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Abstract - The goal of medical image segmentation is to organize pixels into several areas according to the several 

characteristics of the images. Due to several factors, such as variations in data signal-to-noise ratios, signal intensities, and 

individual variations in heart morphologies, segmenting 2D echo cardiovascular images remains a difficult process. This 

research introduces 3D U-Net-SparseVoxNet, a unique and effective 3D sparse convolutional network based on U-Net. Any 

two layers in this network that have the same feature map size may have direct connections with each other, and there are 

fewer connections overall. Consequently, by drastically reducing the network depth and ultimately utilizing a spatial self-

attention mechanism to improve feature representation, 3D U-Net-SparseVoxNet can successfully handle the optimization 

issue of gradients disappearing when using a limited sample of data to train a 3D deep neural network architecture. This 

research presents a detailed evaluation of the suggested technique using the HVSMR 2016 dataset. The strategy performs 

better when compared to other approaches. The proposed method proved to provide good and efficient results in classifying 

the data with an accuracy of 90% compared to 3D U-Net and VoxResNet, with 74% and 80% accuracy, respectively. 
 

Keywords - 2-D Echocardiography, U-Net, Segmentation, Images, Convolution neural network. 

 

1. Introduction 
Multi-objective segmentation is a crucial technique in 

the fields of clinical applications, medical image processing, 

and disease diagnosis. Its primary goal is to segment images 

into distinct regions based on shared features or specific 

characteristics such as edges, structures, or shapes. Accurate 

segmentation is vital for precise diagnosis, effective 

prognostic predictions, and enhanced surgical planning. In 

recent years, deep learning models, particularly 

Convolution Neural Networks (CNNs), have been 

employed to tackle image segmentation challenges [4]. 

These models have demonstrated significant advancements 

in medical imaging, yet they encounter substantial 

limitations that impede their effectiveness in real-world 

scenarios. 

One major issue is the challenge posed by insufficient 

edge information and ambiguous boundaries, which hinder 

the accurate delineation of structures in medical images. 

Additionally, low-quality images further exacerbate the 

difficulty of achieving reliable segmentation. Although 

architectures such as VoxResNet and U-Net have made 

strides in addressing these challenges, they still face 

significant hurdles. VoxResNet, despite its high accuracy 

and efficiency, is hampered by its deep architecture, which 

requires extensive computational resources and memory, 

and its lengthy training times [5]. U-Net, on the other hand, 

suffers from issues related to redundant information and 

inefficiencies in preserving pixel-level details, which limits 

its effectiveness in handling complex image segmentation 

tasks [6]. 
 

Addressing these gaps, this study introduces a novel 

approach through the development of 3D U-Net-3D U-Net-

SparseVoxNet, an advanced 3D sparse convolution network 

designed to enhance medical image segmentation. Unlike 

traditional models, our proposed approach incorporates 

sparse convolution techniques along with self-attention 

mechanisms. This integration not only improves feature 

map representation but also captures long-range 

dependencies more effectively. By reducing the model 

parameters and eliminating unnecessary processing, our 

approach aims to achieve higher segmentation accuracy, 

faster convergence, and reduced risk of overfitting. This 

represents a significant advancement over existing methods, 

offering a more efficient and accurate solution for complex 

medical image segmentation tasks.

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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The paper is organized as follows: Section 1 outlines 

the proposed work and identifies the research gap. Section 

2 provides a comprehensive review of related literature. 

Section 3 details the proposed methods, including the sparse 

block architecture and model design. Section 4 presents the 

experimental setup and findings, and Section 5 concludes 

the study with a summary of results and future directions. 

2. Related Works 
In the realm of multi-objective image segmentation, 

various methods have been explored to improve accuracy 

and efficiency. Early approaches, such as those proposed by 

Pham et al. [9], employed region-based active contour 

algorithms combined with fuzzy entropy clustering to 

segment brain images. Hongwei et al. [10] introduced a 

multi-objective clustering method coupled with a toroidal 

model-guided tracking approach to distinguish intricate 

features in vascular structures. These early efforts laid the 

groundwork for more advanced techniques, but challenges 

remained in handling complex and noisy data. 

 

The advent of deep learning has revolutionized medical 

image segmentation, with significant contributions from 

various researchers. Çiçek et al. [11] utilized a dual-network 

approach to segment cardiac images, improving 

performance by localizing and distinguishing substructures 

within the heart. Ding et al. [13] incorporated attention 

mechanisms into their models to enhance classification 

accuracy while reducing computational costs. Despite these 

advancements, issues such as redundant information and 

limited effectiveness in noisy conditions persisted, 

highlighting the need for more refined solutions. 

 

Recent developments have focused on automated 

image processing and quality evaluation. For instance, [18] 

explored anisotropic diffused filters for automated 

processing, while [19] evaluated various de-speckling filters 

for carotid plaque ultrasound images. These studies 

contributed valuable insights into image quality 

improvement but did not fully address the complexities of 

medical image segmentation. 

 

Our study builds upon these advancements by 

introducing a customized light multi-head model designed 

for echo-specific representation and real-time processing. 

This model outperforms previous methods by providing 

greater accuracy and efficiency in segmenting complex 

medical images. By addressing the limitations of existing 

techniques and incorporating innovative features, our 

approach offers a more robust solution for tackling the 

challenges associated with medical image segmentation. 

3. Proposed Methodologies 
3.1. The Architecture of 3D U-Net-SparseVoxNet 

The 3D U-Net-SparseVoxNet design that is suggested 

in this article. It enhances U-Net, which uses procedures for 

performing end-to-end training using up sampling and down 

sampling. Since when the characteristic maps vary in size, 

the sparse block loses all significance, padding is utilized to 

keep feature-map sizes.  

 

Constant throughout all sparse blocks. Dilated 

convolutions are thus utilized in the last three layers, and 

conventional convolutions in the first four levels of each 

sparse block. The most significant components of the 

original feature map are highlighted using a spatial feature 

map.  

 

Compared to conventional convolution, dilated 

convolution contains an additional hyperparameter that 

provides holes to the traditional convolution kernel. In this 

study, we add 3D data to the dilated convolution algorithm 

by combining it with regular convolution. We use three 

levels of dilation convolution with two, three, and five holes 

in addition to four layers of 3 × 3 × 3 conventional 

convolutions concerning the Dense VoxNet. The three 

stages of dilated convolution greatly broaden the feature's 

receiving held to catch any connections between long-

distance characteristics, whilst the four layers of normal 

convolution can identify the image's local features. It just 

takes a 7-layer convolution to get a 26 x 26 × 26 reception.  

 

Table 1's 3D U-Net-SparseVoxNet, which DenseNet 

inspired, shows a skip link as a black dotted line. Using 

deconvolution methods to bypass the connection, the image 

gets split once. The network will converge faster thanks to 

the skip connection and to have a greater accuracy rate. 

Because the narrow neural network gains more edge 

information and loses less information via convolution, the 

first segmented picture is going to perform better on edge 

segmentation. A fine-grained segmentation is the end 

outcome. In terms of coarse-grained segmentation, the 

second segmented picture performs better overall.  

 
Table 1. Each layer's stride and convolution kernel 

Input Image Output Layer Stride Kernel Parameters 

64 64 32 32 Conv_1  2 3 448 

32 32 16 16 Conv_2 2 3 6928 

16 16 16 16 Spatial attention 2 1 816 

16 16 16 16 Sparse Block_1 1 3 43330 

16 16 16 16 Sparse Block_2 1 3 496984 

128 128 Conv_3 2 3 11840 

2 2 Conv_4 1 3 6464 
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Fig. 1 Proposed architecture model 

 

High-level abstract characteristics from deep neural 

networks are very useful for removing the whole tissue's 

divided central portion. By voting, the last segment's 

outcome is decided by several segmentation outcomes of 

various clipped data shown in a single voxel. Sparse blocks 

take on the role of U-Net's down sampling method, and both 

deconvolutions are comparable to the up-sampling 

procedure. 

 

The number of parameters is shown in Table 1 for each 

layer in the SparseVoxNet. The parameters of two 

deconvolution layers, two sparse blocks, a skip connection 

layer, a spatial attention mechanism layer, and four 

convolution layers are shown in Table 1. Conv_n represents 

the four convolution layers, Deconv_n represents the two 

deconvolution layers, and Sparse Block_n represents the 

two sparse blocks. 

 

Figure 1 depicts the SparseVoxNet architecture that is 

suggested in this work. It improves U-Net, which performs 

end-to-end training via the use of up sampling and down 

sampling processes. Dilated convolutions are used in the last 

three layers, and regular convolutions in the first four levels. 

There are three, four, and five holes. To reinforce the most 

significant aspects of the first feature map, following the 

data feature map is the implementation of the spatial self-

attention mechanism. A very precise segmentation is the 

product. In terms of coarse-grained segmentation, the 

second segmented picture performs better overall. High-

level abstract characteristics from deep neural networks are 

very useful for extracting the segmented centre region of the 

whole tissue.  

 

We also count the number of parameters in each layer 

of the SparseVoxNet that Table 1 displays. Table 1 displays 

the settings for four convolution layers: a skip connection 

layer, two sparse blocks, a spatial attention mechanism 

layer, and two deconvolution layers. Conv_n represents the 

four convolution layers, Deconv_n represents the two 

deconvolution layers, and Sparse Block_n represents the 

two sparse blocks. Table 1 also displays the stride and 

convolution kernel for each layer. Keep in mind that every 

entry in Table 1 matches every layer in Figure 1. 

 

3.2. Sparse Block 

Compared to ResNet, DenseNet has denser 

connections, which results in much higher hardware 

resource usage. We, therefore propose sparse network 

architecture to alter feature reuse while preserving feature 

reuse in addition to skipping connection features. By only 

offering direct connections, often referred to as full skip 

connections, between a pair of layers that share the same 

feature map size, our suggested sparse blocks minimize the 

overall number of connections. Nonetheless, the sparse 

block's influence is equivalent to the dense blocks. The 

following is the transition layer's input: 

 

  ( ) ( ) ( ) ( ) 34231201043210 ,,,,,,,, THTHTHTHTTTTTT =                   (1) 
 

 

Where the input of H1 is T0, the input of H2 is T0 +T1 

and soon. Different scales relate to the feature mappings of 

various receptive fields. It has been discovered that the 

linear combination outperforms the nonlinear combination 

when it comes to combining the characteristics of various 

scales. Composite expressive Feature maps of different 

sizes are immediately layered to build features; this method 

was inspired by the architecture of the U-Net network. 

 

In contrast to U-Net, the enhanced network architecture 

replaces the up-sampling step with deconvolution, 

minimizing information loss in the conversion process. 

Overfitting in Dense Net may be readily caused by the 

excessive density of the network connections between the 

preceding layer and the later layer. The sparse network can 

resolve this issue. There is no disappearing gradient, and the 

network can represent features much better. 
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Wang et al. [22] suggested a nonlocal block, a self-

attention technique, for capturing long-range dependence, 

which was inspired by non-local mean filtering for images. 

Nonlocal blocks compute the connection between two 

places directly, disregarding the Euclidean distance. It 

computes the features' generalized autocorrelation matrix. 

Nonetheless, there is a fair amount of computation 

efficiency. Since the network's fitting ability may be 

achieved without stacking too many deep convolution 

processes following the addition of nonlocal operators, the 

first sparse block is preceded by the spatial self-awareness 

model since it can be readily incorporated into the network 

and does not alter the amount of input data. In this study, we 

implement the self-attention method as suggested by Zhang 

et al. [23]. The 3D network, which has the following 

definition, embeds the nonlocal block: 

 

( ) ( )


=
j

jji xgxxf
xC

yi ,
)(

1

                      

(2) 

 

Where x is the input data, j is an index of all possible 

locations, i is a 3D coordinates that shows the current 

location index of the incoming data, q is a unary conversion 

function, and f is an asynchronous computation function that 

may ascertain the relationship between the ith and jth 

locations. In the experiments, the multichannel feature is 

fused, and the ascending dimension is achieved using the 

1 × 1 × 1 convolution; C (x) is then utilized for 

normalization. In the attention model, the number of 

channels may be decreased or increased while still achieving 

cross-channel interactions and information integration via 

the use of multiple one × one × one convolution kernel. Due 

to Lin's proposed network structure [24], the 1 × 1 × 1 

convolution came to people's notice, which links two 

complete connection layers for linear feature fusion. Next, 

the inception module of the 1 × 1 × 1 Google's Inception-v4 

[25] network design uses convolution for dimensional 

reduction or ascending dimension. Motivated by such 

benefit, the 1 × 1 × 1 convolution kernel is utilized in this 

work to determine the spatial autocorrelation connection, 

lower the dimensionality of the initial input data, and 

subsequently increase the data's dimension. The distinct 

computed weights are appended to the initial data and 

afterwards regularised to depict the impact on attributes of 

voxels situated in disparate spatial orientations. 

 

4. Experiments and Results 
4.1. Dataset 

4.1.1. ACDC 

The Automated Cardiac Diagnosis Challenge (ACDC) 

dataset, which contains CMR pictures from 150 patients, 

gives a much bigger and more adjusted dispersion of 

distinctive heart conditions, counting ordinary, infracted, 

and cardiomyopathic hearts. It incorporates comments for 

both the myocardium and ventricles, making it a flexible 

asset for a wide run of cardiac division assignments. Be that 

as it may, ACDC needs the center on CHD found in 

HVSMR 2016. For CHD-specific inquiries about, HVSMR 

2016 offers more specialized information, indeed in spite of 

the fact that ACDC's bigger measure and differences make 

it stronger for common division challenges. 

 

4.1.2. UK Biobank 

UK Biobank offers cine MRI information from over 

100,000 members, giving one of the biggest cardiovascular 

datasets accessible. Its endless estimate makes it perfect for 

profound learning applications, especially when creating 

models that can be generalized over diverse socioeconomics 

and conditions. Be that as it may, UK Biobank needs the 

nitty gritty blood vessel and myocardium comments 

displayed in HVSMR 2016, and it does not particularly 

center on CHD, making it less valuable for analysts in this 

specialized range. 

 

4.1.3. Sunnybrook Cardiac Information (SCD) 

The Sunnybrook dataset, which comprises cine MRI 

pictures from 45 patients, centers essentially on clearing out 

the ventricular division. Its point by point explanations and 

consideration of both solid and obsessive cases make it 

perfect for cleared out ventricular investigation, but it needs 

the broader scope of explanations accessible in HVSMR 

2016. For complex anatomical considerations that require 

point by point division of the myocardium and blood 

vessels, HVSMR 2016 is more suitable, indeed, in spite of 

the fact that Sunnybrook may offer superior execution in 

cleared out ventricular-specific tasks.  

 

4.1.4. MyoPS 

MyoPS gives multi-sequence CMR information that 

provides a wealthier see of tissue characteristics, making it 

perfect for myocardial pathology discovery. In any case, 

MyoPS does not incorporate a focus on CHD or blood vessel 

division, regions where HVSMR 2016 exceeds 

expectations. For analysts fascinated by CHD-specific 

ponders, HVSMR 2016 remains the more important asset, 

whereas MyoPS is superior suited for considerations 

centered on tissue characteristics and pathology discovery. 

MICCAI 2009 Cleared out Ventricle Division Challenge: 

Like Sunnybrook, the MICCAI 2009 dataset centers on 

cleared out ventricle division, advertising point by point 

comments for the endocardium and epicardium. Whereas 

HVSMR 2016 offers broader division conceivable 

outcomes, counting the myocardium and blood vessels, 

MICCAI 2009 is more focused on assets for cleared out 

ventricular division assignments. Both datasets are 

moderately small, making information increase pivotal in 

preparing machine learning models. 

 

There are six primary data formats for radiobiological 

imaging. Among them is the Neuroimaging Informatics 

Technology Initiative, or NIFTI. To link a voxel's physical 

index to its real spatial position, this format includes two 

affine coordinates. We evaluate the network design and the 

approach using the HVSMR 2016 dataset. A total of ten 

training images and ten testing scans for cardiac magnetic 

resonance are available with HVSMR 2016. The 

myocardium and main blood vessels are annotated in each 

cardiac 2D echo training set, which is derived from patients 

with a diagnosis of Complicated Heart Disease (CHD). 
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All the cardiac MR images have been normalized due 

to the significant intensity differences among the images. 

The mean and unit variance are zero after normalization. 

Simple augmentation of data was used to increase the 

training data to make use of the restricted training set. 

Cropping and rotation are examples of augmentation 

activities. The three parts that comprise the first training set 

are the validation set, testing set, and training set. In 

parameter training, the cross-validation procedure is used. 

Of the photos, 70% are used for training, and 30% are used 

for testing. After that, we contrast and quickly go through 

the experimental findings. 

 

4.2. Evaluation Metrics 

A crucial stage in the processing of medical images is 

segmentation. On the other hand, choosing an appropriate 

assessment index to compare segmented medical images 

and assess segmentation quality is challenging. This 

research employs the following three measures to assess the 

segmentation outcomes: 

 

4.2.1. Dice Coefficient 

A common method for assessing the effectiveness of 

3D medical picture segmentation is the dice coefficient. 

Ensuring good recall and accuracy is the main goal. The 

segmentation impact may be more accurately quantified by 

employing the Dice coefficient assessment approach as 

opposed to the direct computation of the difference among 

the automated segmentation results as well as the original 

data labels. The definition of a dice coefficient is: 

 

FNFPTP

TP

GR

RG
Dice

++
=

+


=

2

22
        (3) 

 

Where G is a segmentation outcome using the labelled 

testing data or ground truth, R is the test data's automated 

segmentation result. For every class, TP, FP, and FN stand 

for True Positives, False Positives, and False Negatives, 

respectively. The segmentation result template and the label 

data template should ideally fully overlap, meaning that R = 

G and the Dice coefficient's absolute value equals 1. 

 

4.3. Training 

The investigations use the unsupervised gradient-

descending optimization approach and randomly initialize 

all weights using the Gaussian distribution. The batch 

consists of eight pieces. The load absorption is adjusted to 

0.0005, and acceleration is increased to 0.9 to speed up 

training. This combination facilitates escaping from extreme 

locations and prevents one from being trapped in locally 

optimum solutions. These parameters help the model 

become less overfit and accelerate its convergence.  

 

The drop rate is set at 0.2, and the starting learning rate 

to 0.01. The drop rate is degraded and reinitialized every 

5000 steps, with a somewhat large initial drop rate. If the 

rate of learning is too high, the model is going to be unstable 

as well as never converge. A Dual RTX 2080 Ti GPU was 

used for training and testing our algorithms. 

The impact of the enhanced approach on segmentation 

is intended to be verified by many sets of ablation tests and 

comparison studies. In the trials, we contrasted our approach 

with other deep learning techniques and conventional 

techniques. We also examined the network with the 

mechanism for attention as well as DenseVoxNet alone, as 

well as the network with mixed dilated convolution. 

 

Model definition: 3D U-Net-SparseVoxNet-S. When 

the spatial system that drives self-attention is included, this 

is the model. The findings demonstrate that the average 

symmetrical surface distance (ADB) and the myocardium's 

Hausdorff distance outperform DenseVoxNet. The heart 

and blood pool has Hausdorff distances that are around 3.0% 

and 4.8% greater than DenseVoxNet. This implies that the 

spatially self-attention mechanism has been effective in 

bringing the segmented pictures closer to their target 

domain. Our model uses self-attention in addition to 

convolution to represent global-level, long-range 

relationships inherent in cardiac structure. The attention 

mechanism has the following benefits: (a) minimal 

parameters, (b) quick computation, and (c) the ability to 

capture features at a distance. Because of the short sample 

training approach used in this work, the segmentation 

outcome is not optimal when a spatial self-attention process 

is eliminated, making it difficult to extract long-range 

features effectively. We integrate both dilated convolution 

as well as the stretched convolution-based technique since it 

only collects information from a limited number of 

surrounding locations and is unable to give rich context 

information, spatial self-attention approaches are used to 

acquire long-range characteristics. A single feature at any 

place could be able to see the characteristics of every other 

site due to the spatial focus process itself, which might result 

in more potent pixel-level representation capabilities. These 

results suggest that spatial self-attention combined with 3D 

dilated convolution greatly facilitates the usage of 

multistage data. 

 

4.4. Results 

Figure 2 displays the segmentation results for three 

training photos. These three pieces come from various 

people. The data in the example dataset with an index of 60 

have an analogous single-dimensional coronal plane 

viewpoint. The first line's image depicts the myocardium 

and blood pool in both bright and dark blue regions, with the 

background consisting of black and dark blue elements. The 

described photographs in the next line correspond to the 

myocardium as well as the plasma pool in the initial row of 

pictures. The automated segmentation results utilizing the 

work's technique are shown in the third line. The colours 

dark purple, yellow, and blue represent the blood pool, the 

backdrop, and the myocardium, respectively. Using a low-

contrast cardiac 2D echo, Figure 3 shows that even with 

significant differences in the cardiac architecture of the 

training group members, our proposed method may 

effectively alter the myocardial and blood pool. This proves 

that the method can accurately match the initial data. There 

continue to be some issues, however. The bottom left corner 

of the first auto-segmentation result shows a partial 
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myocardial separation. The myocardium showed the 

backdrop in the second finding. The extra heart muscle on 

the top right corner of the third result demonstrates that deep 

learning can recognize many of the characteristics in the 

data but is not capable of making good logical deductions. 

These minute logical mistakes cannot be produced by 

human segmentation. 

 

 
Fig. 2 Outcomes of segmentation using three training photos 

 

Three test photos' segmentation results are shown in 

Figure 1. The technique of data extraction remains 

unchanged. The strategy presented in this research also has 

a strong generalization impact on unlabelled data, as we can 

see by looking at the outcomes. However, due to the large 

number of parameters, the gradient descent technique may 

easily lead to overfitting by entering the local optimum. 

 

 

 
Fig. 3 Results of segmentation on three test images 

 

4.5. Discussion 

Figure 3 displays a comparison of the outcomes from 

the six previous ways and the one we suggested. Their 

primary ranking is based on the Dice coefficient. The image 

displays two instances of supplementary reference indices: 

the symmetric Hausdorff distance and ADB. The last three 

deep learning techniques utilize the HVSMR 2016 

Challenge dataset, whereas the initial three use more 

conventional techniques like feature extraction by hand and 

hidden Markov randomized fields. As a result of the 

myocardium's hazy borders during low-resolution 2D echo, 

Figure 3 demonstrates that segmenting the blood pool is 

much easier since the blood pool's Dice coefficient is larger 

than the myocardial in all methods. In terms of myocardial 

segmentation, our suggested approach performs the best 

when using the Dice; that is, the challenge's ranking 

measure, 0.861 ± 0.024, beats the second one by almost 4%. 

The highest performance was likewise attained in blood 

pool segmentation using Dice; the challenge's ranking score 

of 0.94 ± 0.016 shows that our sparse interconnected 

network can take on the challenging cardiovascular 

segmentation task. Our method's Harsdorf distance and 

ADB also produced the best results. 

 

Table 3 primarily displays the results of additional 3D 

and 2D echo segmentation techniques. First, a comparison 

of the experimental parameters reveals that the approach 

suggested in this work requires the fewest parameters. With 

the inclusion of the attention model, the sparse block, as well 

as dilated convolution, may produce a number of factors. In 

many situations, the dense block's feature expression ability 

will outperform the sparse blocks. However, in this paper, 

the sparse block is applied to the problem of medical 

segmentation and small sample training, which allows it to 

fit and generalize the data well with fewer parameters. 

Additionally, the convolution operations are reduced by the 

dilated convolution's exponentially increasing receptive 

field. The attention mechanism is capable of effectively 

capturing the elements that enhance the network's capacity 

for generalization. The model has a quick convergence rate 

and requires less computation due to its minimal number of 

parameters. 

 
Table 2. Experimental findings are compared between the 3D 

approaches and the enhanced method 

Method Dice ABD Hausdorff 

3D U-Net 74.26 2.412 12.36 

VoxResNet[19] 79.62 2.341 7.25 

3D U-Net-3D U-

Net-

SparseVoxNet 

89.92 0.751 4.36 

 

 
Fig. 4 Comparison of the upgraded method's experimental findings 

with those of other approaches 

5. Conclusion 
To separate the myocardial and blood pool from 2D 

echo images, we suggest an innovative and effective 3D 

sparse convolution network in this research. This technique 

may lower model parameters, get rid of pointless 

computations, and lessen the chance of overfitting data used 

for training on small samples. The ability of feature maps to 
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be expressed may be optimized by the spatial self-attention 

mechanism, and the convolution network depth can be 

decreased by sparse blocks. This study presents a precise 

pixel-by-pixel categorization. Additionally, we get 

competitive outcomes when compared to current 

methodologies. The suggested approach may provide 

medical professionals with all the information they need to 

diagnose CHD.
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