
SSRG International Journal of Electronics and Communication Engineering Volume 11 Issue 9, 253-269, September 2024

ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V11I9P122 © 2024 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Enhancing Android Malware Detection: A Grid-Tuned

Two-Layered Stacking Approach
Ravi Eslavath1, Upendra Kumar Mummadi2

1Department of CSE, University College of Engineering, Osmania, University, Hyderabad, India.
2Department of CSE, Muffakham Jah College of Engineering and Technology, Hyderabad, India.

1Corresponding Author : eslavathravi@gmail.com

Received: 12 July 2024 Revised: 22 August 2024 Accepted: 13 September 2024 Published: 30 September 2024

Abstract - Android malware detection is critical for protecting users from cybercrime by automatically identifying potentially

harmful applications before they can affect devices. This study explores the efficacy of various machine learning techniques,

including ensemble and voting algorithms, for enhancing malware detection. Traditional methods face challenges due to the

increasing number of attributes and the dynamic nature of certain features, necessitating more robust solutions. The

proposed model addresses these challenges by initially transforming class labels into numerical format and applying

normalization to independent attributes, thereby reducing variance and improving computational efficiency. The

methodology involves a two-layered stacking approach rather than a single-layer model to minimize the risk of

misclassification and improve the handling of unknown malware. At the base level, hyperparameters of traditional classifiers

such as SVM, KNN, and Bernoulli Naive Bayes are finely tuned using repeated cross-validation, creating a diverse meta

data repository. The stacking classifier employs a voting mechanism that considers all possible true and false classification

rates, enhancing predictive accuracy. The next layer (meta classifier-1) utilizes tuned ensemble methods to generate

numerical predictions, which are then processed by a final logistic regression layer (meta classifier-2). The proposed model

demonstrates a significant improvement, achieving a +0.9% increase in accuracy compared to standalone tuning algorithms,

thereby offering a more reliable and efficient approach to Android malware detection. This study utilizes the Drebin dataset,

which includes 15,036 samples comprising 5,560 malware and 9,476 benign applications, to evaluate the model's

performance.

Keywords - Bernoulli NB, 2- layered stack, Meta data, Hyperparameters, Malware analysis.

1. Introduction
In the contemporary digital era, the proliferation of

smartphones has revolutionized communication,

information access, and entertainment. Among these,

Android has emerged as the dominant operating system,

powering billions of devices globally. However, this

ubiquity has made Android a prime target for malicious

software or malware, which poses significant threats to

users' privacy, security, and financial well-being. As

cybercriminals continually develop new and sophisticated

malware variants, the challenge of effective detection and

mitigation becomes increasingly complex and critical.

Android malware detection is a vital aspect of cybersecurity,

aimed at identifying and neutralizing malicious applications

before they can inflict harm. Traditional detection methods,

such as signature-based and heuristic approaches, often fall

short in detecting novel and evolving threats due to their

reliance on predefined patterns. Consequently, there has

been a paradigm shift towards Machine Learning (ML)

techniques [1], which offer the potential to learn and adapt

from vast datasets, thereby improving detection rates and

reducing false positives.

Machine learning algorithms, particularly those

utilizing ensemble and stacking techniques, have shown

promise in enhancing malware detection accuracy.

Ensemble methods combine multiple classifiers to make

more robust predictions while stacking. A specific type of

ensemble learning integrates various models at different

levels to capitalize on individual strengths and mitigate

weaknesses. Despite these advancements, the dynamic

nature of malware attributes presents ongoing challenges,

necessitating continuous refinement of detection models.

Despite these advancements, the dynamic nature of

malware attributes presents ongoing challenges. Existing

machine learning algorithms, while promising, still struggle

with the high dimensionality and variability of malware

data. This study introduces a novel Grid Tuned Two-

Layered Stacking Approach for Malware Detection

(GTTSAMD). By leveraging grid search optimization and

repeated cross-validation, the proposed framework aims to

fine-tune hyperparameters and enhance model performance,

thereby addressing the limitations of current methods. The

primary problem addressed by this study is the inadequate

detection accuracy and adaptability of existing Android

malware detection models when confronted with new and

evolving malware variants. Traditional methods [2] and

some machine learning models often result in high false

positive rates and fail to generalize well to unseen data. This

research seeks to fill this gap by developing a more robust

and accurate detection framework. The primary problem

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Ravi Eslavath & Upendra Kumar Mummadi / IJECE, 11(9), 253-269, 2024

254

addressed by this study is the inadequate detection accuracy

and adaptability of existing Android malware detection

models when confronted with new and evolving malware

variants. Traditional methods and some machine learning

models often result in high false positive rates and fail to

generalize well to unseen data. This research seeks to fill

this gap by developing a more robust and accurate detection

framework [3].

1. How can grid search optimization enhance the

performance of base-level machine learning classifiers

in malware detection?

2. What is the impact of a two-layered stacking approach

on the overall detection accuracy and robustness of the

model?

3. How does the proposed model compare to traditional

single-layer and ensemble models in terms of precision,

recall, and false positive rates?

This research is significant as it addresses a critical need

in the field of cybersecurity: improving the detection of

Android malware. By enhancing detection accuracy and

reducing false positives, the proposed model can better

protect users from cyber threats. The study's findings could

have broad implications for the development of more

sophisticated malware detection systems and contribute to

safer digital environments for Android users worldwide.

The structure of the paper is as follows: Section 2,

background of the study and Section 3, literature survey,

reviews previous research on machine learning techniques

for android malware detection, highlighting their merits and

limitations. Section 4, the proposed methodology, details

the two-layered stacking approach, including the selection

and tuning of base and meta-level classifiers and the grid

search optimization process. Section 5, results and

discussion, presents the experimental setup, evaluation

metrics, and a comprehensive analysis of the model's

performance compared to traditional approaches. Section 6,

conclusion, summarizes the key findings, discusses the

implications of the research, and suggests directions for

future work. By systematically addressing these elements,

this paper aims to provide a comprehensive and insightful

contribution to the field of Android malware detection.

2. Background
Android malware detection is a crucial task in

identifying and mitigating cybercrimes in the digital world.

Given the complexity of this problem, researchers have

turned to advanced machine learning techniques to enhance

detection accuracy. One such approach is the Gaussian

Naive Bayes (GNB) algorithm [4], which has been widely

utilized for both binary and multiclass classification tasks

due to its efficiency and simplicity.

GNB is particularly effective in text classification

problems involving large feature spaces, making it suitable

for Android malware detection. In this context, GNB can

classify an Android application as either malicious or

benign based on a variety of features, such as permissions

requested by the application, API calls made [5], and

specific patterns in the code.

To train a GNB model for Android malware detection,

a dataset of Android applications labeled as either malware

or benign is required. The model extracts features from each

application in the dataset and uses these to train the GNB

classifier. Once trained, the model can classify new

applications by extracting the same set of features and

applying the GNB model to the feature vector, as shown in

the following equation:

P(Xi|Y=’S_B’)=
1

√2∗𝜋∗𝜎2 * 𝑒
−(∑ 𝑋𝑖− 𝜇)2

2∗𝜎2 (1)

While GNB is a powerful tool for malware detection,

its accuracy is highly dependent on the quality of the

features and the training dataset. Therefore, ensuring high-

quality data is crucial for achieving reliable results.

To address the limitations of traditional approaches,

this study proposes a model that utilizes stacking algorithms

tuned with the Grid Search approach [6]. Stacking is an

ensemble learning technique that combines multiple

individual models to improve overall predictive

performance. This method leverages the strengths of

different models, leading to better generalization and

robustness. Stacking also allows for greater flexibility by

integrating models with different architectures or trained on

various data types, which can reduce variance and provide a

more stable estimate of the underlying relationships in the

data.

The proposed model addresses these issues using

stacking algorithms tuned with Grid Search. Stacking is an

ensemble learning technique that combines multiple

individual models to improve overall predictive

performance. By leveraging the strengths and mitigating the

weaknesses of different models, stacking can enhance

accuracy, generalization, robustness, and flexibility. This

approach allows for the integration of various models with

different architectures or training on different data types.

Additionally, stacking can reduce variance and provide a

more stable estimate of the underlying relationship between

input and output variables. It also offers improved

interpretability and scalability, making it suitable for large

datasets and real-time applications.

The process involved in stacking is illustrated in Figure

1. Base prediction algorithms, known as "Level-0" models,

predict elements based on training data, which is then cross-

validated to construct meta data. A meta-classifier algorithm

is applied to this meta data for evaluation. Some thumb rules

for the stacking process include ensuring the meta-classifier

evaluates data not trained by any base prediction model,

using two-layered stacks due to a large amount of data, and

performing cross-validation with the Repeated K-Fold

method. This method repeats the K-Fold process several

times with different folds [7], providing a robust evaluation

and reducing the risk of overfitting by testing the model on

Ravi Eslavath & Upendra Kumar Mummadi / IJECE, 11(9), 253-269, 2024

255

various data subsets. The proposed model employs 5-fold

cross-validation, as shown in Figure 2.

Fig. 1 Stacking algorithm workflow to classify malware

The reliability and validity of any machine learning

model deployment are crucial. Reliability is measured using

kappa statistics, which evaluate the agreement between

different models on the same training data. The kappa score

is calculated as shown in Equation (2):

𝐾𝑆(𝑅𝑒𝑐𝑜𝑟𝑑[𝑖]) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙𝑠 𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑒𝑑 (𝑌𝑒𝑠)−𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙𝑠 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒(𝑌𝑒𝑠)

1−𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙𝑠 𝑃𝑟𝑜𝑏𝑎𝑏𝑙𝑒(𝑦𝑒𝑠)

(2)

Fig. 2 5-Fold cross validation with kappa evaluation

The process involves several key steps:

• Data Transformation and Normalization: Transform

class labels and normalize independent attributes to

reduce variability.

• Cross-Validation: Apply repeated K-Fold cross-

validation to create robust meta data and evaluate the

model's performance.

• Grid Search Optimization: Tune the hyperparameters of

the base and meta-classifiers to enhance model

accuracy.

• Stacking Ensemble: Combine the models using a voting

mechanism to improve overall predictive performance.

The proposed model employs 5-fold cross-validation to

ensure a reliable assessment of model performance,

mitigating the risk of overfitting and reducing the impact of

random fluctuations in the results. The reliability of the

model is measured using the kappa statistic, which evaluates

the level of agreement between different models on the same

training data.

3. Literature Survey
The literature on Android malware detection reveals

various innovative approaches leveraging machine learning

to enhance detection accuracy and robustness. Researchers

have explored diverse techniques, from traditional

algorithms like Naive Bayes and Support Vector Machines

to advanced methods such as deep learning and ensemble

learning. This section provides a concise overview of

significant contributions in this field, highlighting the

methodologies, key findings, and performance metrics of

notable studies. These insights lay the groundwork for

understanding the evolution of malware detection strategies

and underscore the necessity for continuous improvement in

combating sophisticated cyber threats. Suleiman Y. Yerima

et al. [8] proposed machine learning methods to analyze

malware-affected Android devices, highlighting the

transmission of viruses through links, applications, and .apk

files. Their approach involved parallel classifications using

a matrix of four different techniques: rule-based, function-

based, tree-based, and probabilistic methods. The initial

data was trained using vectors from new applications, and

intermediate outputs were predicted before combining

classifications. This ensemble included decision trees,

Naive Bayes, and PART (a rule-based method similar to

decision trees but utilizing decision lists). Their evaluation,

employing three validation techniques, achieved an

accuracy of 96.3% in the PART approach.

Rishab Agrawal et al. [9] addressed the challenge of

identifying new malware on Android phones. They

performed both semantic and permission-based analyses,

utilizing a system with separate admin and user portals. The

admin panel managed .apk files and comments, while the

user panel allowed app uploads for analysis. Six attributes

related to .apk files were considered, and both malware and

semantic data were analyzed concurrently. This system

effectively identified malware-infected devices and

generated necessary permissions, achieving notable

classification accuracy.

Long Wen et al. [10] identified the limitations of

traditional methods in recognizing signatures in unknown

applications. They adopted a machine learning approach,

Training

Dataset

Model 1

Model 2

Model 3

Model 4

New Training

Dataset

Meta

Classifier

Final

Output

Traini

ng

data

Train1 Train2 Test

Train1 Train2 Test

Train1 Train2 Test

K Fold

Fold 2

Fold1

Evaluation

Using kappa

measure

Repeat Process

Ravi Eslavath & Upendra Kumar Mummadi / IJECE, 11(9), 253-269, 2024

256

combining static and dynamic analyses to extract features.

Principal Component Analysis (PCA) was used for feature

selection, and Support Vector Machine (SVM) was

employed for classification. The process involved

examining unknown applications and extracting MD5

signatures, followed by feature extraction and selection

phases. The combined static and dynamic analyses achieved

a classification accuracy of 95% using the PCA-Relief

method.

Nikola Milosevic et al. [11] focused on methods to

identify malware on Android phones, which users often find

difficult to detect. They implemented two approaches: one

based on source code analysis and the other on permissions.

Various machine learning methods such as Naive Bayes,

SVM, C4.5 Decision Trees, and JRIP were used, with Weka

tools facilitating the best performance through clustering

techniques. Their ensemble learning approach, particularly

SVM, achieved the highest precision of 95.8% and an F1-

score of 95.6%.

Zhiwu Xu et al. [13] tackled malware issues on Android

phones through three main tasks: graph extraction, graph

encoding, and model training. Data was collected from

Marvin and Contagio Dump, including malware and normal

applications. The data was categorized into Control Flow

Graph (CFG) and Data Flow Graph (DFG) forms and

encoded into matrices for training deep learning models.

The Convolutional Neural Network (CNN) approach,

featuring reshaped layers and pooling, reduced training time

and achieved high accuracy, with 99.8% in CDGDroid

tools.

Burak TAHTACI et al. [14] reported the use of machine

learning to detect Android malware. They developed

models using n-gram properties of tiny files, focusing on

feature selection and merging different extractions with

trained models. Features with low selectivity and

computation time were eliminated using variance threshold

and information gain methods. This approach emphasized

the creation of automated malware-scanning solutions.

Arvind Sangal et al. [15] developed 210 models using

21 different machine learning approaches and ten feature

selection techniques. Their web-based framework,

MLDroid, is aimed at detecting malware in Android apps.

Utilizing 30 disparate datasets representing Android apps,

the framework achieved an accuracy rate of 98.8%

compared to various antivirus scanners. The study

incorporated a substantial malware sample size of up to

55,000 and demonstrated superior performance using

feature selection algorithms.

Xinning Wang et al. [17] proposed a multidimensional

kernel functionality system and feature weight-based

identification to classify and understand malicious and

benign apps. Their approach utilized dynamic and static

analyses, employing machine learning methods such as

Naive Bayes, Neural Network, Decision Tree, and K-

Nearest Neighbors. The TstructDroid Framework was

suggested for investigating Android malware, founded on

the dynamic study of kernel properties.

Anam Fatima et al. [19] presented a method for

detecting new Android malware variants using machine

learning in conjunction with static and dynamic analysis.

They employed a Genetic Algorithm to optimize feature

selection, reducing feature dimensionality by more than

half. The study suggested using large datasets for better

results and integrating Genetic Algorithms with other

machine-learning techniques. Zhuo Ma et al. [20]

introduced Droidetec, a deep neural network-based platform

for static and automated Android malware detection. The

platform employed a weight distribution mechanism to

assess malware behavior sequences. Droidetec identified

harmful code with a 95% success rate and an F1-score of

98.21%. The researchers utilized the AMD dataset, covering

65732 APIs with a mix of benign and malicious

applications, and emphasized the integration with methods

for identifying native shared libraries. ElMouatez Debbabi

et al. [21] developed PetaDroid, a resilient and adaptable

Android malware detection tool. The framework used CNN

ensembles and confidence-based decision-making, aiming

to address the evolving nature of Android APIs. PetaDroid

outperformed MaMaDroid and MalDozer in various

evaluation scenarios, suggesting the need for further real-

world deployment validation. The study proposed

expanding their work to include performance simulations

for low-confidence detection, ensuring the dataset's proper

division to avoid skewed findings.

In conclusion, these studies collectively highlight the

evolution of machine learning approaches in Android

malware detection, emphasizing the importance of feature

selection, ensemble methods, and deep learning techniques

in improving detection accuracy and robustness. Despite

significant advancements in Android malware detection,

several research gaps remain unaddressed. A major

challenge lies in the detection of new and evolving malware

variants, which traditional machine learning methods often

fail to identify due to their reliance on predefined patterns

and static features. Furthermore, many existing models

struggle with large and high-dimensional datasets, resulting

in diminished prediction accuracy and increased

computational complexity. Additionally, while ensemble

and deep learning techniques have shown promise, their

application is often limited by issues such as overfitting,

lack of real-time detection capabilities, and high training

times.

The proposed Grid Tuned Two-Layered Stacking

Approach for Malware Detection (GTTSAMD) aims to

address these gaps by leveraging advanced stacking

algorithms and grid search optimization. By integrating

multiple base-level classifiers and a meta-classifier, our

model enhances detection accuracy and robustness against

dynamic malware threats. The use of repeated cross-

validation and grid search ensures optimal hyperparameter

tuning, reducing the risk of overfitting and improving

generalization to new data.

Ravi Eslavath & Upendra Kumar Mummadi / IJECE, 11(9), 253-269, 2024

257

Table 1. Analysis of existing systems for Android Malware detection

Author Objective Algorithm Methodology

Used

Merits Demerits Accuracy

Suleiman

Y. Yerima

et al.

To analyze

malware-

affected

Androids

Machine

Learning

Parallel

classifications

with rule-based,

function-based,

tree-based, and

probabilistic

methods

Parallel method

facilitates easy

value prediction

Unable to predict

new malware

94.3%

Rishab

Agrawal et

al.

To identify

new

malware on

Android

phones

Semantic

Analysis

Semantic and

permission-based

analysis using

admin and user

panels

In-depth semantic

verification

Apk file upload

varies between

users

86.9%

Long Wen

et al.

To detect

malware

using feature

extraction

techniques

SVM, PCA-

Relief

Static and

dynamic analysis,

PCA for feature

selection, SVM

for classification

Effective malware

detection using

static and dynamic

analysis

Difficult

predictions with

larger datasets

95.2%

Nikola

Milosevic

et al.

To enhance

malware

detection in

Android

phones

Machine

Learning,

SVM

Source code and

permission-based

analysis, ensemble

learning

High precision

achieved with

SVM

Dynamic

analysis may

enhance

performance

95.8%

Zhiwu Xu

et al.

To improve

malware

detection

using deep

learning

CNN,

CDGDroid

Extraction of data

into CFG & DFG,

training with CNN

Easy recognition

of data through

initial extraction

into two parts

Training graph

can be improved

93.7%

Burak

TAHTACI

To detect

Android

malware

using

machine

learning

PCA + SVM Feature selection

using variance

threshold and

information gain,

SVM for

classification

Reduced loss and

utilization of high-

dimensional data

It should include

more features

like n-gram

frequencies,

permissions, and

threat

intelligence

91.33%

Arvind

Sangal

To develop a

robust

malware

detection

framework

MLDroid Feature selection

algorithms,

machine learning

models, antivirus

comparison

Tested with 60

different antivirus

software and on

many instances

It does not

provide real-time

detection

92.8%

Xinning

Wang

To classify

malicious

and benign

apps

TstructDroid Automatic data

collection, kernel

functionality

analysis

Automatic data

collection,

multiple kernel

analysis, and

high-dimension

reduction

Time delay and

high cost

94.98%

Anam

Fatima

To detect

new Android

malware

variants

Genetic

Algorithm +

SVM/NN

Static and

dynamic analysis,

feature selection

using Genetic

Algorithm,

Optimized feature

subset reduces

training

complexity

Working on

small datasets

takes more time

94%

Ravi Eslavath & Upendra Kumar Mummadi / IJECE, 11(9), 253-269, 2024

258

SVM/NN for

classification

Zhuo Ma To automate

Android

malware

detection

Droidetec LSTM network

for sequence

processing, Skip-

gram method

LSTM network

for sequence

processing and

automated

learning using the

Skip-gram method

Complicated

network, long

learning time

92.22%

ElMouatez

Billah

Karbab

To create a

resilient

Android

malware

detection

tool

PetaDroid CNN ensembles,

static analysis,

confidence-based

decision-making

Homogeneous

clusters, adaptive

and resilient

Not resistant to

sophisticated

obfuscation

methods, cannot

detect malware in

downloads at

runtime

91.15%

Specifically, our model addresses the following

research gaps:

1. Detection of New Malware Variants: By combining

various classifiers, our model adapts to new malware

patterns and features, thereby improving the

identification of previously unseen threats.

2. Handling High-Dimensional Data: The two-layered

stacking approach, coupled with Principal Component

Analysis (PCA) for feature selection, effectively

manages high-dimensional datasets, enhancing

prediction accuracy and computational efficiency[18].

3. Mitigating Overfitting: Repeated K-Fold cross-

validation provides a more robust evaluation of model

performance, mitigating the risk of overfitting and

ensuring reliable detection across different data splits.

4. Real-Time Detection Capabilities: The ensemble nature

of the proposed model, along with the use of CNNs and

other efficient algorithms, facilitates faster training and

prediction times, making real-time detection more

feasible [19].

Our proposed GTTSAMD model thus represents a

significant advancement in the field of Android malware

detection, offering a comprehensive solution that addresses

critical limitations of existing methodologies. Through

rigorous evaluation and optimization, this model aims to set

a new standard for accuracy, robustness, and efficiency in

cybersecurity applications.

4. Proposed Methodology
The proposed model employs a sophisticated two-

layered stacking approach, optimized using grid search

techniques, to enhance the performance of machine learning

classifiers in malware detection.

The following explanation provides a detailed

breakdown of the methodology, supported by the attached

block diagram.

4.1. Explanation of Block Diagram

The block diagram illustrates the entire process flow of

the proposed two-layered stacking model with grid search

optimization.

4.1.1. Training Data and Scalar Data

The process begins with preparing the training data,

which is then scaled to ensure that all features are on a

comparable scale. This standardization process adjusts the

values of each attribute so that the mean is close to zero and

the variance is one. Mathematically, let 𝑋 be the matrix of

input features where each row represents an observation,

and each column represents a feature. The standardization

formula is given by:

𝑋𝑖𝑗
′ =

𝑋𝑖𝑗−𝜇𝑗

𝜎𝑗
 (3)

Where 𝑋𝑖𝑗
′ is the scaled value of the feature 𝑗 for

observation 𝑖, 𝜇𝑗 is the mean of the feature 𝑗, and 𝜎𝑗 is the

standard deviation of the feature 𝑗. This ensures that all

features contribute equally to the model's performance.

4.1.2. Cross-Validation

Cross-validation is employed to evaluate the robust

performance of the model. Cross-validation splits the scaled

data into multiple subsets or folds. Each fold is used once as

a validation set, while the remaining folds form the training

set. This process is repeated multiple times, and the results

are averaged to provide a stable assessment of the model's

accuracy. In mathematical terms, for K-fold cross-

validation [20], the data is divided into 𝐾 subsets. For each

fold 𝑘, the model is trained on 𝐾 − 1 folds and tested on the

𝑘-th fold. The performance metric (e.g., accuracy) is

averaged over all 𝐾 folds:

𝐶𝑉_score =
1

𝐾
∑  𝐾

𝑘−1 score 𝑘 (4)

Where score 𝑘 is the performance metric for the 𝑘-th

fold.

4.1.3. Base-Level Models (Level-0)

The cross-validated training data is fed into the base-

level models, which include tuned versions of Naive Bayes

(NB)[21], K-Nearest Neighbors (KNN)[22], and Support

Vector Machine (SVM)[23]. Each model's hyperparameters

are optimized using grid search to ensure the best

performance. The Naive Bayes model utilizes Bayes'

theorem for probabilistic classification:

Ravi Eslavath & Upendra Kumar Mummadi / IJECE, 11(9), 253-269, 2024

259

𝑃(𝐶 ∣ 𝑥) =
𝑃(𝑥∣𝐶)⋅𝑃(𝐶)

𝑃(𝑥)
 (5)

Where the goal is to find the class 𝐶 that maximizes

𝑃(𝐶 ∣ 𝑥). The K-Nearest Neighbors model classifies a data

point based on the majority class among its 𝑘 nearest

neighbors, with the distance metric typically being the

Euclidean distance:

𝑑(𝑥𝑖 , 𝑥𝑗) = √∑  𝑚
𝑙−1   (𝑥𝑖𝑙 − 𝑥𝑗𝑙)

2
 (6)

The Support Vector Machine finds the optimal

hyperplane that separates different classes, solving the

optimization problem:

min
𝐰,𝑏

 
1

2
∥ 𝐰 ∥2 subject to 𝑦𝑖(𝐰 ⋅ 𝐱𝑖 + 𝑏) ≥ 1, ∀𝑖

(7)

4.1.4. Predicted Values

The base-level models generate predicted values for the

testing data, which are then used as inputs for the next level

of the stacking process. These predictions form the basis for

further modeling at the meta-level.

4.1.5. Meta Data-1 and Meta-Level Models (Level-1)

The predicted values from the base-level models form

Meta Data-1, which is input into the metalevel models.

These include tuned versions of Random Forest (RF) [24]

and AdaBoost (ADA)[25]. Random Forest is an ensemble

method that constructs multiple decision trees and merges

their outputs. Mathematically, Random Forest is

represented as an ensemble of decision trees:

𝑅𝐹 = {𝑇1, 𝑇2, … , 𝑇𝑛} (8)

Where each tree 𝑇𝑖 is trained on a bootstrapped sample

of the data, and the final prediction is the majority vote (for

classification) or average (for regression) of the trees.

AdaBoost, a boosting algorithm, adjusts the weights of

misclassified instances to improve classification accuracy.

Each classifier ℎ𝑡 focuses on the errors of the previous

classifiers, and the final model is:

𝐻(𝑥) = ∑  𝑇
𝑡−1 𝛼𝑡ℎ𝑡(𝑥) (9)

Where 𝛼𝑡 is the weight of the classifier ℎ𝑡.

Fig. 3 Block diagram for two layered tuned stacking classifier

Training

Data

Scalar

data

Cross

validated

Training Data

Cross

validated

Testing Data

Level 0 Model

Tuned NB

Tuned KNN

Tuned SVM

Predicated

values

Meta Data 1

Level 1

Tuned RF

Tuned

ADA

Predicated

Values

Meta data 2

Logistic

Regression

Micro & Macro

Evaluation

Ravi Eslavath & Upendra Kumar Mummadi / IJECE, 11(9), 253-269, 2024

260

4.1.6. Predicted Values and Meta Data-2

The meta-level models generate their own predicted

values, which form Meta Data-2. These values are further

processed to refine the model's predictions.

4.1.7. Logistic Regression

Meta Data-2 is used as input for the final logistic

regression model. Logistic regression is used to make the

final prediction by combining the strengths of the base and

meta-level models. The logistic regression model predicts

the probability of the target variable using the sigmoid

function:

𝑃(𝑦 = 1 ∣ 𝑥) =
1

1+𝑒−(𝑤⋅𝑥+𝑏) (10)

Where the coefficients 𝐰 and intercept 𝑏 are learned

using maximum likelihood estimation.

4.1.8. Micro and Macro Evaluation

The final predictions are evaluated using both micro

and macro evaluation metrics to assess the model's

performance comprehensively. The micro evaluation

considers each individual prediction across all classes, while

the macro evaluation averages the performance metrics of

each class. Micro Precision is calculated as:

Micro Precision =
∑ 𝑇𝑃

∑ 𝑇𝑃+∑ 𝐹𝑃
 (11)

and Macro Precision is calculated as:

 Macro Precision =
1

𝑛
∑  𝑛

𝑖−1
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑃𝑖
 (12)

Where 𝑇𝑃 is True Positives, 𝐹𝑃 is False Positives, and

𝑛 is the number of classes. By following these steps, the

model leverages cross-validation, multiple base-level

models, and meta-level models to improve accuracy and

robustness, evaluated comprehensively using micro and

macro metrics.

The proposed model performs two-layered stacking by

optimizing the parameters in the models. The algorithms

used at the base predictor level are traditional tuned

algorithms, but at level 1, the meta-classifiers are used as

tuned ensemble algorithms. Here, the new predicted data

exists in the form of numerical values. The proposed model

has applied a logistic algorithm as the level 2 meta classifier.

The model initially standardizes the data and then passes for

the stacking classifier. The block diagram for the proposed

model is projected in Figure 3.

4.2. Enhancing Performance of Base-Level Machine

Learning Classifiers with Grid Search Optimization

 The proposed model employs a sophisticated two-

layered stacking approach, optimized using grid search

techniques, to enhance the performance of machine learning

classifiers in malware detection. The methodology is

detailed below, explaining the process both theoretically

and mathematically in an academic tone.

4.2.1. Grid Search Optimization Process

Definition of Hyperparameter Space

Identify key hyperparameters for each base-level

algorithm. Define a range of possible values for each

hyperparameter. For example: For K-Nearest Neighbors

(KNN): Number of neighbors 𝑘 ∈ {3,5,7,9} For Support

Vector Machine (SVM): Penalty parameter 𝐶 ∈ {0.1,1,10}

and kernel type ∈ { linear, rbf }

Exhaustive Search

Perform an exhaustive search over all possible

combinations of hyperparameters. For each combination,

train and validate the classifier using cross-validation.

Select the combination that yields the highest cross-

validation accuracy.

Model Training with Optimal Hyperparameters

Retrain the classifier on the entire training dataset using

the optimal hyperparameters identified in the exhaustive

search.

Performance Evaluation

Evaluate the optimized classifier on a separate test

dataset. Compute key performance metrics such as

accuracy, precision, recall, and F1 score. Any machine

learning model has two parameters: base parameters, which

are fixed and tuning parameters, which are to be controlled

and changed according to the model. If these parameters are

not trained, the loss function will be maximum, and the

misclassification rate will be high for the designed model.

The tuning parameters update their values based on the

training data available. These parameters are specific to the

algorithm. There are different ways to optimize the

parameters, as shown in Figure 4.

Fig. 4 Types of optimizers

The proposed model uses the Grid Search approach,

which helps the model set its values before it trains the data.

These are the crucial components of the algorithm, like the

K value in KNN. Generally, this value is considered a

Hyper

Optimization

Techniques

Bayes

search

Manual

search

Grid

search

HR

search

Randomiz

ed search

Halving

Grid search

Hyper

Opt

Search

Ravi Eslavath & Upendra Kumar Mummadi / IJECE, 11(9), 253-269, 2024

261

random number between 3 to 10. The c value in SVM,

which determines the penalty rate, generally lies between 0

and 1, but the larger C values help define a good marginal

hyperplane. The advantage of this optimization technique

lies in presenting accurate values by checking every possible

combination of the algorithms. Random search chooses and

tests an arbitrary combination of hyperparameters, whereas

grid search examines every conceivable arrangement of

hyperparameters to identify the optimal model. This method

uses random sampling from a matrix of hyperparameters

rather than a thorough search. In Grid Search, we test every

possible combination of a predetermined list of hyper-

parameter values and assess the model for each one. The

design is comparable to a grid, where each value is

organized into a matrix. The function is assessed at a range

of arbitrary configurations in the dimensional space to

optimize using random search. For smaller dimensional

data, random search performs best because it takes fewer

iterations and less time to identify the proper set. When there

are fewer dimensions, a search algorithm is the optimal

parameter search method. Grid search suffers from

dimensionality issues when the range of hyperparameters

increases exponentially, which is one of its main

disadvantages. The process of tuning the algorithms using

grid search is presented in Figure 5.

Fig. 5 Tuning using a grid search process

In the section below, the paper discusses the algorithm

and its tuning parameters.

4.3. Tuning of Naïve Bayesian (Base Level)

The Naive Bayes algorithm, a supervised learning

method based on Bayes' theorem, is widely used to address

classification challenges. It is particularly effective for text

categorization tasks and can handle large training sets

efficiently.

The simplicity and effectiveness of the Naive

Bayes[27] method make it one of the most straightforward

machine learning algorithms for constructing reliable

predictive models. As a probabilistic classifier, Naive Bayes

makes decisions based on the likelihood of specific events.

It is known for its rapid classification capabilities and

is suitable for both binary and multiclass categorization

problems. The algorithm performs exceptionally well in

multiclass predictions compared to other algorithms,

making it the preferred choice for text categorization

problems. The Bernoulli Naive Bayes [27] variant is

particularly useful for binary/boolean features. The

classification decision is based on the following

equation:(13)

𝑌𝑝𝑟𝑒𝑑 = 𝑚𝑎𝑥𝑦 ∗ 𝑃(𝑌) ∗ ∏ 𝑃(𝐹𝑖|𝑌)𝑛
𝑖=0 - (13)

Where:

• 𝑃(𝑌) is the prior probability of class 𝑌,

• 𝑃(𝐹𝑖 ∣ 𝑌) is the likelihood of a feature 𝐹𝑖 given

class 𝑌,

• 𝑌̂ is the predicted class.

By tuning these parameters, the Naive Bayes model can

be optimized to achieve higher accuracy and robustness in

classification tasks, particularly in scenarios involving large

and diverse datasets.

This optimization process is integral to ensuring that the

Naive Bayes algorithm can effectively differentiate between

various classes, thereby enhancing its utility in practical

applications.

Grid Search

tuning

Training Fold Validation &

Test

Classifier Model

Hyper

parameter
Evaluation

Metrics

Best Individual Accuracy

Ravi Eslavath & Upendra Kumar Mummadi / IJECE, 11(9), 253-269, 2024

262

Table 2. Tuning parameters of Bernoulli Naive Bayes approach

Parameter Description Possible Values

Binarize This setting is only relevant for the Bernoulli Naive Bayes methodology. It defines a

cutoff value for binarizing sample characteristics. If sample features are already

binarized, this parameter can be omitted.

Floating value to

define the threshold

Priors Specifies the prior class probabilities. When priors are provided (in an array), they

remain unchanged regardless of the dataset.

Number of class

labels

Alpha The smoothing parameter α\alphaα for Laplace or Lidstone smoothing, which different

Naive Bayes algorithms might use to handle zero probabilities.

Any floating value

between 0 and 1

Table 3. Tuning parameters of the KNN algorithm

Parameter Description Possible Values

n_neighbors
Specifies the number of nearest neighbors to consider. Optimal kkk values are

typically small prime numbers to balance bias and variance. Any prime number

Weights

Determines the influence of each neighbor on the classification. "Uniform" gives

equal weight to all neighbors, while "distance" weighs points according to the

reciprocal of their distances.

Uniform, Distance

4.4. Tuning of K-Nearest Neighbors (Base Level)

The K-Nearest Neighbors (KNN) algorithm is a

straightforward yet powerful classification technique that

assigns observations to the class of their k-nearest

neighbors. It operates by identifying the k-nearest data

points to a given observation based on a specified distance

metric.

Fine-tuning the hyperparameters of KNN is crucial for

optimizing its performance, particularly in tasks like

malware detection [28].

Key Tuning Parameters for KNN

• Number of Neighbors (k): The parameter 𝑘 represents

the number of nearest neighbors considered for

classification. Choosing the appropriate value for 𝑘 is

critical. Small values of 𝑘 make the model sensitive to

noise and prone to overfitting, while larger values can

lead to oversimplification and underfitting. A typical

range for 𝑘 is between 3 and 10.

• Distance Metric: KNN uses a distance metric to

measure the similarity between data points. The default

distance metric in many implementations, including

scikit-learn, is Euclidean distance. However, other

metrics such as Manhattan distance or cosine distance

can also be used depending on the nature of the data and

the specific application.

• Weight Function: The algorithm can classify based on

a simple majority vote or weigh the neighbors' votes

according to their distance from the observation being

classified. Weight functions such as inverse distance

weighting or kernel density weighting can be

employed. Using weights can improve classification

accuracy by giving more influence to closer neighbors.

• Preprocessing: KNN is sensitive to the scale and

distribution of input data. Therefore, it is essential to

preprocess the data to ensure all features are on a

similar scale and distribution. Techniques like

normalization or standardization are commonly used to

prepare the data for KNN.

4.4.1. Mathematical Framework

Given an observation 𝑥, the classification decision in

KNN can be mathematically expressed as:

𝑦 = arg max
𝑐

 ∑  𝑖∈𝑁𝑘
𝑤𝑖 ⋅ 𝛿(𝑦𝑖 , 𝑐) (14)

Where:

• 𝑁𝑘 represents the set of k -nearest neighbors,

• 𝑤𝑖 is the weight assigned to neighbor 𝑖 based on its

distance,

• 𝛿(𝑦𝑖 , 𝑐) is the Kronecker delta function, which is 1

if the class of neighbor 𝑖 is 𝑐 and 0 otherwise.

By optimizing these parameters through grid search, the

KNN algorithm can be fine-tuned to achieve superior

performance in classification tasks. This optimization

ensures that the KNN model effectively captures the

underlying patterns in the data, leading to more accurate and

reliable predictions. In summary, tuning the

hyperparameters of KNN involves selecting the optimal

number of neighbors, choosing the appropriate distance

metric, and deciding on the weight function. Preprocessing

the data is also essential to ensure the model performs well.

By carefully adjusting these parameters, the KNN algorithm

can be tailored to provide high accuracy and robustness.

4.5. Tuning of SVM (Base Level)

Support Vector Machine (SVM) is a powerful

classification method that works by finding the optimal

hyperplane to separate data points into different classes. The

tuning of SVM parameters is crucial to achieving high

classification performance, particularly when dealing with

complex datasets such as those used in malware detection.

4.5.1. Key Tuning Parameters for SVM

• Penalty Parameter (C): The parameter 𝐶 controls the

trade-off between achieving a low error on the training

data and minimizing the complexity of the model.

Higher values of 𝐶 put more emphasis on classifying all

training examples correctly, which can lead to

overfitting. Lower values of 𝐶 allow the margin to be

Ravi Eslavath & Upendra Kumar Mummadi / IJECE, 11(9), 253-269, 2024

263

maximized at the cost of more training errors. The

typical values for 𝐶 are multiples of 10, starting from

0.1.

• Gamma (𝛾): The parameter 𝛾 is relevant for non-linear

SVMs such as the Radial Basis Function (RBF) SVM.

It defines how far the influence of a single training

example reaches. Low values of 𝛾 imply a large radius

of influence, resulting in a smoother decision boundary.

High values of 𝛾 imply a smaller radius of influence,

resulting in a more complex decision boundary that

may overfit the training data. Typical values for 𝛾 are

powers of 10, starting from 0.1.

• Kernel Type: The kernel function transforms the input

data into the required format. SVMs can use various

kernel functions such as linear, polynomial, and RBF.

The choice of kernel affects the performance of the

SVM, and it is essential to experiment with different

kernels to find the one that best fits the data.

• Probability Estimates: Enabling probability estimates

allows the model to output the probability that a data

point belongs to a particular class rather than just the

predicted class label. This is useful for applications

requiring a measure of confidence in the model's

predictions. Enabling this feature involves additional

computation as it uses internal cross-validation.

Table 4. SVM tuning parameters

Parameter Description Possible Values

C The penalty parameter determines the trade-off between classification accuracy on

the training data and the complexity of the decision boundary. Higher values prevent

misclassification.

Multiples of 10

starting from 0.1

Gamma Defines the influence of a single training example. Low values signify "far" reach,

and high values signify "near" reach. Higher values can lead to overfitting.

Powers of 10

starting from 0.1

Kernel Specifies the kernel function to be used in the algorithm. Different kernels transform

the data in various ways to find the optimal hyperplane.

Linear, polynomial,

RBF, etc.

Probability Determines whether to enable probability estimates. Enabling this option can

provide additional insights into the confidence of predictions but requires more

computation.

Boolean value

(True/False)

Algorithm for Two-Layered Stacking - Voting

Classifier: The following algorithm outlines the process of

implementing a two-layered stacking classifier with

optimized base and meta-level models.

Input: Load the Malware Dataset, “AMData”

Output: Metric Analysis

Begin:

Step 1. An MDataLoad Malware Dataset

Step 2. for i in len(AMData):

 if(AMData[i].type==”String”):

 AMData[i]label_encoder.transform(AMData[i])

 if(AMData[i].type==”int”):

 new_value[i]
∑ 𝐴𝑀𝐷𝐴𝑇𝐴[𝑖]− 𝜇

𝑙𝑒𝑛(𝐴𝑀𝐷𝑎𝑡𝑎)
𝑖=0

𝜎2

 AMData[i]new_value[i]

Step 3 . a. AMData_new,

AMData_new_testRepeatCV(folds=5)

Step 4. base_estimators=[]

Step 5. define parameters for BerunoliBN, KNN, SVM and

fit grid search

Step 6. compute best parameters and best score and append

to base_estimators

Step 7. for i in len(base_estimators)

 for j in base_estimators[i]

classpredict(base_estimator[i].fit(AMData_new[i][j]))

Step 8. meta_estimators=[]

Step 9. define parameters for Random Forest, ADA and fit

to grid search

Step 10. compute best parameters, best score and append to

meta_estimators

Step 11. for i in len(meta_estimators)

 for j in meta_estimators[i]

class_predpredict(meta_estimator[i].fit(AMData_new_t

est[i][j]

Step 12.

final_classStackingClassifier(meta_estimator,Tuned_Lo

gRegression)

Step 13. print metrics

End

Ravi Eslavath & Upendra Kumar Mummadi / IJECE, 11(9), 253-269, 2024

264

This detailed explanation and algorithm outline how to

effectively tune and implement a Support Vector Machine

(SVM) as part of a two-layered stacking model for malware

detection. By optimizing the key parameters, the SVM can

be tailored to provide high accuracy and reliability,

enhancing the overall performance of the detection system.

4.6. Meta Classifier

A meta-classifier is an advanced meta-learning

algorithm used in classification predictive modeling tasks.

It leverages the predictions of multiple base classifiers to

generate a final prediction, combining their strengths to

improve overall accuracy. In the stacking ensemble method,

the meta-classifier uses the outputs from several base

models as input features to produce the final classification.

In a two-layered stacking framework, the first layer

consists of multiple base classifiers, each trained on the

entire training dataset. Their predictions are then used as

input for the second layer, where the meta-classifier (or

regression model) processes these predictions to generate

the final output. This hierarchical approach enhances the

model's ability to generalize by integrating diverse

4.6.1. Tuning of Random Forest (Meta Level-1)

The Random Forest algorithm, an ensemble technique,

constructs a multitude of decision trees during training.

Each tree in the forest votes for a class and the class with the

most votes is chosen as the final prediction. This method

leverages the power of multiple uncorrelated models to

enhance prediction accuracy and robustness. The principle

behind Random Forest is that combining the predictions

from multiple trees reduces the risk of overfitting.

Key Tuning Parameters for Random Forest

• max_features: This parameter determines the

maximum number of features Random Forest is

allowed to consider when splitting a node. Using 'auto'

or 'sqrt' is common to avoid overfitting.

• n_estimators: The number of trees in the forest. More

trees generally improve performance but also increase

computational cost. Values are typically multiples of

10.

• min_sample_leaf: The minimum number of samples

required to be at a leaf node. Smaller values can lead to

a model that captures noise in the data. Powers of 2 are

commonly used.

• max_depth: The maximum depth of the tree. Limiting

the depth prevents overfitting. Integer values with an

interval of 2 are typical.

• min_sample_split: The minimum number of samples

required to split an internal node. This parameter helps

to control the growth of the tree and prevent overfitting.

Values are usually multiples of 5.

4.6.2. Tunning of Ada Boost (Meta Level-1)

AdaBoost, or Adaptive Boosting, is an ensemble

technique that adjusts the weights of incorrectly classified

instances, giving them more emphasis in subsequent

iterations.

This method aims to convert weak learners into strong

ones by focusing more on the challenging cases. AdaBoost

is particularly effective in reducing bias and variance in

supervised learning.

Key Tuning Parameters for AdaBoost

• base_estimator: Specifies the type of weak learner

used. Common choices include decision trees, logistic

regression, and Support Vector Classifiers (SVC).

• n_estimators: Number of weak learners to use. More

estimators generally improve performance up to a

point. The default value is 50, but multiples of 10 are

often used.

• learning_rate: Shrinks the contribution of each weak

learner. A smaller value requires more weak learners

to maintain performance. Typical values range from 0

to 1, with a fine-tuning interval.

4.6.3. Designing the Meta Classifier 2 using Tuned Logistic

Regression

Logistic regression is a widely used classification

algorithm that predicts the probability of an observation

belonging to a certain class. It is particularly effective for

binary classification problems. The model is trained using a

labeled dataset with a binary output variable.

Table 5. Random forest tuning parameters

Parameter Description Possible Values

max_features Maximum number of features considered for splitting a node. Auto or sqrt

n_estimators Number of trees in the forest. More trees provide better performance but

increase computation time.

Multiples of 10

min_sample_leaf Minimum number of samples is required to be at a leaf node. Smaller

values may lead to overfitting.

Powers of 2

max_depth Maximum depth of the tree. Limiting depth helps prevent overfitting. Integer values with an

interval of 2

min_sample_split Minimum number of samples required to split an internal node. Controls

tree growth.

Multiples of 5

Ravi Eslavath & Upendra Kumar Mummadi / IJECE, 11(9), 253-269, 2024

265

Table 6. AdaBoost tuning parameters

Parameter Description Possible Values

base_estimator Type of weak learners to use (e.g., decision tree, logistic regression). Any traditional ML

algorithm

n_estimators Number of weak learners. More learners can improve performance but

increase computational cost.

Multiples of 10

learning_rate Reduces the contribution of each weak learner to avoid overfitting. 0 to 1, with fine-tuning

intervals

Key Tuning Parameters for Logistic Regression

• C: The regularization parameter. Higher values reduce

regularization, emphasizing fitting the training data.

Lower values increase regularization, focusing on

simplicity.

• Penalty: Specifies the type of regularization. L1 (lasso)

regularization can lead to sparse models, while L2

(ridge) regularization tends to spread the error across all

parameters.

• Dual: Indicates whether to use the dual formulation,

applicable for L2 penalty only. This is useful for large

datasets with many features.

• Solver: Optimization algorithm to use to fit the model.

Choices include 'liblinear', 'sag', 'saga', etc., each suited

for different types of datasets and objectives.

Table 7. Logistic Regression tuning parameters

Parameter
Description Possible

Values

C

Regularization

parameter. High values

reduce regularization,

and low values increase

it.

Logarithmic

values

Penalty

Type of regularization

(L1 or L2). L1 for

lasso, L2 for ridge.

L1, L2

regularizations

Dual

Dual or primal

formulation. Dual is

used for L2 penalty

with 'liblinear' solver.

Boolean

Solver

Optimization algorithm

for fitting the model.

Suitable choices

depend on dataset size

and type.

'liblinear', 'sag',

'saga', etc.

By carefully tuning these parameters, the logistic

regression model can achieve high accuracy and reliability

in classification tasks, contributing significantly to the

overall performance of the two-layered stacking model.

5. Results & Discussion
5.1. System Setup and Implementation Details

The system setup involves a comprehensive approach

to optimize and evaluate the performance of machine

learning models for malware detection. The implementation

utilizes a two-layered stacking ensemble method,

combining various base and meta classifiers tuned using

grid search optimization. The primary components of the

system setup include data preprocessing, model training,

and evaluation.

5.1.1. Data Preprocessing

The dataset undergoes normalization to scale the values

of independent attributes. This process accelerates

computations, particularly in the AdaBoost meta-

classification, by maintaining variance values close to 1.

Normalization ensures that features are scattered around the

nearest points, facilitating faster and more accurate learning.

5.1.2. Model Training and Hyperparameter Tuning

Various machine learning algorithms are tuned using

the grid search approach to find the best hyperparameters

that maximize model accuracy. The algorithms include

Naive Bayes, K-Nearest Neighbors (KNN), Support Vector

Machine (SVM), Random Forest, AdaBoost, and Logistic

Regression.

5.1.3. Dataset Used

The dataset used in this research is the DroidFusion on

the Drebin-215 dataset,[29] which contains 215 attributes

representing various features extracted from Android

applications, such as API call signatures, permissions, and

other relevant characteristics.

This dataset, sourced from the public repository

Kaggle, includes 15,036 samples, comprising 5,560

malware and 9,476 benign applications.

The feature categories are detailed in an accompanying

file, which classifies the attributes into specific groups. This

dataset serves as the foundation for evaluating the

effectiveness of feature selection techniques in enhancing

malware detection accuracy on Android devices.

5.2. Evaluation and Performance Analysis

The performance of the proposed two-layered stacking

model for Android malware detection was evaluated using

a confusion matrix, as depicted in the heatmap (Figure 6).

The dataset used for this evaluation was a reduced

subset, comprising 0.452% of the original data, to facilitate

more manageable computation.

Original dataset:

• Total samples: 15,036

• Malware samples: 5,560

• Benign samples: 9,476

Confusion matrix: Total samples represented: 68

Ravi Eslavath & Upendra Kumar Mummadi / IJECE, 11(9), 253-269, 2024

266

The compression percentage is calculated as:

Compression Percentage = (
 Total samples in confusion matrix

 Total samples in original dataset
) ×

100

Using the given numbers:

Compression Percentage = (
68

15036
) × 100 ≈ 0.452%

Thus, the confusion matrix represents approximately

0.452% of the original dataset.

The confusion matrix provides a detailed breakdown of

the model's classification results. It includes the following

metrics:

• True Positives (TP): Instances where malware was

correctly identified as malware.

• True Negatives (TN): Instances where benign

applications were correctly identified as benign.

• False Positives (FP): Instances where benign

applications were incorrectly classified as malware.

• False Negatives (FN): Instances where malware was

incorrectly classified as benign.

Fig. 6 Confusion matrix heatmap for reduced dataset

The heatmap illustrates these values, with the x-axis

representing the predicted classifications and the y-axis

representing the actual classifications. The diagonal

elements (TP and TN) indicate correct classifications, while

the off-diagonal elements (FP and FN) represent

misclassifications.

This confusion matrix is essential for assessing the

classification accuracy and the ability of the proposed model

to distinguish between benign and malicious applications

effectively. The visual representation in the heatmap

highlights the model's performance, indicating a high level

of accuracy with minimal misclassifications, thereby

validating the efficacy of the two-layered stacking approach

in Android malware detection.

5.2.1. Hyperparameter Tuning Configuration

The grid search [30] process involves specifying a

range of values for each hyperparameter and evaluating all

possible combinations to identify the optimal configuration.

Table 8 summarizes the tuning parameters and the best

values obtained through this process, along with their

respective accuracies. “Fits” refers to the number of times

the model is trained and evaluated during the

hyperparameter tuning process. When using grid search or

other hyperparameter optimization techniques, the

algorithm evaluates various combinations of

hyperparameters to determine the best set of parameters for

the model. Each combination of hyperparameters represents

a candidate configuration, and the model is "fit" to the

training data using each configuration. Therefore, "Total

Number of Fits" indicates the total number of times the

model was trained and evaluated with different

combinations of hyperparameters during the tuning process.

This number is the product of the number of candidates

(combinations of hyperparameters) and the number of cross-

validation splits used in the tuning process.

Figure 7 illustrates the accuracy of the standalone

algorithms after tuning. The X-axis represents the algorithm

names, and the Y-axis denotes the accuracy. Among the six

models, SVM and Logistic Regression achieved the highest

accuracy, both reaching 95.4%

Table 8. Accuracy analysis using grid parameters

Algorithm

Name

Number of

Tuning

Parameters

Total Number

of Fits
Best Values Accuracy

Naive

Bayesian
3

40 Candidates

& 200 Fits

{'alpha': 0.01, 'binarize': 0.0, 'fit_prior': True}
85.1%

KNN 4
480 Candidates

& 2400 Fits

{'metric': 'minkowski', 'n_neighbors': 13, 'p': 1,

'weights': 'distance'}
94.03%

SVM 4
200 Candidates

& 1000 Fits

{'C': 100, 'gamma': 0.0001, 'kernel': 'sigmoid',

'probability': True}
95.4%

Random

Forest
5

720 Candidates

& 3600 Fits

{'max_depth': 10, 'max_features': 'sqrt',

'min_samples_leaf': 2, 'min_samples_split': 1,

'n_estimators': 28}

94.3%

AdaBoost 3
320 Candidates

& 1600 Fits

{'estimator': DecisionTreeClassifier(),

'learning_rate': 1.02, 'n_estimators': 28}
90.29%

Logistic

Regression
4

168 Candidates

& 840 Fits

{'C': 0.1, 'dual': False, 'penalty': 'l2', 'solver': 'lbfgs'}
95.4%

Ravi Eslavath & Upendra Kumar Mummadi / IJECE, 11(9), 253-269, 2024

267

Fig. 7 Accuracy of different algorithms with tuned parameters

The proposed two-layered stacking model, which

integrates these algorithms, achieved an overall accuracy of

96%, as shown in Figure 7. This combined approach

surpasses the performance of standalone models,

demonstrating enhanced accuracy, recall, and precision.

Table 9. Confusion matrix for Malware analysis

Actual Predicted Count

Malware Malware (TP) 32

Malware Benign (FN) 4

Benign Malware (FP) 0

Benign Benign (TN) 32

Total 68

True Positive and False Positive Rates

True Positive and False Positive Rates

The true positive malware rate is calculated as follows:

True Positive Malware Rate =
TP

TP+FN
=

32

32+4
= 0.89

The false positive malware rate is calculated as follows:

False Positive Malware Rate =
FP

FP+TN
=

0

0+32
= 0

Explanation: The confusion matrix provides a summary of

the classification performance of the proposed model on the

malware dataset. It categorizes the predictions into four

types:

• True Positive (TP) Malware: Correctly identified

malware instances (32).

• False Negative (FN) Malware: Malware instances that

were incorrectly classified as benign (4).

• True Negative (TN) Malware: Correctly identified

benign instances (32).

• False Positive (FP) Malware: Benign instances that

were incorrectly classified as malware (0).

The true positive rate of 0.89 indicates that the model

correctly identified 89% of the actual malware instances.

The false positive rate of 0 indicates that no benign instances

were misclassified as malware, demonstrating the model's

high precision in identifying benign applications.

Fig. 8 ROC curve analysis

Figure 8 presents the Receiver Operating

Characteristics (RoC) curve of the proposed model,

comparing true and false positive rates across different

threshold points. The X-axis denotes the false positive rate,

while the Y-axis denotes the true positive rate computed

from the confusion matrix presented in Table 9.

5.3. Findings of the Study

The study's findings provide a comprehensive analysis

of the performance of various machine learning algorithms

in malware detection, with a focus on the optimization of

these algorithms through grid search. The Naive Bayesian

algorithm achieved an accuracy of 85.1%, demonstrating

moderate effectiveness, while K-Nearest Neighbors (KNN)

reached 94.03% accuracy, highlighting its efficacy in

distinguishing between benign and malicious applications.

Support Vector Machine (SVM) and Logistic Regression

both achieved impressive accuracies of 95.4%,

underscoring their robustness in handling complex

classification tasks when appropriately tuned. Random

Forest, with an accuracy of 94.3%, showed strong

performance due to its ability to handle complex

interactions and many features, whereas AdaBoost attained

an accuracy of 90.29%, indicating its utility in enhancing

weak learners' performance through iterative boosting.

Notably, the combined approach using a two-layered

stacking ensemble model achieved the highest overall

accuracy of 96%, surpassing individual models and

demonstrating significant improvements in recall and

precision rates, with a 100% recall rate for class 0 labels and

a 100% precision rate for class 1 labels. These results

underscore the importance of hyperparameter tuning and

ensemble methods in optimizing model performance,

78.00%
80.00%
82.00%
84.00%
86.00%
88.00%
90.00%
92.00%
94.00%
96.00%
98.00%

P
er

fo
rm

a
n

ce

Classifiers

Accuracy in %

Ravi Eslavath & Upendra Kumar Mummadi / IJECE, 11(9), 253-269, 2024

268

offering valuable insights for developing robust and

accurate malware detection systems in the field of

cybersecurity.

5.4. Limitations of the Study and Future Suggestions

Despite the promising results, the study has several

limitations that need to be addressed in future research. One

key limitation is the reliance on a specific dataset with 215

attributes, which may not capture the full diversity of

malware behaviors and characteristics present in real-world

scenarios. This could limit the generalizability of the

findings to other datasets and environments. Additionally,

while the grid search optimization process was effective in

enhancing model performance, it is computationally

intensive. It may not be feasible for extremely large datasets

or in resource-constrained settings. The study also primarily

focused on the accuracy of the models, with less emphasis

on other important metrics such as training time, model

interpretability, and computational efficiency. Furthermore,

the combined stacking model, although achieving high

accuracy, introduces additional complexity and requires

careful calibration to prevent overfitting and ensure

robustness.

For future research, it is recommended to explore more

diverse and representative datasets to validate and

generalize the findings across different contexts.

Incorporating real-time data and evolving malware patterns

could provide a more comprehensive assessment of model

performance. Additionally, exploring alternative

optimization techniques, such as Bayesian optimization or

evolutionary algorithms, could reduce computational

overhead while still effectively tuning hyperparameters.

Future studies should also consider a broader range of

evaluation metrics, including training time, computational

cost, and model interpretability, to provide a more holistic

evaluation of model performance. Finally, developing

lightweight and scalable ensemble methods could enhance

the practicality of the proposed approaches for real-world

applications, particularly in environments with limited

computational resources. These future directions will help

refine the methodologies and improve the robustness and

applicability of machine learning models for malware

detection.

6. Conclusion
 The proposed model mainly focuses on dynamic

attributes. So, it generates the subset from the 215 attributes

based on the type of malware using the Integrated RFE and

SVM approach. For these attributes, the model tries to

combine multiple models, which are tuned using the Grid

Search approach. Grid search always checks every

possibility of the combination with all the unique values

assigned to the estimator. The major goal of this research is

to predict different types of malware without taking a single

chance to misclassify the data and try to train the data with

more records in the form of meta data instead of a few test

datasets. The prediction levels are assigned a probability of

both correct and incorrect classification rate, i.e., suppose

the model has applied three traditional tuned approaches at

the base level. It generates 8 possibilities by considering all

models that have predicted true, all that have predicted

wrong and other cases and considers the majority voted

results as prediction output. In this way, the proposed

research analyses every possibility in terms of both

estimator and models and enhances the performance.

References
[1] Ivan Dychka et al., “Malware Detection Using Artificial Neural Networks,” Advances in Computer Science for Engineering and

Education II, Advances in Intelligent Systems and Computing, vol. 938, pp. 3-12, 2019. [CrossRef] [Google Scholar] [Publisher

Link]

[2] Zarni Aung, and Win Zaw, “Permission-Based Android Malware Detection,” International Journal of Scientific & Technology

Research, vol. 2, no. 3, pp. 228-234, 2018. [Google Scholar]

[3] İsmail Atacak, Kazım Kılıç, and İbrahim Alper Doğru, “Android Malware Detection Using Hybrid ANFIS Architecture with Low

Computational Cost Convolutional Layers,” PeerJ Computer Science, vol. 8, pp. 1-23, 2022. [CrossRef] [Google Scholar] [Publisher

Link]

[4] Imtiyaz Khan et al., “Secure and Efficient Data Sharing Scheme for Multi-User and Multi-Owner Scenario in Federated Cloud

Computing,” Journal of Theoretical and Applied Information Technology, vol. 102, no. 6, pp. 2541-2555, 2024. [Google Scholar]

[Publisher Link]

[5] Min Zhao et al., “AntiMalDroid: An Efficient SVM-Based Malware Detection Framework for Android,” Information Computing and

Applications, Communications in Computer and Information Science, vol. 243, pp. 158-166, 2021. [CrossRef] [Google Scholar]

[Publisher Link]

[6] Kuruva Laxmanna, K. Lakshmi, and S. Prem Kumar, “Identifying Malwares by Signature Distribution Algorithm in MANET with

Assorted Strategy,” International Journal of Computer Engineering in Research Trends, vol. 2, no. 9, pp. 636-639, 2015. [Google

Scholar] [Publisher Link]

[7] Rodney Anthony Raj, and A.R. Chayapathi, “Malware as a Component in Cybercrime: A Survey,” International Journal of Computer

Engineering in Research Trends, vol. 4, no. 5, pp. 176-179, 2017. [Google Scholar] [Publisher Link]

[8] Suleiman Y. Yerima, and Sakir Sezer, “DroidFusion: A Novel Multilevel Classifier Fusion Approach for Android Malware

Detection,” IEEE Transactions on Cybernetics, vol. 49, no. 2, pp. 453-466, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[9] Rishab Agrawal et al., “Android Malware Detection Using Machine Learning,” International Conference on Emerging Trends in

Information Technology and Engineering, Vellore, India, pp. 1-4, 2020. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1007/978-3-030-16621-2_1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Malware+Detection+Using+Artificial+Neural+Networks&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-16621-2_1
https://link.springer.com/chapter/10.1007/978-3-030-16621-2_1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&authuser=1&q=Permission-based+Android+Malware+Detection&btnG=
https://doi.org/10.7717/peerj-cs.1092
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&authuser=1&q=Android+Malware+Detection+Using+Hybrid+ANFIS+Architecture&btnG=
https://peerj.com/articles/cs-1092/
https://peerj.com/articles/cs-1092/
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&authuser=1&q=Secure+and+efficient+data+sharing+scheme+for+multi-user+and+multi-owner+scenario+in+federated+cloud+computing&btnG=
http://www.jatit.org/volumes/Vol102No6/24Vol102No6.pdf
https://doi.org/10.1007/978-3-642-27503-6_22
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&authuser=1&q=AntiMalDroid%3A+An+Efficient+SVM-Based+Malware+Detection+Framework+for+Android&btnG=
https://link.springer.com/chapter/10.1007/978-3-642-27503-6_22
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&authuser=1&q=Identifying+Malwares+by+Signature+Distribution+Algorithm+in+MANET+with+Assorted+Strategy&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&authuser=1&q=Identifying+Malwares+by+Signature+Distribution+Algorithm+in+MANET+with+Assorted+Strategy&btnG=
https://www.ijcert.org/index.php/ijcert/article/view/229
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Rodney+Anthony+Raj%2C+and+A.R.+Chayapathi%2C+Malware+as+a+Component+in+Cybercrime%3A+A+Survey&btnG=
https://www.ijcert.org/index.php/ijcert/article/view/396
https://doi.org/10.1109/TCYB.2017.2777960
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=DroidFusion%3A+A+Novel+Multilevel+Classifier+Fusion+Approach+for+Android+Malware+Detection&btnG=
https://ieeexplore.ieee.org/abstract/document/8245867/
https://doi.org/10.1109/ic-ETITE47903.2020.491
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Android+Malware+Detection+Using+Machine+Learning&btnG=
https://ieeexplore.ieee.org/document/9077693

Ravi Eslavath & Upendra Kumar Mummadi / IJECE, 11(9), 253-269, 2024

269

[10] Long Wen, and Haiyang Yu, “An Android Malware Detection System Based on Machine Learning,” AIP Conference Proceedings,

vol. 1864, no. 1, pp. 1-7, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[11] Nikola Milosevic et al., “Machine Learning Aided Android Malware Classification,” Computers & Electrical Engineering, vol. 61,

pp. 266-274, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[12] K. Thejeswari, K. Sreenivasulu, and B. Sowjanya, “Cyber Threat Security System Using Artificial Intelligence for Android-Operated

Mobile Devices,” International Journal of Computer Engineering in Research Trends, vol. 9, no. 12, pp. 275-280, 2022. [CrossRef]

[Publisher Link]

[13] Zhiwu Xu et al., “CDGDroid: Android Malware Detection Based on Deep Learning using CFG and DFG,” Formal Methods and

Software Engineering, vol. 11232, pp. 177-193, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[14] Burak Tahtaci, and Beyzanur Canbay, “Android Malware Detection Using Machine Learning,” Innovations in Intelligent Systems

and Applications Conference, Istanbul, Turkey, pp. 1-6, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[15] Arvind Mahindru, and A.L. Sangal, “MLDroid—Framework for Android Malware Detection using Machine Learning Techniques,”

Neural Computing and Applications, vol. 33, pp. 5183-5240, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[16] T. Monisha, R. Sridevi, and K.R. Tirumalini, “Detection of Malicious URLs Using Artificial Intelligence,” International Journal of

Computer Engineering in Research Trends, vol. 7, no. 8, pp. 6-10, 2020. [Publisher Link]

[17] Xinning Wang, and Chong Li, “Android Malware Detection through Machine Learning on Kernel Task Structures,” Neurocomputing,

vol. 435, pp. 126-150, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[18] Rodney Anthony Raj, and A.R. Chayapathi, “A Honeypot for a Small Network using Raspberry Pi,” International Journal of

Computer Engineering in Research Trends, vol. 4, no. 8, pp. 319-324, 2017. [Publisher Link]

[19] B. Prasanthi, Suresh Pabboju, and D. Vasumathi, “Query Adaptive Hash-Based Image Retrieval in Intent Image Search,” Journal of

Theoretical & Applied Information Technology, vol. 93, no. 2, pp. 278-286, 2016. [Google Scholar] [Publisher Link]

[20] Zhuo Ma et al., “Droidetec: Android Malware Detection and Malicious Code Localization through Deep Learning,” Arxiv, pp. 1-13,

2020. [CrossRef] [Google Scholar] [Publisher Link]

[21] ElMouatez Billah Karbab, and Mourad Debbabi, “PetaDroid: Adaptive Android Malware Detection Using Deep Learning,” Detection

of Intrusions and Malware, and Vulnerability Assessment (DIMVA), Cham: Springer, pp. 319-340, 2021. [CrossRef] [Google Scholar]

[Publisher Link]

[22] Vasileios Kouliaridis, and Georgios Kambourakis, “A Comprehensive Survey on Machine Learning Techniques for Android Malware

Detection,” Information, vol. 12, no. 5, pp. 1-12, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[23] Mohammed K. Alzaylaee, Suleiman Y. Yerima, and Sakir Sezer, “DL-Droid: Deep Learning-Based Android Malware Detection

using Real Devices,” Computers & Security, vol. 89, pp. 1-11, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[24] Tianliang Lu et al., “Android Malware Detection Based on a Hybrid Deep Learning Model,” Security Communication Networks, vol.

2020, no. 1, pp. 1-11, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[25] Omar N. Elayan, and Ahmad M. Mustafa, “Android Malware Detection Using Deep Learning,” Procedia Computer Science, vol.

184, pp. 847-852, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[26] Halil Murat Ünver, and Khaled Bakour, “Android Malware Detection Based on Image-Based Features and Machine Learning

Techniques,” SN Applied Sciences, vol. 2, pp. 1-15, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[27] Stuart Millar et al., “Multi-View Deep Learning for Zero-Day Android Malware Detection,” Journal of Information Security and

Applications, vol. 58, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[28] Nadia Daoudi et al., “Lessons Learnt on Reproducibility in Machine Learning Based Android Malware Detection,” Empirical

Software Engineering, vol. 26, pp. 1-53, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[29] Marília Prata, Android Malware LSTM, Kaggle, 2021. [Online]. Available: https://www.kaggle.com/code/mpwolke/android-

malware-lstm/input

[30] Tsehay Admassu Assegie, “An Optimized KNN Model for Signature-Based Malware Detection,” International Journal of Computer

Engineering in Research Trends, vol. 8, no. 2, pp. 46-49, 2021. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1063/1.4992953
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Android+malware+detection+system+based+on+machine+learning&btnG=
https://pubs.aip.org/aip/acp/article/1864/1/020136/628529/An-Android-malware-detection-system-based-on
https://doi.org/10.1016/j.compeleceng.2017.02.013
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+learning+aided+Android+malware+classification&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0045790617303087
https://doi.org/10.22362/ijcert/2022/v9/i12/v9i1207
https://www.ijcert.org/index.php/ijcert/article/view/694
https://doi.org/10.1007/978-3-030-02450-5_11
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=CDGDroid%3A+Android+Malware+Detection+Based+on+Deep+Learning+using+CFG+and+DFG&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-02450-5_11
https://doi.org/10.1109/ASYU50717.2020.9259834
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Android+Malware+Detection+Using+Machine+Learning&btnG=
https://ieeexplore.ieee.org/document/9259834
https://doi.org/10.1007/s00521-020-05309-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=MLDroid%E2%80%94Framework+for+Android+malware+detection+using+machine+learning+techniques&btnG=
https://link.springer.com/article/10.1007/S00521-020-05309-4
https://www.ijcert.org/index.php/ijcert/article/view/604
https://doi.org/10.1016/j.neucom.2020.12.088
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Android+malware+detection+through+machine+learning+on+kernel+task+structures&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0925231220320002
https://www.ijcert.org/index.php/ijcert/article/view/709
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Query+adaptive+hash-based+image+retrieval+in+intent+image+search&btnG=
http://www.jatit.org/volumes/Vol93No2/5Vol93No2.pdf
https://doi.org/10.48550/arXiv.2002.03594
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Droidetec%3A+Android+Malware+Detection+and+Malicious+Code+Localization+through+Deep+Learning&btnG=
https://arxiv.org/abs/2002.03594
https://doi.org/10.1007/978-3-030-80825-9_16
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=PetaDroid%3A+Adaptive+Android+Malware+Detection+Using+Deep+Learning&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-80825-9_16
https://doi.org/10.3390/info12050185
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Comprehensive+Survey+on+Machine+Learning+Techniques+for+Android+Malware+Detection&btnG=
https://www.mdpi.com/2078-2489/12/5/185
https://doi.org/10.1016/j.cose.2019.101663
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=DL-Droid%3A+Deep+learning-based+android+malware+detection+using+real+devices&btnG=
https://www.sciencedirect.com/science/article/pii/S0167404819300161
https://doi.org/10.1155/2020/8863617
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Android+Malware+Detection+Based+on+a+Hybrid+Deep+Learning+Model&btnG=
https://onlinelibrary.wiley.com/doi/full/10.1155/2020/8863617
https://doi.org/10.1016/j.procs.2021.03.106
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Android+Malware+Detection+Using+Deep+Learning&btnG=
https://www.sciencedirect.com/science/article/pii/S1877050921007481
https://link.springer.com/article/10.1007/s42452-020-3132-2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Android+malware+detection+based+on+image-based+features+and+machine+learning+techniques&btnG=
https://doi.org/10.1007/s42452-020-3132-2
https://doi.org/10.1016/j.jisa.2020.102718
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Android+malware+detection+based+on+image-based+features+and+machine+learning+techniques&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S2214212620308577
https://doi.org/10.1007/s10664-021-09955-7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Lessons+Learnt+on+Reproducibility+in+Machine+Learning+Based+Android+Malware+Detection&btnG=
https://link.springer.com/article/10.1007/s10664-021-09955-7
https://www.kaggle.com/code/mpwolke/android-malware-lstm/input
https://www.kaggle.com/code/mpwolke/android-malware-lstm/input
https://doi.org/10.22362/ijcert/2021/v8/i2/v8i206
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Optimized+KNN+Model+for+Signature-Based+Malware+Detection&btnG=
https://www.ijcert.org/index.php/ijcert/article/view/652

