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Abstract - Computer vision and especially deep learning play a pivotal role in the recognition of patterns in diverse kinds of 

images. Recent years have seen increased attention from both academic and business communities for autonomous learning in 

this field. Deep Learning (DL) based strategies have found much usage in areas like NLP, speech recognition, and video 

analysis. At the same time, it has become a centre of attraction for scientists studying methods for agricultural plant protection, 

such as pest spread assessments or the identification of plant diseases. Researchers may avoid the pitfalls of selecting disease 

spot qualities subjectively, derive more accurate plant disease features, and speed up the rate of technological transformation, 

all by disease detection in plants using deep learning. In this study, we will take a look at how far the DL mechanism has come 

in the arena of detecting ailments in crop leaves during the past few years. In this article, we converse about the cutting-edge 

progressions in the automatic diagnosis of leaf diseases, utilizing both deep learning and standard image processing methods, 

as well as highlight the obstacles that must be overcome. 
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1. Introduction  
Being amongst the world's largest sectors, farming offers 

immense support in the forms of food, income, and 

employment. Since there are so many farmers in India and 

other low and middle-income nations, agriculture accounts 

for 18% of national income and 53% of total employment [1]. 

Over the previous three years, agriculture's share of the 

nation’s Gross Value Added (GVA) has climbed from 17.6% 

to 20.2% [2, 3]. The majority share of the expansion of the 

economy could be accredited to agriculture. Therefore, the 

quality of food production could be negatively impacted if 

plant diseases and insect infections affect agriculture. This 

growth in population led to an increase in the demand for 

nutrients. Increasing agricultural output and ensuring crop 

security are essential to meeting this urgent demand. 

However, a wide variety of pathogens in crops' natural 

habitats makes them susceptible to a varied range of ailments. 

Disease-causing microorganisms include viruses, fungi, 

bacteria, and others [1]. The quantity and quality of food 

produced might suffer greatly when crop diseases lower 

output by as much as 95% [2]. In order to prevent massive 

losses and cut down on the overuse of potentially dangerous 

pesticides, early disease detection is essential. Small farmers 

and those in underdeveloped nations sometimes rely solely 

on visual symptoms to diagnose crop illnesses. This is a 

laborious job that calls for knowledge of plant pathology and 

extensive time for treatment [3]. Additionally, if a peculiar 

disease is attacking the field, farmers try to get expert 

assistance to find an accurate and effective diagnosis, which 

certainly leads to higher treatment expenses [4]. Therefore, 

huge farms cannot rely on visual inspection, and it can even 

lead to inaccurate projections because of human error [5]. As 

consumer demand rises, businesses must find ways to reduce 

the harmful effects of chemical intake on the environment 

and human health. Researchers have developed technological 

recommendations for the early detection of crops in an 

accurate, quick, and secure manner [78]. 

 

Several approaches [6-9] have been put forth with the 

aim of automating the detection of diseases. Both direct and 

indirect approaches are established for the automated 

detection of diseases in the crops [10]. Direct methods 

include molecular [74] and serological [74, 75] methods, 

which allow for precise pathogen identification causing the 

ailment but take a long time to collect, process, and analyze 

the samples. In contrast, indirect methods, like optical 
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imaging techniques [76], can detect illnesses and forecast 

crop health by analyzing variables, including changes in 

morphology and rate of breathing out. Two of the most 

common indirect techniques for early illness detection 

include fluorescence and hyper spectral imaging [77]. 

However, low-income farmers sometimes have a hard time 

obtaining hyper spectral devices due to their high cost, 

cumbersome size, and limited availability, despite the fact 

that hyper spectral photographs are a vital source of 

information because they provide more details than standard 

images do [17]. There are many other digital cameras 

available at reasonable costs in retailers like Best Buy and 

Amazon. So far, most automatic identification methods have 

handled images in the visible domain, where very precise and 

quick techniques can be applied. 

 

Visual crop inspection can be a useful tool for assessing 

quality, but it usually is time-consuming, expensive, and 

imprecise. Researchers have developed a number of methods, 

such as those used in object recognition and image analysis 

for quality control purposes. In order to identify and 

categorize agricultural diseases [1-3], this paper uses image 

processing technology. High-resolution images, which are 

notoriously difficult to get, are essential for this image 

processing method's identification and categorization of 

illnesses. Because of this, disease prediction is not only 

difficult but also time-consuming. The most commonly used 

of conventional crop disease detection methods, manual 

observation, has been shown to be ineffective and unreliable. 

Due to a lack of professional expertise, farmers and the 

limited availability of agricultural professionals they often 

fail to take preventative measures until it is too late. In the 

last few years, many advancements have been made in 

various fields, including computerised pattern recognition 

[1], image processing techniques [2], computer vision [3], 

and others. Using computers to automatically identify 

diseases is a useful step in solving agricultural problems. 

 

Image pre-processing, researcher-designed complicated 

disease characteristics regarding feature extraction [5], and 

methods for Machine Learning (ML) [6] for identifying plant 

illnesses constitute the three pillars of the conventional 

machine vision [4] approach to detecting diseases in crop 

leaves. Many different supervised machine learning 

classification methods, including NB [5], KNN, DT, SVM, 

and RF [81], are discussed for identifying and classifying 

diseases from plant leaves, and a comparison is done between 

them. Additionally, it offers a variety of methods that, when 

compared to others, produce the most precise results. Several 

domains [12] benefit from the use of these classification 

strategies, including biological signal processing [13] and 

healthcare [14, 15]. 

 

Improvements in plant disease recognition research have 

been made thanks to the application of DL's latest 
advancements in technology. Since Deep Learning (DL) 

technology is hidden from the end user, researchers in plant 

protection and statistics do not need to have a high level of 

expertise to use it. With DL, researchers recognize and label 

plant disease areas based on photo characteristics, saving 

time and effort over manual processes. For these reasons, the 

application of DL to the problem of plant disease recognition 

has recently been a focal point of scientific inquiry. Larger 

datasets, flexible multicore GPUs, and Developments in deep 

neural network training, as well as supporting software 

libraries like CUDA from NVIDIA are all important factors. 

 

1.1. Research Gap and Problem Statement  

Despite significant advancements in plant disease 

detection using ML and DL technologies, there remain 

substantial challenges in making these systems widely 

accessible and effective for smallholder farmers, particularly 

in low- and middle-income countries. Most current disease 

detection techniques rely on high-resolution imaging, 

expensive equipment, and complex computational processes 

that are often unavailable or too costly for small-scale 

farmers. Moreover, traditional ML methods like NB, KNN, 

DT, and RF have been used for classification, but their 

accuracy may be limited in identifying subtle disease 

patterns, especially when applied to diverse plant species and 

varied environmental conditions. In addition, hyperspectral 

imaging, though highly accurate, is not a feasible solution for 

farmers due to its high cost and operational complexity. 

While DL has emerged as a more automated and less 

expertise-dependent approach, its reliance on large datasets, 

high computational power, and sophisticated GPUs limits its 

practical implementation in resource-constrained settings. 

The current approaches to automated plant disease detection, 

while promising, are not scalable or cost-effective for 

smallholder farmers in low-income regions. These methods 

require expensive tools, complex processing techniques, or 

large datasets, which hinder their adoption in real-world 

agricultural practices. As the global demand for food 

continues to rise, there is an urgent need for an accessible, 

efficient, and accurate system that can provide early disease 

detection to reduce crop losses without reliance on costly 

technologies or expert knowledge. Developing a lightweight, 

low-cost solution that leverages advances in image 

processing and DL while being adaptable to resource-

constrained environments is essential to improving 

agricultural productivity and crop security globally. 

 

2. Crop Disease and their Symptoms  
This section discusses the numerous methods used to 

diagnose plant illnesses, lays out a taxonomy of those 

diseases, and explains what image processing and machine 

learning are. It also shows how hyper spectral images, the 

IoT, DL, and transfer learning may be used for disease 

diagnosis. The disease's symptoms, which include stunted 

crop growth, are readily apparent. The first sign of disease in 

plants is a change in leaf colour. In addition, the structure and 

feel of the leaves can tell a lot about the presence and severity 
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of a disease. Thus, leaf photos can be processed to detect 

illnesses like mildew, rust, and powdery mildew [26, 27]. 

 
Fig. 1 Broad categorisation of plant diseases 

Below is a quick discussion of the three kinds of plant 

diseases [28] that are depicted in Figure 1 and listed in Table 

1. 

• Virus diseases [1]: Infectious plant illnesses are 

particularly challenging to diagnose since there is no 

reliable signal that can be used to track their progression 

over time. As a result, their symptoms are often 

misinterpreted as indications of nutritional inadequacy 

or injury. Cucumber crawling bugs, aphids, whiteflies, 

and leafhoppers are all vectors for virus transmission. 

• Fungal diseases [1]: Infectious fungi are to blame for a 

wide variety of foliar diseases, including downy mildew, 

anthracnose, and powdery mildew.  

Table 1. Plant disease categories and features 

Plant Leaf Disease Signs and symptoms 
Category of 

Pathogens 

Citrus 

-Melanose 

-Greasy spot 

-Canker 

-The leaf gets abrasive to feel while 

touching  

-Pale-to-brown blisters 

- Includes rounded to uneven, 

flattened, puffy, cracked, and sunken 

areas. 

-Fungi 

-Fungi 

-Fungi, bacterial 

 

Maize Stalk rot 
dull green leaf colour with the stem's 

bottom portions becoming yellow 

-Fungi 

 

Rice 
Brown spot 

Blast leaf 

- Centre is whitish-gray. 

- Patches of dark brown spot 
-Fungi 

Tomato 

- Powdery mildew 

-late blight and 

early blight  

 

-Curl of yellow 

-Yellow ring around the dark area  

- Dark area expands fast  

-Curly, yellowish leaf  

-A yellow halo around it when 

soaked in water 

-Fungi 

-Fungi 

-Fungi 

-Virus 

Wheat 

-Rust 

-Powdery mildew 

-Bacterial blight 

- Pale leaf stains 

-A grey or brown patch  

- has a green with yellow undertones 

halo 

-Fungi 

-Fungi 

-Bacterial 

Watermelon 

- Downey mildew 

and anthracnose 

 

- Uneven yellow spots with yellow 

to white dots 
-fungi 

• Bacterial diseases [1]: Vegetables are extremely 

susceptible to pathogen-caused illnesses. They gain 

access to the plant life indirectly, through cracks or 

holes. Insects, diseases, and even the tools used to 

perform routine agricultural chores like harvesting and 

trimming can cause damage to crops. 

3. Research Questions 
The driving force behind writing this paper is to identify 

standard and recent ML / DL approaches currently used for 

disease detection in crops. In addition, it seeks to identify the 

latest and cutting-edge machine learning methods that were 

implemented in the past. This leads us to our primary study 

topic, which is: 

 

PRQ: “What cutting-edge machine learning techniques 

are applied to the problem of agricultural disease detection? 

To assist in refining the focus of the original research topic, 

a set of secondary questions is also provided: 

SRQ2: Which crop diseases cause the most damage and are 

most common? 

SRQ3: What kinds of data sets are there to choose from? 

SRQ4: How do crop disease detection experts often measure 

success? 

SRQ5: What are the most popular machine learning 

frameworks? 
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4. Deep Learning and Machine Learning for 

Classifying Plant Diseases 
In the area of image processing, convolutional neural 

networks have demonstrated remarkable success as feature 

classifiers and extractors during the past decade. While this 

idea has been effectively implemented elsewhere, it is just 

recently making its way into the agricultural sector. This 

section provides a high-level summary of the various 

applications of ML in plant disease categorization, including 

the identification of weeds and weed infestations, the 

counting of flowers and fruits, and the grading of harvested 

produce.  

 

Since 2015, DL has seen extensive use in the field of 

diagnosing leaf diseases. DL representation strategy that, 

rather than focusing on representing semantic aspects, tries to 

represent data optimization approaches optimally. Features 

are extracted automatically as opposed to manually as a result 

of the learning process. Also, DL is a part of the cutting-edge 

farming practices that will help the food business develop in 

areas like automation, advertising, massive amounts of data, 

pest control, healthcare diagnosis, and technology. 

 

Ramesh et al. [1] produced data sets for use with 

Random Forest to determine which leaves were healthy and 

which were infected. In order to categorize images of both 

healthy and sick leaves, Training data sets for both kinds of 

leaves are used to train a random forest classifier. 

Researchers employed the Histogram of an Oriented 

Gradient (HOG) to choose certain picture attributes. 

 

Harakannanavar et al. [2] assessed the affected tomato 

leaf samples. These tomato leaves disorder samples will help 

farmers detect diseases early and protect their crops. 

The correct diagnosis and categorization of these illnesses are 

essential. Tomato harvests can be impacted by a number of 

different illnesses. If these illnesses could be detected sooner, 

they could have less of an impact on tomato plants, leading 

to a higher crop output. Many novel approaches have been 

explored to identify and categorize various diseases. This 

project aims to assist farmers in accurately diagnosing 

illnesses in their early stages. To successfully characterize 

and categorize tomato illnesses, the CNN is utilized. The 

input photos are first subjected to preprocessing, during 

which the desired regions are extracted from the full-

resolution versions. Second, the photos are processed further 

by playing around with different CNN model hyper-

parameters. Ultimately, CNN can extract more elements from 

photos, including edge, texture, colour, and more. 
 

Chug et al. [3] presented a revolutionary model that 

merges the benefits of ML and DL. Forty Hybrid DL models 

are included in the suggested framework. These models are a 

combination of eight built-in deep learning framework 

variants (EfficientNet B0-B7) used as feature extractors.  

An approach for creating a hyper-plane that separates a 

problem space into several classes is called a Support Vector 

Machine (SVM). By increasing the distance between the 

closest-spaced data points in each category and the hyper-

plane, SVM determines which hyper-plane is optimal for data 

separation. The kernel trick approach allows SVM to also 

work well with non-linear data. A function called the SVM 

kernel transfers input data from a low-dimensional space to a 

higher-dimensional space that is linearly separable. That 

explains why SVMs excel in high dimensional areas. Another 

popular use of SVM is in regression problems [29, 39]. 

Furthermore, in order to anticipate the incidence of powdery 

mildew on tomato plants, Bhatia et al. [79] presented a hybrid 

application of SVM by merging it with a logistic regression 

technique. A comparison study of several regression and 

classification techniques is presented in Table 2. 
 

Table 2. Comparative analysis of classification/regression method 

Article Classification/ 

Regression 
Kernel Result 

[19] Classification 

Polynomial Acc=90% 

Radial 

Basis 

function 

Acc=97.4% 

[20] Regression Linear 𝑟2 = 0.45 

[21] Classification Linear Acc=90% 

[22] 

 
Classification 

Radial 

Basis 

Function  

Acc=90.5% 

Quadratic  Acc=92% 

Linear 

Acc=91% 
MultiLayer 

perceptron 

Polynomial  

[23] Classification NA Acc=94.6 

 

Saleem et al. [4] implemented the NZDLPlantDisease-

v1 dataset. For the identification of crop disease by making 

use of a recently generated dataset, the Region-based Fully 

Convolutional Network (RFCN), the best-attained DL model, 

has been improved upon. The data augmentation methods 

were assessed one by one once the optimal DL model was 

determined. After that, they looked into the results of DL 

optimizers, batch normalizers, weight initializers, and image 

resizers using interpolators. Subsequently, anchor box 

settings and position-sensitive score correlates were 

empirically observed to enhance performance. To further 

illustrate the applicability of the recommended approach, 

testing on an external dataset and a layered k-fold cross-

validation procedure were employed. 
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Nandhini et al. [5] applied CNN and RNN to agricultural 

disease categorization and detection, adding to their already 

impressive track record of success in other areas. Their 

research focuses on developing a DL based framework for 

early prediction and disease classification to support plantain 

tree producers. Combining RNN with CNN, a novel 

progressive picture classification model for illness detection 

is proposed: the Gated-Recurrent Convolutional Neural 

Network (G-RecConNN). Plant picture sequences were 

utilised as inputs for the proposed model. 

 

Arun et al. [6] offered a multi-crop disease detection 

model that uses the Complete Concatenated Deep Learning 

(CCDL) architecture to classify agricultural illnesses across 

crop kinds. Complete Concatenated Blocks (CCBs) were 

presented as fundamental building blocks in their design. To 

limit the total number of model parameters, the point 

convolution layer was placed at the beginning of each 

convolution layer in this component. The CCB's convolution 

layers are subjected to a full concatenation path. It improves 

feature map use and, hence, classification accuracy. The 

restructured Plant Village dataset was used for training the 

suggested framework. Pruned Complete Concatenated Deep 

Learning (PCCDL) models are trained models that have been 

reduced in size through pruning. 

 

Chen et al. [7] improved the model's capability to detect 

subtle plant lesion traits by discussing DL techniques and 

developing a convolutional mixed network. To better plant 

disease recognition, they combined three lightweight 

Convolutional Neural Networks (CNNs) using ensemble 

learning to create a new network they named Es-MbNet. 

Model training opted for a two-stage approach based on 

transfer learning, focusing on the setup of network weights. 

To acquire the best possible model parameters, the network 

was retrained using the target dataset in the second training 

phase, utilising the weights learned in the first training phase. 

The comparative comparison of several machine learning 

methods is shown in Table 3. 

 

Table 3. Comparison analysis of ML algorithms 

Ref Contribution Dataset Performance 

[1] HoG based feature extraction and 

classified by Random Forest classifier. 

Custom/ Manually collected  

dataset 

LR= 65.33 

SVM= 40.33 

KNN =66.76 

CART= 64.66 

RF= 70.14 

NB =57.61 

[2] Equalisation of histograms and K-means 

clustering, DWT, PCA and GLCM 

features, SVM, CNN and KNN 

classifiers are used. 

Tomato leaves K-NN (97%) and CNN (99.6%), 

SVM=88% 

[3] Combination of machine and deep 

learning for classification and feature 

extraction, respectively. 

IARI-TomEBD, 

PlantVillage-TomEBD and 

PlantVillage-BBLS. 

Accuracy range =87.55–100% 

for IARI-TomEBD dataset 

[4] Optimized region-based fully 

convolutional network (RFCN) 

NZDLPlantDisease-v1 Mean average precision 

=93.80% 

[5] G-RecConNN, or Gated-Recurrent 

Convolutional Neural Network, is a 

hybrid CNN and RNN model. 

banana disease image dataset NA 

[6] Complete Concatenated Deep Learning 

(CCDL), which uses point convolution 

and convolution layer. 

Plant Village dataset Accuracy = 98.14 % 

[7] Ensemble DL model by combining 

lightweight CNNs  

Plant Village dataset Accuracy =99.61 (local dataset) 

Accuracy =99.61% (Plant 

Village dataset) 

[8] DL architecture with inception land 

residual connection with depthwise 

separable convolution 

Plant village, rice and 

cassava  

Plantvillage dataset = 99.39%, 

rice disease    = 99.66%,  

cassava dataset  = 76.59% 

[9]  VGG architecture combined with CNN PlantVillage and Embrapa PlantVillage =99.16%   

[10] Ant colony optimization with CNN  Custom dataset with 

greening, Canker, melanosis, 

and blackspots diseases 

Accuracy=99.98% 

Precision=99.6% 

Recall=99.6% 

F1-score=99.99% 
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Table 3 provides a summary of research conducted in the 

agricultural sector using SVM as the ML model. It is possible 

to see the SVM type, kernel, and output. Most applications of 

SVM-based classification and regression algorithms in 

agricultural settings make use of linear, polynomial, or RBF 

kernels. 

 

Hassan et al. [8] suggested a variety of DL based models 

for use in diagnosing crop diseases. However, DL models call 

for many parameters, making the training period longer and 

the implementation tricky on mobile devices. A fresh 

approach to deep learning utilizing the inception layer and 

residual connection has been suggested. One method for 

doing this is by employing depth-separable convolution. 

 

Thakur et al. [9] presented the 'VGG-ICNN', a light 

weight CNN model, designed to detect crop illnesses from 

photographs of plant leaves.  

 

Abd Algani et al. [10] used a novel DL approach called 

Ant Colony Optimization with CNN to identify and 

categorize diseases. ACO  was used to study how well it 

could detect diseases in plant leaves. Images of plants had 

their color, texture, and leaf arrangement removed by a CNN 

classifier. 

 

Pandian et al. [11] developed a unique Deep CNN model 

for identifying 42 leaf diseases across 16 plant species. They 

optimized the hyperparameters and added more data to the 

disease detection model to boost its accuracy. Using BIM, 

DCGAN, and NST, they were able to create augmented 

photos of leaves. In order to train the DCNN model, 58 

classes of sick and healthy plant leaves were used. To find 

the best settings for the most often used hyperparameters, an 

arbitrary search was done by the coarse to fine method. 

Finally, the suggested DCNN's performance was compared 

to that of industry standard transfer learning methods. Table 

4 presents the comparative investigation of various DL 

methods. 

Table 4. Comparative analysis of different deep learning methods

Ref Contribution Dataset Performance 

[11] 
Augmented and hyperparameter 

optimized Deep CNN 

Custom dataset with 

42 leaf diseases from 

16 different plant 

species  

Accuracy = 99.9655%, 

 Avg. PR =99.7999%,  

Recall =99.7966%, and  

 F1  =99.7968%. 

 

[12] 

Pre-trained Efficient DenseNet 

201 and reweighted cross entropy 

loss function 

Plant village and 

custom potato leaf 

diseases 

Accuracy = 97.2% 

[13] 

Yolov5 as base architecture with 

new bottleneck and SE module for 

channel features  

Custom dataset from 

rubber plantation 

Precision for powdery mildew= 86.5% 

and  

Precision for anthracnose detection 

=86.8%  

[14] 
CNN with different augmentation 

strategies  

Cucumber leaf 

infections caused by 

yellow spot viruses 

and zucchini yellow 

mosaic 

Accuracy (%)=94.9,  

Sensitivity for MYSV (%)=96.3 

Sensitivity for ZYMV (%)=89.5 

Specificity (%)=97.0 

[16] 

DL using quicker region-based 

CNNs and a single shot multi-box 

detector 

Apple leaves mAP= 78.80%  

[18] RPN based two stage CNN 
Citrus dataset from 

the Kaggle website 

Accuracy =94.37%  

Average precision = 95.8%. 

[29] 

Entropy-ELM-based DL which 

uses pretrained : DenseNet201, 

ResNet101, ResNet50, and 

VGG16 

A scan dataset for 

cucumber leaf 

diseases 

Accuracy .=  98.4% 

[30] 

Combined model by using 

SegNet, UNet, and DeepLabV3+ 

architectures at different stages 

Corn leaves 
mwIoU=0.8063 

mBFScore= 0.8063 



Anandraddi Naduvinamani et al. / IJECE, 11(9), 174-191, 2024 

 

180 

Mahum et al. [12] created a method utilizing a refined 

deep learning algorithm to categorize potato leaves into five 

distinct groups based on their visual characteristics. Using a 

pre-existing dataset, the model that was suggested is trained 

(called "The Plant Village") that contains photos of potato 

leaves labeled as Healthy, Normal, or Infected with Early 

Blight (EB) or Late Blight (LB), respectively. To speed up 

the process of disease classification in potato leaves, a pre-

trained Efficient DenseNet model has been used, with the 

help of an additional transition layer in DenseNet-201. Since 

the training data is very unbalanced, their proposed technique 

benefits from the use of the reweighted cross-entropy loss 

function. Overfitting is kept to a minimum in the training of 

tiny training sets of potato leaves because of the thick 

relationships with regularization power. 
 

Chen et al. [13] implemented a more effective crop 

disease identification model using the YOLOv5 network 

baseline. To begin, they employed a brand-new Involution 

Bottleneck module to cut down on parameters and 

calculations while simultaneously picking up spatial 

information at great distances. Second, a SE module was 

integrated to elevate the model's responsiveness to channel 

characteristics. To prevent the degeneration of the loss 

function “Generalized Intersection over Union” into 

“Intersection over Union,” “Efficient Intersection over 

Union” was introduced. The proposed strategies were 

implemented to enhance the network model's target 

recognition performance. 
 

Kawasaki et al. [14] addressed illness detection in 

cucumber leaves caused by viruses like Zucchini yellow 

mosaic and yellow spot using a unique CNN architecture. 

They demonstrated that adding more data to the mix is more 

helpful in recognizing performance than simply adding more 

training epochs. Additionally, they dealt with numerous 

augmentation procedures across a variety of topologies to 

boost classification accuracy. 
 

Durmus al. [15] showed the work carried out by training 

AlexNet and CNNs on SqueezeNet on the Nvidia Jetson 

platform to propose an expanded work. Alexnet's accuracy is 

slightly lower than that of projects where a TITAN X GPU 

was employed, but this is still quite respectable. In addition, 

the findings suggested that real-time experiments on crop 

disease detection systems are feasible. They demonstrated 

great performance in embedded applications and transferred 

the model to the embedded device for use in actual use. 
 

Jiang et al. [16] introduced an alternate method of using 

DL in object detectors. In addition, the zone harboring 

diseases is classified and located using the features inside the 

bounding box using faster region based CNNs architectures 

and Single Shot Multi-box detector.  
 

Barbedo et al. [17] indicated that images of discrete spots 

and lesions, rather than complete leaves, are needed for DL-

based leaf disease classification. However, there are still open 

questions regarding the precision with which photos can be 

automatically segmented into individual lesions after the 

background has been removed. In addition, the mobile 

phone-based detection system for plant diseases uses a 

compact deep CNN technology. Additionally, the CNN 

model can be implemented on a mobile device, increasing the 

usefulness and accessibility of this technology to farmers. 
 

Rahman et al. [18] used a two-fold deep CNN 

architecture to categorise citrus illnesses from leaf pictures 

and detect plant problems. A region suggestion network is 

used in the first stage to suggest probable target diseased 

areas, and a classifier is used in the second stage to assign the 

most likely aim area to the associated disease class. 
 

Gehlot et al. [28] developed the EffiNet-TS design, 

which is an EfficientNetV2 Teacher or Student architecture 

consisting of the EffiNet-Teacher classifier, Decoder, and 

EffiNet-Student classifier. Since it feeds and employs a 

substantial portion of a country's population, agriculture is 

essential to national prosperity. One of the most difficult 

aspects of increasing farmers' revenue is the presence of plant 

diseases. Recent advances in deep learning have allowed for 

the development of highly accurate and efficient 

categorization frameworks, such as efficientNet, which has 

significantly expanded CNN's utility. 
 

Khan et al. [29] suggested a deep learning system based 

on the Entropy ELM to diagnose diseases in cucumber 

leaves. The proposed system is used to train one of four pre-

trained deep models with the goal of improving accuracy. 

Next, the Entropy-Elm method is applied to this model in 

order to pick the most useful characteristics. The opposite 

phase, which involves combining features from all pretrained 

models, is where the feature selection method comes into 

play. In the end, they did classification using a combination 

of features from the first two steps. The suggested framework 

was evaluated on a dataset of modified cucumber leaves, and 

it achieved an accuracy of 97.98%. 
 

Divyanth et al. [30] utilized SegNet, UNet, and 

DeepLabV3+, three semantic segmentation models, in a two-

step process. In the first phase, the complex backdrop is 

separated from the leaf image so that it may be detected in 

the second. After evaluating the performance of each 

segmentation model, they concluded that UNet was superior 

for stage one and that the DeepLabV3+ model was superior 

for stage two. They also enhanced previous methods of 

assessing the extent of disease by measuring the area of 

disease lesions. Nandi et al. [31] implemented the VGG-16, 

GoogleNet, ResNet-18, MobileNet-v2, and Efficient Net 

CNN models. They tried applying model quantization 

approaches to those three aforementioned CNN models and 

discovered that GoogleNet was the most accurate and had the 

smallest footprint. After quantization, the Efficient Net 

model reached 99% accuracy with a manageable size. 
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Table

  

Article 
Real-world 

application 
ML/DL Model Model Parameters 

Advantages/ 

Limitations 

[10] 

Real-time images 

of greening, 

Canker, melanosis, 

and blackspots  

diseases 

Ant colony optimization 

with CNN 
NA 

Relies on optimization, 

which can lead to an 

increase in the time 

complexity. 

[32] 

Basal Stem Rot for 

hyperspectral 

images  

Mask RCNN and VGGNet 

Epochs=12 for 

VGG and 3000 for 

mask-RCNN 

It is not experimented in 

realistic environments 

and can be extended 

towards non-normal 

bands. 

[34] 
Tomato disease 

detection 

Generative Adversarial 

Learning 

Adam Loss 

function = category 

cross entropy = 

Optimizer  

32 is the batch size. 

It is performed on a 

limited dataset where 

overfitting can decrease 

the system performance; 

however, data 

augmentation methods 

are added to minimize 

the overfitting. 

[35]  
Tomato disease 

detection  

Inception ResNet V2 and 

Inception V3 

32-batch, 15-Epoch 

batch size 

Acquiring 

knowledge = 0.01 

and 0.00001 

Reported high accuracy 

for 50% dropout; 

however, it is performed 

on a limited dataset. 

[36] 

Realt-time images, 

along with the 

plant village 

dataset 

Pre-trained DL 

architectures for Transfer 

learning=InceptionV3, 

ResNet50, VGG16, 

DesneNet169, and 

Xception 

Epochs= 100 

Batch size =16 

This approach has been 

reported to have the 

ability to generalize 

disease detection; 

therefore, it can be used 

for real-time deployable 

devices. 

[37] 

Tomato plant 

diseases (10 

categories) 

MobileNetV3Small, 

EfficientNetV2L, 

InceptionV3 and 

MobileNetV2 

0.0001 is the 

learning rate.  

Batch Size: 4 

Optimizer: Adam 

It uses the PSO model 

for fine-tuning the 

parameters, which 

requires a customized 

objective function; thus, 

the optimization 

completely relies on it. 

PSO may result in poor 

convergence, resulting 

in estimating 

inappropriate parameters 

[38] 

Plant disease 

detection for paddy 

and tomato leaves 

MobileNet DL model and 

KMeans clustering as ML 

model 

Learning rate 

=0.01, 0.001 

Train-test ratio=90-

10 and 80-20 

Works for limited 

datasets and is difficult 

to generalize for 

different datasets as it 

was trained on limited 

images 
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Algani et al. [10] utilized a CNN optimized with ants 

(ACO-CNN). Accuracy, precision, recall, and F1-score were 

all better for the ACOCNN model than for the C-GAN, CNN, 

and SGD models. C-GAN has an accuracy of 99.59%, CNN 

of 99.89%, and SGD of 85%. With an accuracy of 99.98%, 

the ACOCNN model has the highest F1 score of any 

currently available model. The identification of Basal Stem 

Rot was a primary focus of Yong et al.'s [32] research. They 

discussed deep learning and hyper spectral imaging. In this 

method, they analyzed spectral changes across leaf positions 

by segmenting the top-down image of the seedling into areas. 

To assess the role of the setting of images on identification 

accuracy, they segmented photos of the plant and fed them 

into a Mask RCNN. They used VGG16 and Mask RCNN to 

train their system, with VGG16 yielding the highest accuracy 

(94.32 %). 

 

Ma et al. [33] utilized an attention module built into the 

multi-stage partial network's backbone, and they 

extracted multi-dimensional information from both the 

spatial and channel views. To increase the breadth of 

information about agricultural diseases that can be extracted 

from photographs of crops, they also added an area pyramid 

aggregating module that makes use of dilated convolutions to 

the network.  

 

Guerrero-Ibanez and Reyes-Muñoz [34] included GAN 

based methods for augmenting data in the process of 

developing a CNN architecture for disease detection and 

classification in tomato leaves. The accuracy of disease 

classification was improved to a level of 99.64%. To begin 

with, a deep module was presented in the MMDGAN 

generator to enhance feature extraction of tomato disease 

leaves. To regulate the overall process of image production, 

an integrated attention system was then devised, which 

incorporated a cross attentiveness module with a 

merged module. Finally, the Markov discriminator was 

implemented to improve local texture similarity assessment. 

Saeed et al. [35] considered the diagnosis of tomato leaf 

diseases by classifying photos of healthy and unhealthy 

tomato leaves using a classification system. They developed 

these models by utilizing a publicly available dataset known 

as PlantVillage, and they achieved a validation accuracy of 

99.22%, which was the best possible score. 

 

Ahmad et al. [36] evaluated the efficacy of five 

conventional deep learning models with regard to the 

identification of plant diseases across a wide range of 

environmental variables. The training for these models was 

done with photos of corn diseases taken from publicly 

available sources. According to what they found, employing 

DenseNet169 resulted in maximum validation accuracy 

(81.60%) in the field of plant disease diagnosis, representing 

the peak of generalization performance. The classification of 

tomato leaf disease was the topic of discussion in [37], where 

a strategy for fine-tuning the created CNN models was 

presented. An optimization of the hyper parameters was 

carried out by the authors utilizing the particle swarm 

optimization technique (PSO). Grid search optimization is 

used to get the best results for optimizing the weights of these 

structures. They also suggested a triple and quintuple 

ensemble model and an approach that classified the datasets 

called cross-validation. They achieved the best possible 

classification accuracy of 99.60% by utilizing the ensemble 

approach. 

 

Francis et al. [38] outlined the automatic generation of 

features and the creation of prediction systems in agriculture 

as an application of typical deep learning models. 

They placed a strong emphasis on the significance of fine-

tuning the model, transfer learning, and the segmentation of 

sick areas. They began by training on a dataset consisting of 

apple leaves, both healthy and ill. Then, they tested the 

efficacy of different MobileNet models whose depth 

multipliers and resolution multipliers varied. Using both 

Mobilenet and the K means clustering method, they were able 

to get the greatest accuracy possible, which was 99.7%. 

 

5. Leaf Disease Identification Using Generative 

Adversarial Network (GAN) 
The field of producing synthetic images has seen the 

introduction of generative adversarial networks, sometimes 

known as GANs, during the previous half decade. In addition, 

CNNs have found widespread application in the fields of 

disease recognition in leaves and pest recognition. CNNs 

have been utilized in these areas, and their efficacy as a 

strategy has been demonstrated. Despite this, the most 

significant challenge, which is that of a restricted training 

dataset, has been neglected. Because of this, there is now a 

problem with the data being over fit. In addition, thanks to 

the development of algorithms that are based on GANs, the 

accuracy of predictions has improved, and the issue of 

excessive data fitting due to a lack of available training data 

has been overcome. GANs are utilized in [24] Good fellow et 

al. primarily for the purpose of combating the issue of 

insufficient data. GANs have a structure that is made up of 2 

networks, namely a discriminator network and a generator 

network. Here, the generator is responsible for capturing the 

training data distribution, whilst a discriminator is 

responsible for calculating the likelihood of whether an 

image came from the program that generated it or the data set 

employed to train. Furthermore, the objective is to improve 

the generator's capability to tweak the discriminator, which 

has been provided the training to identify natural images from 

the ones that have been artificially formed. To use this tactic, 

dedicated GANs are required that can produce synthetic 

images. These mock images are used for training a system 

that can classify leaf diseases and pests accurately. Table 5 

shows the comparison analysis of GA based models for crop 

leaf disease classification.  
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Table 5. Crop leaf disease classification 

Ref Contribution Dataset Performance 

[25] 

Multimodal GAN images are 

considered and introduced two 

stage CNN 

Custom dataset with 

42 leaf diseases from 

16 different plant 

species  

mAP of PDNET-1 = 0.9165 

mAP of PDNet-2 = 93.67  

[26] 
Tranvolution detection network 

with GAN 
PlantDoc, 

Precision =51.7%, 

Recall =48.1%  

mAP=50.3%  

[27]  

Three stage pipelined DL 

architecture by using Faster R-

CNN, DCGAN, and ResNet. 

GrapeLeaf NA 

[33] 

Attention mechanism  and spatial 

pyramid pooling based DL 

architecture, which uses dilated 

convolutions 

Custom dataset Accuracy =90.15 

[34] CNN with GAN augmentation  Tomato leaves Accuracy =99.64% 

[35] Pre-trained CNNs  Plant Village Accuracy =99.22% 

[36] 

Comparative analysis of different 

DL models where DenseNet169 

obtained the highest accuracy 

 Accuracy =81.69 

[37]  
Optimized deep learning using a 

meta-heuristic approach  
Tomato leaf disease Accuracy =99.60 

[38]  

Combined use of transfer learning 

and fine-tuning. Therefore, 

MobileNet with KMeans 

clustering is used. 

Tomato leaves accuracy = 99.7% 

Arsenovic et al. [25], in their work, mentioned artificial 

means to generate crop photos by employing Generative 

Adversarial Networks (GANs). In addition, throughout the 

past few years, a number of different variations of GAN 

architectures have been presented, including CGAN, 

DCGAN, ProGAN, and StyleGAN. In order to more 

accurately reflect multimodal data production, the 

conditional GAN, also known as CGAN, is utilized. 

According to the findings, the optimal resolution for the leaf 

images that StyleGAN created was 256 pixels by 256 pixels. 

Because of the noisy background, these GAN networks did 

not train well on field photos, which is a problem that has not 

been rectified despite additional training on field images. 

Networks trained on GAN-generated images performed 

around 1% better than networks trained just on natural images 

on the test set. As a bonus, Plant DiseaseNet (PDNet), a two-

stage convolutional neural network, was unveiled as well 

[25]. The initial stage (PDNet-1) of this process, which 

predicted the leaf bounding box, also made use of the detector 

YOLOv3 and the feature extractor Alexnet. In addition, stage 

two of the plant DiseaseNet, or PDNet-2, is comprised of a 

softmax layer, a 32-layer CNN architecture, a pooling layer 

for global averaging, and a fully connected 42-way layer. In 

terms of map scores, PDNET-1 achieves 0.9165, while 

PDNET-2 achieves 93.66% accuracy in identifying 

agricultural diseases. It is worth noting that GANs have huge 

untapped potential for creating training images automatically 

and are very beneficial in solving informational difficulties 

shortage. 

As per Zhang et al. [26], conventional deep learning-

based techniques have several drawbacks, including (1) the 

need for expensive hardware and a massive amount of data 

for training the models. (2) The slow inference speed of 

models makes them difficult to adapt to real-world 

manufacturing. The third problem is that models do not 

generalize well enough. In light of these challenges, this 

research proposes using a Tranvolution detection network 

equipped with GAN modules to identify crop diseases. GAN 

models were first integrated into the attention extraction 

module, and then GAN modules were built from scratch. 

After the CNN was integrated with the updated Transformer, 

they proposed the Tranvolution architecture. 
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Chen et al. [27] proposed a three-stage DL based pipeline 

to address the issues, which consisted of a convolutional 

neural network (Faster R-CNN) for lesion recognition. The 

lesions on grape leaves were marked using Faster R-CNN so 

that a lesions dataset could be obtained, which ResNet was 

utilized to identify. Leaf GAN makes better use of features to 

produce grape leaf disease images with noticeable disease 

lesions using a decreasing-channel producer model. The 

original grape disease photos are then used in conjunction 

with a discriminator model that makes use of a dense 

connection technique and instance normalization to produce 

highly accurate feature extraction results. The training 

process is then stabilized by using the deep regret diminished 

function. 

6. Leaf Disease Recognition Based on Different 

Types of Data 
As the IoT spreads throughout the agricultural sector, 

driven by advances in digital technology and recognizing 

sensors, new sensor technologies emerge and evolve in the 

directions of being attached, smart, combined, and 

simplified. 

 

6.1. Ground Image Dataset 

Imaging crops from the ground up, such as with a 

smartphone or digital camera, is known as “crop ground 

imaging.” Many researchers attempted to take pictures of 

plant leaves in the field, which presented a number of 

challenges due to the presence of things like complicated 

backgrounds, shadows, and varying levels of light. 

 

For this goal, conventional machine learning methods 

were employed by them. SVM models are often used in this 

research for crop disease diagnoses due to their excellent 

prediction accuracy. Hyperspectral imaging at close range for 

early detection of severe drought in barley was achieved 

using support vector machines [39]. Data from labels and two 

vegetation indices were used to train the model. 

 

Similar methods for reducing misclassification in 

disease detection on plant leaves, such as the physical 

extraction of lesions and the combining of various SVM 

classifiers (color, texture, and shape attributes) [40]. Using a 

PCA model, researchers were able to differentiate between 

plants in good condition and the advancement of golden 

potato disease [48] based on statistical analysis of some 

variables.  

 

Hyperspectral pictures of diseased potatoes at various 

phases of disease development were obtained. The 

investigation confirmed that spectral data can be used to 

differentiate between plants in good condition and those that 

are afflicted with illness. Similarly, the authors in [41] 

employed hyperspectral images to classify the degree of grey 

mould infestations on tomato leaves using the decision tree-

based classifier C5.0 and KNN. Using ANN with one hidden 

layer. The authors of [42] estimated the severity of three 

wheat illnesses. The network achieved an 81% classification 

accuracy. Table 6 presents the outcome of plant disease 

detection for ground images.  

 

Table 6. Outcome of plant disease detection for ground images 

Data 

type 
ML/DL Method Crop Dataset (no. of images/type) Accuracy Reference 

Ground 

images 

ML 

SVM Barley 204 68% [39] 

SVM Tomato 284 93.90% [43] 

SVM Rice 120 73.32% [47] 

PCA Potato 120 - [48] 

KNN Tomato 212 92.85% [41] 

ANN Wheat 630 / multispectral 81% [42] 

DL 

ELM Tomato 310 / hyperspectral  100 [49]  

ELM Tobacco 180 / hyperspectral  98% [50] 

ResNet Multiple 55,038 99.67% [50] 

2D- CNN 

BidGRU 
Wheat 90 84.6% [52] 

ResNet MC1 Multiple 121,955 98% [53] 

Adapted 

MobileNet 
Tomato  7176 89.2 [54] 

SSCNN citrus 2939 99% [55] 

MobileNet Apple 334 73.50% [56] 

DenseNet Tomato 666 95.65% [57] 

EfficientNet Multiple  55,038 99.97% [58] 
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6.2. UAV Based Imaging  

Unmanned Aerial Vehicles (UAVs) are also harnessed 

as a Precise Agricultural (PA) tool. This tool aids in the 

supervision and management of crop growth, potential 

disease progression, and the identification of weeds. This is 

achievable due to the UAVs' capability to gather images of 

superior resolution at reduced expenses. Within the realm of 

agriculture, it plays a significant role by substantially 

decreasing costs associated with the requirement of an on-site 

specialist to conduct multiple rounds of comprehensive crop 

monitoring. UAVs outfitted with integrated cameras and 

sensors execute adept data collection across expansive fields, 

facilitating the visualization and comprehensive analysis of 

field-scale dynamics. Supplementary components further 

augment the efficacy of crop surveillance methodologies, 

encompassing the meticulous selection of suitable sensors 

and intelligent recognition models. Conventional machine 

learning algorithms are employed for the identification of 

plant diseases utilizing imagery captured by UAVs. One of 

the initial models for predicting the extent of plant infections 

through imagery involved the utilization of the 

Backpropagation Neural Network (BPNN) model [59].  

 

In this context, the researchers retrieved spectrum 
information from hyper spectral photos of tomato plants 

taken with remote sensing. Next, these images were 

evaluated to examine the severity of light blight disease, 

which is categorized into 5 stages. The BPNN model was 

subsequently applied to the mined dataset. The outcomes 

from the model highlight the possibility of using an Artificial 

Neural Network (ANN) with backpropagation for spectral-

based disease detection prediction. Likewise, researchers in 

[64] worked on identifying leafroll disease through the usage 

of Regression Tree methods. This method is based on the 

spectral and spatial properties of hyper spectral UAV photos 

of grapevines. Similar to this, investigators in [62] used UAV 

multispectral images to mine spectral bands, vegetation 

indices, and biophysical characteristics from both distressed 

and healthy plants.  

 

They then used ROC analysis to evaluate how well the 

selected factors identified the existence of the condition. 

Researchers used a segmentation strategy based on Simple 

Linear Iterative Clustering in a different study [62] to detect 

foliar illnesses in soybean plants. Their technique creates 

super pixels by using the k-means technique. After 

segmentation, the pictures were classified using a Support 

Vector Machine (SVM), which achieved a 98.34% accuracy 

rate. In a different experiment [63], researchers focused on 

using UAV multispectral photos to identify wheat yellow rust 

illness. They used a system based on the random forest 

classifier, which has an accuracy rate of 89.3% and can 

efficiently differentiate the illness across different 

developmental periods. Citrus canker was identified using 

UAV photos in [68] at different phases of the disease's 

development. The scientists used an artificial neural network 

called the Radial Basis Function (RBF), which is used in 

supervised machine learning, for classification. This 

categorization method achieved a remarkable 92% detection 

accuracy for the illness. In order to get more precise 

information on plant features, researchers in [65] derived 

Vegetation Indices (VIs) from multispectral photographs. 

The study's conclusions showed that, when utilizing the Ada 

Boost method, compressing the VIs feature using PCA and 

merging it with the original data values produced 100% 

flawless correctness. For classification tasks, including 

hyperspectral data collected from both healthy and ill 

avocado trees, Multilayer Perceptions (MLPs) were utilized 

[67]. In a similar vein, using hyper spectral and thermal 

pictures obtained with UAVs, the SVM classifier was utilized 

to identify a fungus that was damaging olive plants [66]. The 

model's ideal spectral band selection allowed it to reach an 

accuracy level of 80%. To sum up, traditional machine 

learning techniques show poor performance that can change 

depending on the acquisition device and different growth 

stages. 
 

This limited performance can also be attributed to the 

feature engineering course, which could lead to significant 

information loss. To address these limitations, DL models 

have emerged for crop disease detection, where the image 

data is collected through UAV. In [20], a sliding window 

technique was employed on plot images by using CNN based 

architecture for classification. The outcomes yielded a mean 

absolute error of 11.72% and a relatively consistent outcome. 

In [70], differentiation between healthy and diseased maize 

leaves was accomplished using the ResNet model, achieving 

the test accuracy of 97.85%. Similarly, in pursuit of detecting 

disease symptoms in grape leaves [69], the authors adopted a 

CNN approach, combining pertinent image features with 

distinct color spaces. The images were transformed into 

various colorimetric spaces to segregate intensity data from 

chrominance. The CNN model Net-5 underwent testing with 

multiple input data combinations and three patch sizes, 

resulting in the highest accuracy of 95.86%. Table 7 displays 

the results of the UAV image-based plant disease detection.  
 

7. Using Deep Learning to Combat Crop 

Disease  
The selection of the use of Machine Learning (ML) 

along with Deep Learning (DL) techniques for Crop Disease 

Identification is contingent upon several criteria, including 

the intricacy of the issue, the data at hand, computing 

capacity, and the intended degree of precision. The following 

describes the various approaches and their applicability in 

this field: 

7.1. Machine Learning Methods 

7.1.1. SVM 

SVMs can be effective for binary classification tasks, but 

they might struggle with more complex multi-class 

classification problems commonly found in crop disease 

identification. 
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Table 7. Outcome of plant disease detection for UAV images

Data type ML/DL Method Crop Image type Accuracy Reference 

UAV images 

ML 

BPNN Tomato Hyperspectral - [59] 

CART Vine grape Hyperspectral 94.1 [60] 

ROC analysis Vine grape Multi-spectral - [61] 

SLIC + SVM Soybean RGB 98.34 [62] 

Random forest Wheat Multi-spectral 89.34 [63] 

RBF Citrus Multi-spectral 96 [64] 

AdaBoost Citrus Multi-spectral 100 [65] 

SVM Olive Thermal and hyper-spectral 80 [66] 

MLP Avocado Hyperspectral 94 [67] 

DL 

ResNet Maize RGB 97.85 [68]  

CNN Potato Multi-spectral - [20] 

Net-5 Grape vine Multi-spectral 95.86 [69] 

CNN Maize RGB 95.1 [70] 

DCNN Wheat Hyperspectral 85 [71] 

DCGAN+ inception Pinus Tree RGB - [73] 

SegNet grapevine Multi-spectral - [69] 

VddNet grapevine Multi-spectral 93.72 [73] 

7.1.2. Random Forests (RF) and Decision Trees 

These methods work well when dealing with a mix of 

categorical and numerical data and can handle non-linear 

relationships. They might be suitable for simpler 

classification tasks within crop disease identification. 
 

7.1.3. Naive Bayes 

Simple and efficient, Naive Bayes methods assume 

independence between features, which might not be true for 

all crop disease identification scenarios. They might work 

well for certain simpler cases. 
 

7.2. Deep Learning Methods 

7.2.1. CNN 

CNNs are especially well-suited for agricultural disease 

diagnosis using photos of leaves or crops since they are very 

good at analysing visual data and are very effective for 

image-based jobs. From the photos, they can automatically 

extract pertinent elements. 
 

7.2.2. Recurrent Neural Networks (RNNs) 

Suitable for sequential data. In crop disease identification, 

if there is temporal information involved (like the progression 

of a disease over time), RNNs might be useful. 
 

7.2.3. Transfer Learning 

Utilizing pre-trained models (e.g., using ImageNet-

trained models) and optimising them for crop disease 

identification can be beneficial, especially when labeled data 

is limited. This approach often works well with CNNs. 

 

7.3. Suitability of ML Models in Crop Disease Identification 

7.3.1. Complexity of the Problem 

Deep learning methods like CNNs can handle complex 

patterns and changes in picture data. This makes them useful 

for determining subtle visual cues associated with different 

diseases on crops. 

7.3.2. Data Availability 

DL schemes typically require a huge amount of labeled 

data to perform well. If labeled datasets are available, CNNs 

can leverage this data effectively. 

7.3.3. Interpretability 

Some ML models, like decision trees offer better 

interpretability compared to deep learning models like CNNs. 

In scenarios where understanding the reasoning behind 

predictions is crucial, these models might be preferred. 

 

7.3.4. Computational Resources 

Deep learning models, especially large CNN 

architectures, demand significant computational resources 

(high-end GPUs) for training. ML models like decision trees 

or SVMs are less resource-intensive. 

 

Ultimately, a combination of approaches might yield the 

best results. For instance, using a CNN for image feature 

extraction and then integrating it with an interpretable ML 

model for final classification could be a hybrid strategy for 

accurate disease identification in crops while maintaining 

some level of interpretability. 

8. Plant Disease Dataset  
One such open dataset, PlantVillage, has accumulated 

54309 photos of plant illnesses on its leaves; this dataset 

covers 14 different types of fruit and vegetable crops, 

including apples, blueberries, cherries, grapes, oranges, 

potatoes, peppers, pumpkins, strawberries, and tomatoes. 

Corn has 12 photographs of healthy crop leaves in addition to 

26 images of diseased ones, seventeen fungal, four bacterial, 

two mycotic, two viral, and one mite illness. 

 

  ‘Plant Pathology Challenge’ for CVPR 2020-FGVC7, 

The collection contains 3,651 labelled RGB pictures in total, 

including 1,200 images of the apple scab, 1,399 images of 
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cedar apple rust, 187 images of leaves with several illnesses, 

and 865 images of apple leaves in good condition. 

 

9. Performance Measurement Parameters  
To evaluate the efficacy of the method being presented, 

numerous measures, including sensitivity, specificity, 

accuracy, dice score, positive projected value, and area under 

the curve, have been taken into consideration. These metrics 

may be calculated as follows: 

Performance Metrics Computation formula 

Sensitivity 𝑆𝑛 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity  𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Accuracy 𝑇𝑃 + 𝑇𝑁

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

AUC ≈ 0.5(𝑆𝑛 + 𝑆𝑝) 

Here, The polar opposites of one another are represented 

by the phrases FP (False Positive), true negative (TN), True 

Positive (TP), and False Negative (FN). The genuine positive 

rate is known as sensitivity (𝑆𝑛), the false positive and false 

negative rates are known as specificity (𝑆𝑝), accuracy is a 

measure of real prediction, false positives are the wrong 

positive predictions, and false negatives are the wrong 

negative predictions. The final result is the AUC, which is 

calculated as about half of the total of the sensitivity and 

specificity. 

10. Answers to Research Question 
In previous Section 2, we discussed several research 

questions, and based on those questions, we have performed 

the literature review and identified solutions to those 

questions, which are as follows: 

SRQ1: “What cutting-edge machine learning techniques 

have been applied recently to address the issue of agricultural 

disease detection?” 

The complete review discussed various methods for 

plant leaf disease detection where ML and DL based 

computer vision methods had been identified as the 

promising solution; therefore, it has been widely adopted in 

this domain. 

SRQ2: Which crop diseases cause the most damage and are 

most common? 

Several crop diseases can cause significant damage and 

are widespread, impacting agricultural productivity and food 

security globally. Some of the most damaging and common 

crop diseases include Rice Blast, Wheat Rusts (Stripe, Stem, 

and Leaf Rust), and Late Blight of Potatoes and tomatoes.  

SRQ3: What kinds of data sets are there to choose from? 

In this context, two datasets are widely used, which are 

known as the PlantVillage dataset and the Plant Pathology 

Challenge dataset. 

SRQ4: How do crop disease detection experts often measure 

success? 

The TP, TN, FP and FN are identified in order to gauge 

the effectiveness of these procedures. Accuracy, precision, 

recall, and f-measure are then estimated.  

SRQ5: What are the most popular machine learning 

frameworks? 

Generally, supervised machine learning methods are 

widely adopted in classification tasks, but the current 

advancements have focused on increasing the overall 

accuracy; therefore, ensemble machine learning methods are 

also adopted where two or more classifications are combined 

to obtain an accurate classification.  

11. Conclusion  
In this paper, we presented a foundational understanding 

of ML/DL techniques. We gave a thorough evaluation of 

recent research for the usage of DL methods to the problem 

of crop leaf disease recognition. Assuming a suitable quantity 

of training data is used, deep learning methods may 

accurately detect leaf-borne diseases. Hyper-spectral imaging 

and small-sample disease detection in plant leaves have been 

discussed, as have the benefits of collecting huge databases 

with high variation, improving data quality, learning from 

experience, and visualizing CNN activation maps to enhance 

classification accuracy. There are, however, a few 

shortcomings. According to the literature, the majority of DL 

frameworks operate well with their datasets but not so well 

on other datasets. This indicates that the model is not very 

robust. Improved DL models are needed to accommodate the 

abundance of datasets about diseases. 

Several studies have used the data collected by 

PlantVillage to assess the effectiveness of DL-based 

frameworks. Despite the large number of photos depicting 

various plant diseases, this collection is still useful. A 

comprehensive database of plant diseases in natural settings 

is thus anticipated. Even seasoned professionals have trouble 

pinpointing the precise location of invisible disease 

symptoms and defining pure invisible illness pixels, making 

it challenging to generate the annotated information 

necessary for early plant disease detection. 
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