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Abstract - In the industrial sector, intelligent sensors in fault diagnosis are becoming more critical in recent technological 

improvements. The prediction accuracy can be enhanced in fault diagnosis using 3-dimensional, sequential, real-time, and image 

data. Sensors that capture the vibration, sound, and image data are more critical in predicting unbalancing, tool wear, crack, 

misalignment, etc, in the rotating machinery to increase productivity and to provide an effective maintenance management 

system. Due to the fast development of industry 4.0 techniques, monitoring of mechanical machinery is experiencing explosive 

growth and getting more attention in the area of Fault Diagnosis (FD). Machine learning and Deep learning methods give 

promising results and accuracy in predicting faults in rotating machinery on shop floors. The success of AI-based models is due 

to the availability of comprehensive labeled data. Federated Learning (FL) is the machine learning subfield aiming to train an 

algorithm with a heterogeneous dataset. Data transmission from local facilities to a central server in AI models creates data 

privacy and security issues. Heterogeneous data analysis is a complicated process in predicting the machine fault in the central 

server because of millions of data during real-time condition monitoring. Decentralized data handling and analysis is 

mandatory in condition monitoring because of heterogeneity in data processing, data privacy, and security advantages. The 

application of federated learning in fault diagnosis has been getting more attention in recent days, and this study is a review of 

FL applications that address fault diagnosis in rotating machinery in the first phase. A comparison between the types of FL 

approaches in FD, and the use of aggregation algorithms and their applications will also be discussed in Phase 1. In phase 2, a 

novel methodology has been proposed using Federated learning to diagnose rotating machinery faults. The proposed method, 

FLOACOS, addresses how prediction challenges are solved using federated learning approaches by optimizing and 

standardizing the data at local facilities. This work will be helpful for future condition monitoring researchers and gives an 

overview of a novel method of the FL technique used in predicting faults and the progress made in the maintenance management 

of rotating machinery.  

 

Keywords - Fault diagnosis, Federated Learning, Internet of Things, Machine learning, Rotating machinery, Condition 

monitoring.  

 

1. Introduction 
The application of AI models in fault diagnosis shows a 

promising result in maintenance management with more 

accuracy when using the data set collected across several 

industrial environments. The data collected from the sensor is 

processed in a centralized server, and a large amount of data 

has been stored in the cloud. Even though data sharing from 

sites to servers has many benefits, data privacy and security 

are big questions. To manage data privacy issues, federated 

learning will provide a solution for data collected from 

rotating machines, allowing for distributed training on edge 

devices closer to the sensors or sites [1]. Vibration data for 

rotating machinery, which are predicted from petroleum 

Industries, Aircraft industries, Automobile industries, food 

factories, etc., are more confidential, and transferring through 

unreliable network connections to the server machines may 

give data privacy and security issues. The present fault 

diagnosis techniques will not address data security, economic 

conflict, the laws related to network issues, etc. So, we need 

to develop an intelligent diagnosis model with better network 

and server security performance. Weihua Li et al. [2] proposed 

a Clustering Federated Learning (CFL) method for bearing 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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fault diagnosis to address these issues. In the first phase of this 

work, a deep neural network with a self-attention mechanism 

is developed using a convolutional pipe to capture local and 

global information from the sensor output. Then, the 

clustering federated learning is used to collect data from 

different equipment unsupervised. The CFL model is fully 

utilized to use this data for fault diagnosis. Therefore, it is 

inferred that federated learning will improve privacy 

maintenance and diagnostic accuracy in rotating machinery. 

Rotating machinery in manufacturing, turbines, compressors, 

motors, etc., produces vast amounts of sensor data, typically 

distributed across different locations that may belong to other 

entities. FL allows the training of these entities without having 

a centralized computer or data analysis. In this type, each 

location trains a local model using its data and then distributes 

it to a central server. Typically, various sensors track 

parameters like vibration, temperature, pressure, and acoustic 

emissions in rotating machinery. The goal is to detect early 

signs of imbalance, wear, faults, misalignment, or anomalies 

before they lead to significant failures.  

 

The standard method for fault diagnosis using FL 

involves a unified learning model as initial work. In the 

following work, the source domain of the client place will 

train the model using their data. After decentralized training, 

each client will upload their trained model to the server and 

then send it to the target client for further diagnosis. This 

method assumes that all client devices are working well and 

that target and source domain data are independently 

distributed. The disadvantage of this approach is that 

equipment variation will present if the independent node 

differs in working conditions. The data may not be 

independent and identically distributed, making FL 

inapplicable. An optimal aggression algorithm can be used in 

federated learning to overcome this.  

 

Since there are many different conditions in the rotating 

machinery, this may give heterogeneous fault data, reducing 

the efficiency of federated learning. Researchers have 

proposed several methods to improve the efficiency of FL. 

Models like local model optimization, dynamic adaptive 

weight adjustments, weighted aggregation based on similarity, 

connecting two heterogeneous data using prior distribution, 

deep adversarial learning, asynchronous decentralized FL, 

self-attention mechanism, federated learning methods based 

on a variational auto-encoder, etc, are some of the methods to 

improve the efficiency of FL.  

 

The novel approach in the proposed FL contains 

FLOACOS, which means managing the Origination of fault 

data, acquiring fault data, classifying fault data, optimizing 

fault data, and standardizing fault data in the local site itself 

before communicating to the central computer. 4IR 

techniques, including AI and IoT, have been used wherever 

needed in these phases. 

2. Literature-Related AI-Based Machine Fault 

Diagnosis Models 
Yaguo Lei et al. (2020) [3] reviewed the application of 

machine learning techniques in fault diagnosis and further 

explained the profound learning advantages in condition 

monitoring of machines in industries. They have discussed the 

challenges and roadmap for intelligent fault diagnosis and 

transfer learning on the topics of why to transfer”, “what is a 

transfer,” and “how to transfer.” Liu et al. [4] reviewed the 

applications of artificial intelligence in fault diagnosis of 

rotating machines and mainly focused on applications of 

traditional machine learning. Yaguo Lei and Ming J. Zuo 

(2009) applied a Weighted K Nearest Neighbor (WKNN) 

classification algorithm to identify the gear crack levels. This 

work captured vibration signals due to the gear crack under 

different loads and motor speeds. The K nearest neighbor 

method was applied to identify the gear crack levels, and the 

obtained results demonstrate its effectiveness [5]. B. 

Samantha predicted faults in gears using artificial neural 

networks and Support Vector Machines (SMVs). Time 

domain signals of rotating machines with non-defective and 

defective gears are used for feature extraction. The extracted 

features are used as input for ANN and SVMs [6].  

 

A study is presented to compare the performance of gear 

fault detection using Artificial Neural Networks (ANNs) 

and Support Vector Machines (SVMs). The time-domain 

vibration signals of a rotating machine with standard and 

defective gears are processed for feature extraction. The 

extracted features from original and preprocessed signals are 

inputs to both classifiers based on ANNs and SVMs for two-

class (normal or fault) recognition.  For most cases, 

SVMSVM’sassification accuracy was better than ANN [7]. 

So, using modern technologies, fault diagnosis researchers 

investigate many methods, including machine learning, deep 

learning, digital twins, federated learning, etc. Since the 

traditional methods are less accurate, researchers are moving 

towards industry 4.0 technologies. Rui Zhao et al. [8] have 

surveyed in their paper and concluded, “It“is believed that 

deep learning will have a more and more prospective future 

impacting machine health monitoring, especially in the age of 

big machinery data.” So, it indicates that deep learning is the 

future for precise monitoring machine and tool conditions. 

Lang Dai developed an Improved Deep Learning Model for 

Online Tool Condition Monitoring Using Output Power 

Signals. The sensor output mounted on the cutting tool holder 

during operation is used for further analysis. This data is 

analyzed using Long Short-Term Memory (LSTM) under a 

deep learning algorithm. Qun wang et al. [9] have done an 

overview of Tool Wear Monitoring Methods Based on 

Convolutional Neural Networks. The authors concluded that 

applying convolution neural networks in tool wear and 

condition monitoring is feasible and reliable. They have added 

that the convolution neural network can improve the 

prediction accuracy, which is an excellent significance of the 

https://www.sciencedirect.com/author/8905846900/yaguo-lei
https://www.sciencedirect.com/topics/engineering/artificial-neural-network
https://www.sciencedirect.com/topics/engineering/support-vector-machine
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CNN technology. Convolutional Neural Networks (CNN), 

coming under deep learning, is a typical data-driven fault 

diagnosis method that extracts features from signals, images, 

or datasets using convolutional layers, then pooling and fully 

connected layers for tasks like image classification. In 

condition monitoring, researchers have recently applied CNNs 

to fault diagnoses of rotating machinery. Yao et al. [10] used 

an acoustic signal predicted using an acoustic emission sensor. 

They used CNN based on a multiscale dialog learning 

structure and attention mechanisms for gear fault prediction. 

Zhang, W et al. applied DCNN (Deep Convolutional Neural 

Networks) for bearing fault diagnosis under different 

operating loads [11].  Abdelmaksoud M et al. proposed 

a (CNN) model to diagnose induction motor faults at the 

motmotor’starting time. The model detects faults, such as 

locked rotor, overload, voltage imbalance, overvoltage, and 

Undervoltage under heavy, medium, and light load conditions 

[12]. The above methods concentrated the AI models in the 

rotating machinery fault detection, in which no model has 

been discussed regarding data privacy and data security, 

which have been highly demanding in recent periods due to 

cyber-attacks, data breaches, or data theft.  

 

3. Review in Background Theory and the 

Challenges of Federated Learning 
Federated learning is a machine learning technique that 

allows multiple institutions or devices to train a model while 

keeping data decentralized collaboratively. This approach is 

particularly relevant in fault diagnosis of rotating machinery 

due to its ability to handle data privacy and distributed data 

sources effectively. Lu, H et al. (2024) discussed Federated 

learning with uncertainty-based client clustering for fleet-

wide fault diagnosis using their novel idea of federated 

learning, which is called FedSNGP. In this paper, the result of 

FedSNGP was compared with Fedavg and Fedcos, and the 

advantages and limitations of the FL were discussed [13]. 

Zhou F et al. (2024) paper aims to design an imbalanced FL 

framework based on dynamic expansion. Balanced clients will 

benefit from imbalanced clients using the proposed method of 

creating a collaboration mechanism of client layer-by-layer 

federation and intra-client cross-scale recursive fusion by 

Zhou F et al. (2024), Which increased the accuracy by 13.97% 

compared to existing methods[14]. 

 

Zhou, F (2021) paper designs a deep learning fault 

diagnosis network based on modular federation for bearing 

under different conditions. A deep neural network is used 

initially to extract features layer by layer, and then a dynamic 

routing algorithm is adopted. This paper used a new modular 

federated neural network based on FL[15]. Bharathi S et al. 

(2022) discussed challenges and future applications of 

federated learning by discussing data privacy, data protection, 

communication cost, system heterogeneity, Unreliable model 

upload, and future directions [16]. Wen et al. (2022) did a 

survey related to the practical application of learning and 

bottlenecks. This paper reveals basic knowledge of FL, 

privacy and security protection mechanisms, communication 

overhead challenges, and heterogeneity problems in FL [17]. 

Lili et al. (2020) discussed the evolution of FL, realistic 

applications in IoT devices, and grounding applications in 

industrial engineering and healthcare. At the end of the paper, 

some frontier achievements are given about the future 

direction of FL[18]. There is a research gap in data 

optimization and standardization when implementing FL in 

rotating machinery. This paper addresses this as a novel 

system of FL in fault diagnosis. Figure 1 shows how to 

implement the federated learning approach in rotating 

machinery in the proposed methodology of this work. 

 

3.1. Data Collection and Preprocessing from Rotating 

Machines 

Data resources: Various sensors, like accelerometers, 

acoustic emission sensors, etc., have been mounted in the 

Rotating machines to collect the vibrational, acoustic, or 

temperature variational data. Data collection is the most 

important, which may lead to either accurate or less accurate 

predictions.  

 

Storage of Local Data: After data collection, facility or 

device storage will store data locally by preserving data 

privacy. 

 

3.2. Local Model Training Using Preprocessed Data 

Development of model: Each facility on-site trains a local 

model using the collected data. This could be a machine 

learning model to detect faults, failures, or detection of 

anomalies.  

Training methodologies: Training methodologies include 

Artificial neural networks, time series analysis, pattern 

detection, signal preprocessing, etc.  

 

3.3. Federated Aggregation of Updates to a Central Server 

Instead of sharing data, each facility uploads model 

updates to a central server. The central server aggregates the 

updates and refines the global model. The method for 

aggregation includes federated averaging, where the server 

averages from different facilities. 

 

3.4. Global Model Update in the Central Server 

The aggregated update improves the global model, and 

the updated global model is redistributed back to the facilities, 

which may allow the local model to benefit from collective 

knowledge served by the central server.  

 

3.5. Evaluation of the Global Model and Iteration to Improve 

Diagnosis  

The updated global model monitors the machinery based 

on its condition and potential faults. Also, the system can 

generate maintenance information. This process is iterative, 

and facilities continue to train their local models with new data 

from sensors.  
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Periodic updates will be sent to the central server to refine the 

global model, which adapts to new operating conditions and 

fault types. More data improves accuracy and reliability.  

 

3.6. Phases of General FL Model  

A general federated learning model will have many 

phases to standardize data to predict faults. In the initial stage, 

the data is shared with the central server after the fault 

prediction in the edge devices. Different edge device outputs 

will be merged using data merger for data preprocessing. 

During the data merging process, input from the participating 

devices was also uploaded to improve accuracy.  

 

Data originality and origin validation will be done during 

the data processing, and the trained dataset will be generated. 

Then, the classification of records will be generated to create 

feature set mapping. The final process of FL data attributes 

and feature mapping will be created. Cluster optimization and 

data optimization are more important in the end process to 

have data standardization. The data standardization model in 

FL is given in Figure 2.  

 

3.7. Challenges in Applying Federated Learning  

The researchers face many challenges while applying 

federated learning in fault diagnosis of rotating machinery. 

The main challenges are given as follows. 

1. Data transmission overhead: Efficient protocols related to 

the fault diagnosis data transmission are required to 

manage the communication between local facilities and 

the central server to minimize latency and bandwidth 

usage 

2. Data heterogeneity: In the fault diagnosis of local 

facilities, various sensors and facilities may have 

heterogeneous data. A proper technique is required to 

handle these heterogeneous data groups to improve the 

accuracy and consistency in predicting faults. 

3.  Model security and privacy: A potential update of each 

model security is needed to avoid possible attack risk or 

tampering. This is a highly challenging task in the fault 

diagnosis of rotating machinery. Otherwise, the 

prediction accuracy may be questionable and may give 

faulty results. 

4. Compatibility: Systems must be compatible with fault 

diagnosis in different local facilities and for sensors like 

accelerometers, temperature sensors, pressure sensors, 

acoustic emission sensors, etc. 

5. Amalgamation: Smooth integration between different 

local facilities to the central server is crucial in fault 

prediction and also needs to ensure accuracy in the 

functioning of the FL framework for condition 

monitoring  

6. Law Agreement: The industries have policies and 

regulations for data handling and transmission. So, it is 

required to adhere to the company’s data protection laws, 

data security laws, and regulations related to the 

transmission of data from local facilities to servers and 

servers to local facilities during the continuous 

monitoring of real-time fault diagnosis. 

7. Artificial Intelligence application: In the preprocessing of 

the FL framework, AI models have been used in the local 

facilities to make decisions related to faults on the site. 

The selection of an AI model for local facilities is a highly 

challenging job that may vary from one local facility to 

another. 

   

 

 

 

 

Fig. 1 The implementation process of federated learning 
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Fig. 2 Data standardization model in FL [19] 

 

4. Model for Federated Learning-Based Fault 
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object definition is critical before execution. We need to 

establish the goals of fault diagnosis and the types of faults 

that will be addressed. Then, an appropriate machine learning 

or deep learning model is required based on the data produced 

by sensors.  

 

We must frame the FL model and its infrastructure in the 
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these processes. The application of FL steps is given in Figure 

3. 

 

So, FL technology and its applications in fault diagnosis 

are based on data partitioning, architecture, the scale of the 
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Data Partitioning contains three different types 

1. Horizontal data partitioning 
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Fig. 3 Essential steps in condition monitoring of rotating machinery 
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The architecture of federated learning is shown in Figure 

4. It is essential to identify the number of data owners who 

want to use their data to train an AI model. In the Conventional 

practice of training an AI model is to combine all the data and 

apply 𝐷 = 𝐷1 ∪ 𝐷 2 ∪.... ∪ 𝐷 𝑁 to train a MSUM model where 

the owners are {𝐹 1, 𝐹 2, 𝐹 3, ...., 𝐹 𝑁} of N data. The respective 

data is {𝐷 1, 𝐷 2, ...., 𝐷 𝑁}. In a federated learning approach, 

the data owners will work together to train a model of MFED, 

and no data owner Fi is required to share their data Di with a 

centralized system. It should also be mentioned that the 

accuracy of VFED is expected to be similar to that of MSUM (or, 

more precisely, VSUM). For the sake of argument, consider the 

case where there is a non-negative actual number (δ) If VFED-

VSUM< δ. 

 

4.1. Mathematical Modeling of Federated Learning for 

Clients 

X1,X2…..Xk is the fault diagnosis data set of Client 1, 

Client…., and Client K, respectively. Assume that there is 

unbalancing in the clients. If so, X1B,X2B….XkB is the 

corresponding balanced dataset for the imbalance dataset.  

The FL model by the balanced dataset of each client can be 

formulated as  

(𝑤𝑔,𝑠+1,𝐵) = ∑ 𝑝𝑘,𝑠,𝐵 𝑤𝑔,𝑠,𝐵
𝑛

𝑘=1
                                 (1) 

Where  

wg,s+1, B – FL parameters using a balanced dataset of all clients  

p k,s,B – Model parameters of the kth client in the sth round of 

federation  

wk,s, B – Corresponding aggregation weights of pk,s, B  

After establishing the dataset for each client, aggregation 

algorithms will be used in the central server to evaluate further 

fault diagnosis, as discussed in Section 5. 

 

4.2. Centralized FL Architecture  

Typically, the fault diagnosis FL system uses a 

centralized FL architecture in which the server has clients who 

collectively learn a global model without sharing data with 

another client. Conly, the clients exchange weights (w) of their 

models with the server. So, optimization is described as  

 

min 
𝑤𝜖𝑅𝑑  

𝑓(𝑤)  ≅
1

𝑚
∑ 𝑓𝑗

𝑚

𝑗=1
(𝑤)                                (2) 

 

Where fi: Rd in which R represents the loss function 

corresponding to client j. The centralized approach has some 

challenges related to delay due to bottlenecks, potential for 

system errors, and reliability concerns in creating a global 

model [21].      

 

4.2.1. Scale of Federation  

About the scale of training models and the number of 

local facilities, FL can be classified into two categories. 

1. Cross-device FL 

2. Cross-silo FL 

 

Cross-device FL uses many edges like laptops, tabs, 

mobiles, IoT, etc. Each facility has a unique dataset for 

training. Cross-silo FL uses data from organizations or 

companies that are always available in the database.  

 

Regarding the scale of training models and number of 

clients, FL can be classified into cross-device FL and cross-

silo FL. Cross-device FL has many edges (i.e., IoT and mobile 

phones). Each client has a unique local row dataset for training 

local learning models. Also, FL applications with only a few 

edge devices form cross-silo FL. The number of clients is 

small, usually below a hundred. Clients in cross-silo FL are 

organizations or companies. Data from each organization in 

data silos are always available and typically have different 

example features. 

 

4.3. Aggregation Algorithms  

Aggregation algorithms in federated learning are 

important in updating the global model. Many aggregation 

approaches exist in building the aggregation algorithm in a 

federated learning environment. 

 

The aggregation algorithm, which is highly suitable for 

fault diagnosis, are  

Average Aggregation  

Clipped Average Aggregation 

 

4.3.1. Average Aggregation 

Average aggregation is the initial approach and most 

commonly used aggregation. The server summarizes the 

model updates, parameters, and gradients in this. The set of 

participants denoted by “N” and their updates denoted by w is 

calculated using the following equation  

 

w = (1 ∕ 𝑁) ∗ ∑ 𝑤𝑖
𝑁
𝑖=1                                 (3) 

 

4.3.2. Clipped Average Aggregation 

In addition to the average aggregation steps, clipping the 

model updates to a predefined range has been added. This 

helps to reduce the impacts of outliers and malicious clients, 

similar to average aggregation. “N” denotes the set of 

participants, and wi denotes their relative weights. Clip (x,c) 

is a function that clips the values of x to a range of (-c to c) 

where c is the clipping threshold. Clipped aggregate is 

calculated as  

 

w = (1 ∕ 𝑁) ∗ ∑ 𝑐𝑙𝑖𝑝(w𝑖 , c)
𝑁

𝑖=1
                               (4) 

 

A model of the aggregation algorithm is given in Figure 5. 

Similar to the above aggregation, many aggregation 

methods exist according to data privacy, security, model 

change, weighted aggregate, parameter uncertainty, 

fraudulent model changes, communication efficiency, 

communication overhead, etc. The following are the types of 

aggregation to address the above features. 
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➢ Secure aggregation 

➢ Differential privacy average aggregation 

➢ Momentum aggregation 

➢ Weighted aggregation 

➢ Bayesian Aggregation 

➢ Adversarial aggregation 

➢ Quantization aggregation 

➢ Hierarchical aggregation 

➢ Personalized aggregation 

➢ Ensemble aggregation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5 Aggregation algorithms [22] 

 
Average aggregation has many disadvantages, such 

as slow convergence, complex tuning, high 

communication and computational costs, client 

heterogeneity, scalability, and more. These problems need to 

be solved by developing algorithms to manage several issues.  

 

5. Proposed Federated Learning Model for Fault 

Diagnosis of Rotating Machinery - FLOACOS 

Method 
Systematic data handling is needed to improve the 

accuracy in predicting a fault in rotating machinery located in 

different production systems. Figure 6 shows the federated 

learning-based futuristic fault diagnosis and standardization 

model. This proposed FL model for fault diagnosis contains 4 

phases: fault data origin phase, fault data acquisition phase, 

fault data classification phase, and fault data optimization.  

 

5.1. Fault Data Origin Phase 

The fault diagnosis of rotating machinery assumes that 

the clients are spread from 1 to k in various sites, which means 

fault data originates from different locations. So, multiple 

machines will give fault data, which is the data source for 

creating a dataset. The fault data from the data source will be 

collected using various sensors like accelerometers, acoustic 

emission sensors, etc. Since local facilities provide continuous 

data, big data will be collected. To store all big data, a cloud 

concept should be introduced to manage the database. 

Different user interfaces can be used to improve the data 

collection speed in this data collection.  

 

5.2. Fault Data Acquisition Phase 

The second phase in the proposed model is the fault data 

acquisition phase, in which data preprocessing will be done to 

collect the required data for further processing. In this 

preprocessing stage, data cleaning and filtering concepts will 

eliminate the unwanted data or noise attached to faulty data. 

In fault diagnosis, vibration or sound data will be collected in 

which noise will be added as a disturbance.  

 

The noise signal is not required for further processing, so 

data filtering is needed to eliminate noise signals. This 

preprocessing aim is to extract the features of the fault signal 

to do feature mapping. AI models can extract significant 

features to handle the fault data. In feature extraction 

processing, multiple features were extracted from the original 

vibration signals, followed by the dimension of the high 

feature set. Feature extraction techniques will vary for time 

domain and frequency domain fault signals. Frequency 

domain features are generally more consistent in detecting 

damage than time domain parameters [23]. 
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Fig. 6 Block diagram of proposed federated learning based futuristic fault diagnosis model 

 

5.3. Fault Classification Phase 

In this phase, the feature mapping data is transferred to 

database mapping. A condition monitoring record will be 

maintained in the database. For example, if the fault data is 

imbalanced, balanced data will be in the condition monitoring 

record, which is used for comparison and feature 

synchronization. The observer or diagnosing software can 

only obtain partial information regarding the system state at 

irregular intervals determined by specific synchronizing 

conditions between the system and the observer or diagnosis 

[24]. Condition monitoring records, data mapping, and feature 

synchronization are used for feature classification, which will 

be used to extract fault layers. 

 

5.4. Fault Data Optimization 

After feature classification from the fault data collected 

from different local facilities, fault layers will be extracted. 

Then, the categorization of faults will be demonstrated. 

Various faults may come from rotating machines, such as 

misalignment, crack, unbalancing, bearing faults, gear faults, 

cavitation, etc. So, categorization is more critical to fixing 

future faults by the industrial sector’s maintenance team. Also, 

it is required to identify the faults and the respective local 

facility that has produced the fault dataset. After extracting 

fault layers and categorizing faults, dataset optimization is 

needed to standardize fault detection. Usually, data produced 

by the local facilities will be raw, requiring meaningful 

information labeling. Labeled data will be carefully annotated 

with meaningful tags or labels that classify the data’s elements 

or outcomes. Fault data standardization is a data processing 

workflow that converts the structure of different fault datasets 

into one standard data format. Standardized data is the data 

from various sources that has been transformed into a 

consistent, standards-based format. The data standardization 

process involves harmonizing data so that the different fault 

datasets relating to the same terms and format allow for 
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comparison with faults. Data standardization is required to 

process aggregation, in which the accuracy of the fault 

prediction will be increased on the server.  

 

5.5. Model Structure  
The first part of the model execution is data acquisition 

from the vibration sensor (accelerometer), and then the signal 

will undergo the signal conditioning process. After acquiring 

the signal using LabVIEW Software, deep learning methods 

such as Multilayer Perceptron (MLP), Convolutional Neural 

Network (CNN), Recurrent Neural Network, and Long Short 

Term Memory (LSTM) will be used under the proposed FL 

framework. In the training of the deep learning model, datasets 

from different clients will be collected. Using the FL OACOS 

method, the dataset has been standardized and compared with 

the best-performing deep learning model.  

 
5.6. Algorithm of Proposed Model 

Algorithm of the Proposed Federated Learning Model is 

as follows:  

Step 1: Server Initialize the model parameter  

Step 2: Send server instructions to clients 

Step 3: The client performs data optimization and 

standardization using the FLOACOS method 

Step 4: Used deep learning method, and model weights will 

be uploaded to the server 

Step 5: Unsupervised clustering by server using client’s 

representation 

Step 6: Aggregation process to the corresponding clients   

 

6. Experimental Setup 
To validate the effectiveness of the proposed OACOS FL 

combined with DL algorithms of the fault diagnosis model, 

unbalancing data from the spectra machine fault simulator has 

been used. The Spectra Quest Machinery Fault Simulator 

(SQMFS) simulates rotary shafts’ balanced and imbalanced 

conditions. The Machine Fault Simulator (MFS) is a highly 

versatile and modular test platform designed to facilitate the 

study and simulation of various mechanical faults in rotating 

machinery. The methodology of data collection using 

a Machine fault simulator is shown in Figure 7. In the machine 

fault simulator, unbalancing was formed using different 

weights inserted in the disc mounted on the shaft. An 

accelerometer is placed vertically to collect the datasets using 

the data acquisition card NI CDAQ- 9172 and the signal 

conditioning device NI 9234. This close-up image of the MFS 

(Figure 7) rotor provides a detailed view of the critical 

components. We can see the motor-driven shaft, adjustable 

disks with tapped holes for attaching weights, and the 

accelerometer mounted to capture vibration data. The golden 

disk on the shaft is one of the adjustable disks for introducing 

imbalance (Figure 3). This configuration allows for precise 

control over the introduction of faults and the measurement of 

resulting vibrations. Lab VIEW software has been used for 

signal collection in the time and frequency domains.  

In this experimental work, MFS is considered a client and 

different data sets were collected for unbalancing by 

generating different readings by considering other clients. The 

data received from the machine fault simulator were analyzed 

using multilayer perceptron, CNN, RNN, and LSTM. The data 

collection model in the proposed methodology is given 

in Figure 8.  

 

The experimental analysis focused on two primary 

operating conditions of the rotary shaft:  

1. Balanced Condition   

2. Imbalanced Condition  

 

These conditions were carefully established to study the 

effects of imbalance on the dynamic behavior of rotating 

machinery, thereby providing critical insights for developing 

diagnostic tools. In data collection, the motor was operated at 

30 HZ and with a gear or shaft frequency of 216 HZ.  

 

 
Fig. 7 Machine fault simulator to collect the unbalancing dataset  

 

The evaluated model’s performance using the original 

dataset, focusing on critical metrics like accuracy, precision, 

recall, and F1-score, is shown in Table 1 for client 1. Table 2 

Shows the Accuracy in the prediction of unbalancing in the 

four clients using different algorithms.  

 

As per the table, RNN and LSTM are performing poorly 

compared to MLP and CNN. MLP and CNN performed better 

and received 90% and 95% efficiency. Prediction accuracy in 

a one-point scale is given for various DL algorithms in Figure 

9.  
Table 1. Model performance for standard dataset 

 Model  Accuracy  Precision  Recall  F1-Score  

0 MLP 0.900 0.917391 0.900 0.899499 

1 CNN 0.950 0.954762 0.950 0.950000 

2 RNN 0.575 0.646094 0.575 0.533908 

3 LSTM 0.450 0.453419 0.450 0.433120 
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Fig. 8 Data collection model from clients  

 

 
Fig. 9 Prediction accuracy in various DL algorithms 

 

FLOACOS has been applied to standardize the data 

before execution using deep learning to improve the efficiency 

of fault prediction in local facilities. Since RNN and LSTM 

are not performing well in fault prediction, these DL 

algorithms are not taken for further progress. MLP and CNN 

are integrated with FLOACOS and then predicted accuracy.  

OACOS-modelled MLP increased the accuracy by 

3.14%, and CNN with OACOS increased the accuracy by 

3.56%. So, overall accuracy came in CNN as 98.56%. Table 3 

shows the accuracy of client 1 with and without FLOACOS. 

A comparison chart after applying the proposed methodology 

of FLOACOS is given in Figure 10.  
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Table 2. Accuracy in prediction of unbalancing in the four clients using 

different DL algorithms 

DL 

Algorith

m 

Client 1 Client 2 Client 3 Client 4 

MLP 0.90±0.3

4 

0.91

±0.05 

0.89

±1.10 

0.88±1.3

2 

CNN 0.95 ± 

0.10 

0.94± 

0.40 

0.95±1.04 0.94±0.8

0 

RNN 0.57±0.5 0.60±0.15 0.55±0.34 0.45±0.3

4 

LSTM  0.45±0.0 0.42±0.23 0.49

±0.21 

0.51±0.0

0 

 
Table 3. Comparison of the application of DL in the local model without 

proposed FLOACOS and with FLOACOS 

DL Algorithm Client 1 

MLP 0.90±0.34 

CNN 0.95 ± 0.50 

MLP with OACOS 0.93±0.48 

CNN with OACOS 0.98 ±0.66 

 

 
Fig. 10 Comparison chart after applying the proposed methodology 

 

Many challenges related to data handling, privacy, 

and security have been faced in the execution, data 

preprocessing, data standardization, application of DL, 

and selection of communication protocols. The choice of the 

aggregation model is also quite challenging when 

implementing FL in fault diagnosis. There may be a more 

significant challenge in applying the algorithm in a real-time 

environment than in a machine fault simulator application. In 

the real-time data set, hybrid algorithms combined with 

FLOACOS may help maintain accuracy in fault diagnosis and 

overcome challenges.  

 

7. Conclusion and Future Research Direction of 

FL in Fault Diagnosis 
Overall, federated learning offers a promising approach 

for enhancing fault diagnosis in rotating machinery by 

leveraging centralized or decentralized data while maintaining 

privacy and improving diagnostic accuracy. Organizations can 

achieve a robust, privacy-preserving solution that leverages 

collective intelligence to enhance predictive maintenance and 

operational efficiency by utilizing federated learning for 

condition monitoring of rotating machinery. Due to the 

advancement of digital technologies and wireless sensor 

networks, maintenance engineering has been shifted to a new 

paradigm in fault diagnosis. Many researchers are working on 

edge computing and 5G networks using FL features. Nguyen 

T.D. et al. used FL to enhance attack detection accuracy and 

communication efficiency in a smart home wireless IoT 

system [25]. FL can be used in medical diagnosis, healthcare, 

aerospace, marine systems, manufacturing, process operations 

maintenance, and office automation [26].  

 

The future direction of FL will extend to extreme 

communication schemes, communication reduction, and the 

Pareto frontier, focusing on novel models of asynchrony, 

heterogeneity diagnosis, granular privacy constraints, beyond 

supervised learning, productionizing FL, benchmarking of FL 

approach, etc. In this research, a novel idea for data 

standardization is proposed and implemented in FL based on 

Fault diagnosis in rotating machinery. The proposed 

methodology is applied in the best unbalancing fault 

prediction algorithms of MLP and CNN. The result shows that 

the improvement in accuracy is 3.5% in both cases. So, FL 

will provide a safe model for fault diagnosis when data is 

shared. It will tackle the issue of data privacy when more local 

facilities are used in production systems [27]. Overall. There 

are many advantages and disadvantages to the FL-based fault 

diagnosis [28]. The proposed method will overcome many 

disadvantages the previous researchers listed and provide 

enhanced results in the condition monitoring of rotating 

machinery.  
 

The future research direction of FL will use a hybrid 

algorithm to predict the heterogeneous group of datasets. In 

this work, unbalancing is considered the fault of all four 

clients. In real-time, there may be some different faults that 

will produce heterogeneity in nature. To improve the accuracy 

of FL, future researchers can move toward a new algorithm 

that will overcome the heterogeneity.  
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