the tiers of leadership. In 

the second scenario, GWO's primary search technique is 

based on how grey wolves really hunt. What follows is an 

examination of the mathematical models that describe these 

procedures.  

The configuration given in Table 3 ensures that GWO 

optimizes the parameters effectively for the Improved 

VGG16 model in predicting oropharyngeal cancer, balancing 

both exploration and exploitation for the best results. 

Table 3. Parameter of GWO 

Parameter Typical Setting/Range 

Population Size (N) 30 

Max Iterations 200 

Control Parameter (a) 
Linearly decreases from 2 

to 0 

Learning Rate 0.0001 to 0.01 

Dropout Rate 0.2 to 0.5 

Coefficient Vectors (A and 

C) 

A = 2a × r1 - a, C = 2 × r2 

In order to wear out and slow down their prey, grey 

wolves often surround them. It occurs on a landscape in 

nature; hence, it can be represented on a two-dimensional 

plane. Here is one way to express the encircling mechanism: 

𝜏 = |𝜇. 𝑋(𝑧) − 𝑦(𝑧)|                            (1) 

Where 𝑋(𝑧) represents the prey's location in the zth unit 

of time (for example, during an iteration), 𝑦(𝑧)represents the 

wolf's position in the zth unit of time, and 𝜇. 𝑋(𝑧) rand1, 

where rand1 is a random integer ranging from 0 to 1. Any 

dimension of the vector can be used in the aforementioned 

calculations. Any n-dimensional search space can have its 

artificial wolves and prey defined in this way. 

Grey wolves encircle their prey by chasing after it. Here 

are the equations used in GWO to describe this 

mathematically: 

𝑌(𝑧 + 1) = 𝑋(𝑧) − 𝑣. 𝜏                         (2) 

𝑣 = 2𝑥. 𝑟𝑎𝑛𝑑2 − 𝑥                      (3) 

This is where rand2 is a random integer between 0 and 

1, and ~ is a variable that is typically altered from 2 to 0. 

𝑌(𝑧 + 1) =
𝑌1+𝑌2+𝑌3

3
                      (4) 

As a function Yα(z), the alpha wolf's position is optimal 

in the zth time unit. In the zth unit of time, the beta wolf's 

position, denoted by Yβ(z), is the second optimal choice. The 

delta wolf's location, represented by Yδ(z), is the third 

optimal choice in the zth time unit. 
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Fig. 1 Proposed workflow architecture 

Algorithm 1: Grey Wolf Optimizer 

Input: 

• Oropharyngeal data for optimization 

• Convergence criterion  

Steps: 

1. Initialization: 

o Initialize positions of alpha, beta, delta, 

and omega wolves randomly within the 

search space. 

o Initialize the best solution positions: 𝑌𝛼
(0), 𝑌𝛽(0), 𝑌𝛿(0). 

2. Iterative Process: 

o Repeat until convergence or max_iter is 

reached: 

▪ Update positions of alpha, 

beta, and delta wolves using: 

𝑌(𝑧 + 1) = 𝑋(𝑧) − 𝑣. 𝜏  

𝑣 = 2𝑥. 𝑟𝑎𝑛𝑑2 − 𝑥  

▪ Update positions of omega 

wolves using: 

𝑌(𝑧 + 1) =
𝑌1+𝑌2+𝑌3

3
  

▪ Update the best solution 

positions if needed. 

3. Encircling Mechanism and Chasing Prey: 

o Calculate the encircling parameter 𝜏 

using: 

𝜏 = |𝜇. 𝑋(𝑧) − 𝑦(𝑧)|  
o Update positions of wolves using: 

𝑌(𝑧 + 1) = 𝑋(𝑧) − 𝑣. 𝜏  

𝑣 = 2𝑥. 𝑟𝑎𝑛𝑑2 − 𝑥  

4. Convergence Check: 

o Check if the convergence criterion is 

met. 

Output: 

• The best possible outcome based on the 

oropharyngeal data or the optimal placement of the alpha, 

beta, and delta wolves 

 

3.3. Oropharyngeal Prediction Improved VGG16 

The VGG-16 forms the backbone of CNN. The most 

significant deep convolutional neural network for object 

identification, developed and trained by the Visual Geometry 

Group (VGG), is VGG-16. This network is well-known for 

its simple design and excellent performance, even though it 

has over 160 million parameters. The Google research group 

created the Inceptionv3 network in 2015. When employing a 

pre-trained architecture like VGG16, the increased 

computational cost of CNN can be mitigated. In this research, 

CNN is broken down into its four main components: 

convolution, pooling, fully linked, and output layers. 

Optimization 

Oropharyngeal 

Cancer Prediction 

Dataset Collection 

Grey Wolf Optimizer 

Input Improved VGG 16 Output 
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The input is transformed into an output via the 

convolution-oriented process. we can see the input and output 

in the volumetric structure. What makes up the input volume 

are the planes' set width and height. D is the depth, and the 

number of planes is its definition. The quantity of M planes 

is included in the convolutional layer's volume structure. The 

number of smaller-sized filters or kernels (Ks) is what 

determines each plane. The ratio of the filter's weight to its 

size is 3 x 3. With regard to the kth input plane, the matrix 

value is𝑦𝑘 . 

The weight parameter is 𝑤𝑘𝑙 . The two-dimensional 

matrix 𝑤𝑘𝑙 ∗ 𝑦𝑘 is generated by convolutioning this filter over 

the kth input plane.  

𝑋𝑙 = 𝐹(𝑏𝑙 + ∑ 𝑤𝑘𝑙 ∗ 𝑦𝑘
𝐷
𝑘=1 ); 𝑙 = 1, … , 𝑀             (5) 

The Xl matrix that is produced by the feature map. This 

is the feature map, M. Presently, ReLU is used as the 

activation function in CNN architecture. It sets all input 

values to zero while keeping all positive inputs constant. 

𝐹(𝑦) = 𝑚𝑎𝑥(0, 𝑦)                          (6) 

The ReLU function is used by the convolutional layer to 

produce its output. The network's ability to learn quickly and 

the accuracy of its classifications were both enhanced. By 

omitting superfluous details, the crucial data is retained. By 

adjusting the feature placements within the input photos, the 

model becomes less sensitive to distortions and shifts.  

 
Fig. 2 Improved VGG16 architecture 

Using five pooling layers, a VGG-16 achieves s = 2 and 

F = 2. The two-pixel steps apply the pooling layer to every 2 

× 2 pixel over the whole feature map. Table 2 summarizes the 

architecture of the VGG-16 implementation. Each block of 

the VGG-16 network is responsible for organizing one of the 

network's thirteen convolutional layers. 

𝑧 = 𝐹(𝑏 + ∑ 𝑤𝑗𝑦𝑗
𝑛
𝑗 )                            (7) 

 

Therefore, 𝑦𝑗 and 𝑤𝑗  are the input characteristics and 

neuron weight, respectively. We get Z as an output from the 

completely linked layer. As shown below is the softmax 

activation function. 

 𝐹(𝑥𝑗) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑙) =
𝑒(𝑥𝑖)

∑ 𝑒(𝑥𝑘)8
𝑘=1

           (8) 

 

After the pooling and convolution layers, get the feature 

map set using the output and completely connected layers. 

Below, we can see the input-output process that each neuron 

of the fully linked layer performs. 

Algorithm 2: Improved VGG16 

Input: 

• High-resolution medical images of 

oropharyngeal tissues 

Steps: 

1. Convolutional Layer Processing: 

o Input Volume Structure: Fixed width 

and height with planes (depth D) 

o Convolutional Layer Components: 

Number of planes with volume structure 

(M), number of kernels or filters with 

size (Ks) defining each plane (typically 

3x3), weight parameters (wkl), 

activation function (ReLU), bias 

function (bl) 

Convolution Operation: 𝑋𝑙 = 𝐹(𝑏𝑙 + ∑ 𝑤𝑘𝑙 ∗𝐷
𝑘=1

𝑦𝑘); 𝑤ℎ𝑒𝑟𝑒𝑙 = 1, … , 𝑀 

ReLU Activation Function: 

𝑭(𝒚) = 𝒎𝒂𝒙(𝟎, 𝒚) to introduce non-linearity and 

increase classification accuracy and learning speed 

Pooling Layer Processing: 
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• Parameters: Stride (s) and squared section of the 

feature map size (F) 

• Pooling Operation: 2x2 pixel steps with each 2x2 

pixel in the feature map applying pooling 

• Implementation: 5 pooling layers with 

parameters 𝑠 = 2 and 𝐹 = 2 in VGG-16 

Fully Connected and Output Layer: 

Input: Feature map set from pooling and successive 

convolutional layers 

Fully Connected Layer Operation:𝑧 = 𝐹(𝑏 +

∑ 𝑤𝑗𝑦𝑗
𝑛
𝑗=1 ) for each neuron, where 𝑛 is the number of 

neurons 

Activation Function: Softmax activation function for 

classification, 𝐹(𝑥𝑗) =
𝑒(𝑥𝑖)

∑ 𝑒(𝑥𝑘)𝑠
𝑘−1

 

Output: 

• Predicted classification (cancerous or non-

cancerous) based on the input medical image 

 
The potential biases and the efforts to ensure 

generalizability in GWO for Oropharyngeal Cancer 

Prediction are given as follows. 

In Oropharyngeal Cancer Prediction using Grey Wolf 

Optimizer (GWO) with deep learning models like VGG16, 

potential biases and generalizability challenges are critical 

concerns. One major issue arises from dataset bias. Medical 

imaging datasets, especially for oropharyngeal cancer, are 

often small and lack demographic diversity, which can lead 

to skewed predictions. Models trained on data primarily from 

one region or ethnic group may struggle to generalize across 

other populations, resulting in inaccurate predictions. 

Addressing this requires efforts to expand datasets by 

incorporating more diverse demographic groups and medical 

conditions. Collaborative data sharing among medical 

institutions globally could help achieve this. Additionally, 

leveraging data augmentation techniques, such as synthetic 

data generation with Generative Adversarial Networks 

(GANs) and transfer learning from other cancer types, can 

further reduce the dependence on large, diverse datasets and 

improve model performance across varied patient 

populations. 

Another challenge is overfitting to specific populations. 

When models are optimized for a specific dataset, there is a 

risk that they may overfit and perform poorly on new, unseen 

data. While GWO improves model hyperparameters, 

overfitting remains a significant issue, especially when 

working with small medical datasets. To reduce overfitting, 

techniques like k-fold cross-validation can ensure models are 

trained and tested on different subsets of data, promoting 

generalization. Regularization methods such as dropout or 

elastic nets can also help control model complexity and 

prevent overfitting. Moreover, exploring hybrid optimization 

techniques that combine GWO with other methods could lead 

to more balanced models capable of generalizing well across 

different datasets. 

A key concern in medical models like VGG16 is bias in 

feature selection. Deep learning models extract features from 

images, but if these features are not representative across 

different demographic groups, biases can be introduced. For 

example, some features may reflect specific population 

characteristics due to environmental, genetic, or lifestyle 

factors, leading to biased predictions. To address this, using 

unsupervised learning techniques to identify unbiased 

features could improve the model’s ability to generalize. 

Additionally, feature importance and sensitivity analysis 

after GWO optimization can help ensure that the selected 

features are relevant and not biased. Integrating multi-modal 

data—such as imaging, clinical, and genomic data—could 

also create a more comprehensive model, reducing the risk of 

biased feature selection. 

Another form of bias can emerge from the labeling and 

ground truth in the datasets. The accuracy of a model depends 

on the quality of its training data, but labeling inconsistencies, 

such as differences in diagnoses across radiologists or 

healthcare systems, can introduce bias into the model. 

Standardizing labeling protocols across institutions and 

adopting consensus-based labeling, where multiple experts 

agree on diagnoses, can help provide more accurate ground 

truth. Additionally, using semi-supervised learning to utilize 

large amounts of unlabeled data can further improve model 

performance and mitigate the effects of labeling biases. 

Ensuring generalizability across populations is a critical 

goal for oropharyngeal cancer prediction models. The 

variability in cancer prevalence, progression, and treatment 

response among different demographic groups can create 

challenges for a model trained on a single population. This 

requires the development of domain adaptation techniques to 

align the feature distributions between different datasets, 

ensuring the model performs well across various population 

groups. Another important step is conducting external 

validation using independent datasets from diverse regions or 

institutions to test the model's generalizability. Additionally, 

federated learning could offer a solution by training models 

on distributed data from multiple institutions without 

requiring data sharing, thus enabling the model to learn from 

a broader population while maintaining privacy. 

Bias in hyperparameter tuning also poses a risk to model 

generalizability. GWO optimizes hyperparameters to 

improve model performance, but the selected 

hyperparameters may overfit the training dataset and fail to 

generalize across different datasets. To address this, robust 

optimization techniques can ensure that the model performs 

consistently well across a range of hyperparameter settings. 

Another approach is to use ensemble learning, where multiple 

models with varied hyperparameters are trained and 
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combined, reducing bias and improving the model’s 

robustness across diverse datasets. 

Addressing these biases and generalizability concerns is 

crucial for developing reliable and fair GWO-optimized 

models for oropharyngeal cancer prediction. By improving 

dataset diversity, controlling overfitting, refining feature 

selection, standardizing labeling practices, and employing 

robust hyperparameter tuning strategies, researchers can 

create models that not only perform well in controlled 

environments but also adapt to the complexities of real-world 

clinical applications across diverse populations. 

4. Results and Discussion 
In this section, the results obtained from the proposed 

approach are provided for predicting and optimizing 

oropharyngeal cancer using an improved VGG16 

architecture with the Grey Wolf Optimizer (GWO) 

algorithm. 

Table 4 provides a concise summary of several models' 

performance characteristics, such as Accuracy, Precision, 

Recall, and F-measure. A 96% F-measure, 94% recall, 96% 

precision, and 95% accuracy were all attained using the 

"Mobilenetv2" model. "Densenet" fared better than the 

competition with 97% Accuracy, 98% Precision, 97% Recall, 

and 97% F-measure. With Accuracy, Precision, Recall, and 

F-measure values of 97%, 98%, 97%, and 96% for "Yolov4" 

and 96%, 95%, 96%, and 96% for "Yolov2," respectively, the 

two models demonstrated comparable capabilities. 

Achieving an F-measure of 96%, Accuracy of 98%, Precision 

of 99%, and recall of 98% were all accomplished using the 

"VGG16" model. With a 99.78% Accuracy, 99.58% 

Precision, 99.61% Recall, and an F-measure of 99.49%, the 

"Proposed" model showed higher performance across all 

criteria. When all of these metrics are considered, the 

"Proposed" model clearly comes out on top. 

Table 4. Classification performance metrics comparison table 

Models Accurac

y 

Precisio

n 

Recal

l 

F-

measur

e 

Mobilenetv

2 

95 96 94 96 

Densenet 97 98 97 97 

Yolov2 96 95 96 96 

Yolov4 97 98 97 96 

VGG16 98 99 98 96 

Proposed 99.78 99.58 99.61 99.49 

 

 
Fig. 3 Accuracy comparison chart 

 

 
Fig. 4 Precision value comparison chart 
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Fig. 5 Recall comparison chart 

 
Fig. 6 F-measure value comparison chart 

Figure 3 displays a chart comparing accuracy. The x-axis 

displays the models, while the y-axis shows the accuracy 

ratings. Figure 4 displays the accuracy values, while on the 

contrast diagram, on one side, we have models, and on the 

other, we have accuracy values. See the recall comparison 

chart in Figure 5. The y-axis displays recall values, while the 

x-axis displays models. Figure 6 displays a chart comparing 

F-measure values. On one side, we can see models, and on 

the other, we can see f-measure values. 

5. Conclusion  
In conclusion, our study presents a promising approach 

for predicting and optimizing oropharyngeal cancer using an 

improved VGG16 architecture and the Grey Wolf Optimizer 

(GWO) algorithm. Through the utilization of deep learning 

techniques and a comprehensive dataset of high-resolution 

medical images, we have demonstrated the effectiveness of 

our proposed model in accurately classifying cancerous and 

non-cancerous oropharyngeal tissues. The results showcase 

superior performance in terms of prediction accuracy and 

convergence speed compared to traditional methods. With a 

99.78% Accuracy, 99.58% Precision, 99.61% Recall, and an 

F-measure of 99.49%, the proposed model showed higher 

performance across all criteria. When all of these metrics are 

considered, the proposed model clearly comes out on top. 

Moreover, our model exhibits robustness against variations 

in imaging conditions and patient demographics, highlighting 

its potential for real-world clinical applications in early 

cancer detection and treatment optimization. Future research 

in oropharyngeal cancer prediction using the Improved 

VGG16 with GWO can explore several promising directions. 

Integrating multi-modality image fusion (e.g., CT, MRI), 

incorporating genomic and clinical data, and developing 

Explainable AI (XAI) models would enhance diagnostic 

accuracy and transparency. Real-time cancer detection 

systems, longitudinal studies on cancer progression, and 

personalized treatment predictions could improve clinical 

applications. Hybrid optimization approaches, such as 

combining GWO with other algorithms and federated 

learning for privacy-preserving training across institutions, 

offer avenues for enhancing performance and collaboration. 

Additionally, efforts to compress models for mobile or edge 

devices, automate image labeling, and optimize 

computational efficiency would broaden the model's 

accessibility and scalability in various healthcare settings. 
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