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Abstract - Android malware detection is critical for protecting users from cybercrime by automatically identifying potentially 

harmful applications before they can affect devices. This study explores the efficacy of various machine learning techniques, 

including ensemble and voting algorithms, for enhancing malware detection. Traditional methods face challenges due to the 

increasing number of attributes and the dynamic nature of certain features, necessitating more robust solutions. The 

proposed model addresses these challenges by initially transforming class labels into numerical format and applying 

normalization to independent attributes, thereby reducing variance and improving computational efficiency. The 

methodology involves a two-layered stacking approach rather than a single-layer model to minimize the risk of 

misclassification and improve the handling of unknown malware. At the base level, hyperparameters of traditional classifiers 

such as SVM, KNN, and Bernoulli Naive Bayes are finely tuned using repeated cross-validation, creating a diverse meta 

data repository. The stacking classifier employs a voting mechanism that considers all possible true and false classification 

rates, enhancing predictive accuracy. The next layer (meta classifier-1) utilizes tuned ensemble methods to generate 

numerical predictions, which are then processed by a final logistic regression layer (meta classifier-2). The proposed model 

demonstrates a significant improvement, achieving a +0.9% increase in accuracy compared to standalone tuning algorithms, 

thereby offering a more reliable and efficient approach to Android malware detection. This study utilizes the Drebin dataset, 

which includes 15,036 samples comprising 5,560 malware and 9,476 benign applications, to evaluate the model's 

performance. 

Keywords - Bernoulli NB, 2- layered stack, Meta data, Hyperparameters, Malware analysis. 

1. Introduction 
In the contemporary digital era, the proliferation of 

smartphones has revolutionized communication, 

information access, and entertainment. Among these, 

Android has emerged as the dominant operating system, 

powering billions of devices globally. However, this 

ubiquity has made Android a prime target for malicious 

software or malware, which poses significant threats to 

users' privacy, security, and financial well-being. As 

cybercriminals continually develop new and sophisticated 

malware variants, the challenge of effective detection and 

mitigation becomes increasingly complex and critical. 

Android malware detection is a vital aspect of cybersecurity, 

aimed at identifying and neutralizing malicious applications 

before they can inflict harm. Traditional detection methods, 

such as signature-based and heuristic approaches, often fall 

short in detecting novel and evolving threats due to their 

reliance on predefined patterns. Consequently, there has 

been a paradigm shift towards Machine Learning (ML) 

techniques [1], which offer the potential to learn and adapt 

from vast datasets, thereby improving detection rates and 

reducing false positives. 

Machine learning algorithms, particularly those 

utilizing ensemble and stacking techniques, have shown 

promise in enhancing malware detection accuracy. 

Ensemble methods combine multiple classifiers to make 

more robust predictions while stacking. A specific type of 

ensemble learning integrates various models at different 

levels to capitalize on individual strengths and mitigate 

weaknesses. Despite these advancements, the dynamic 

nature of malware attributes presents ongoing challenges, 

necessitating continuous refinement of detection models. 

Despite these advancements, the dynamic nature of 

malware attributes presents ongoing challenges. Existing 

machine learning algorithms, while promising, still struggle 

with the high dimensionality and variability of malware 

data. This study introduces a novel Grid Tuned Two-

Layered Stacking Approach for Malware Detection 

(GTTSAMD). By leveraging grid search optimization and 

repeated cross-validation, the proposed framework aims to 

fine-tune hyperparameters and enhance model performance, 

thereby addressing the limitations of current methods. The 

primary problem addressed by this study is the inadequate 

detection accuracy and adaptability of existing Android 

malware detection models when confronted with new and 

evolving malware variants. Traditional methods [2] and 

some machine learning models often result in high false 

positive rates and fail to generalize well to unseen data. This 

research seeks to fill this gap by developing a more robust 

and accurate detection framework. The primary problem 

http://www.internationaljournalssrg.org/
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addressed by this study is the inadequate detection accuracy 

and adaptability of existing Android malware detection 

models when confronted with new and evolving malware 

variants. Traditional methods and some machine learning 

models often result in high false positive rates and fail to 

generalize well to unseen data. This research seeks to fill 

this gap by developing a more robust and accurate detection 

framework [3]. 

1. How can grid search optimization enhance the 

performance of base-level machine learning classifiers 

in malware detection? 

2. What is the impact of a two-layered stacking approach 

on the overall detection accuracy and robustness of the 

model? 

3. How does the proposed model compare to traditional 

single-layer and ensemble models in terms of precision, 

recall, and false positive rates? 

This research is significant as it addresses a critical need 

in the field of cybersecurity: improving the detection of 

Android malware. By enhancing detection accuracy and 

reducing false positives, the proposed model can better 

protect users from cyber threats. The study's findings could 

have broad implications for the development of more 

sophisticated malware detection systems and contribute to 

safer digital environments for Android users worldwide. 

The structure of the paper is as follows: Section 2, 

background of the study and Section 3, literature survey, 

reviews previous research on machine learning techniques 

for android malware detection, highlighting their merits and 

limitations. Section 4, the proposed methodology, details 

the two-layered stacking approach, including the selection 

and tuning of base and meta-level classifiers and the grid 

search optimization process. Section 5, results and 

discussion, presents the experimental setup, evaluation 

metrics, and a comprehensive analysis of the model's 

performance compared to traditional approaches. Section 6, 

conclusion, summarizes the key findings, discusses the 

implications of the research, and suggests directions for 

future work. By systematically addressing these elements, 

this paper aims to provide a comprehensive and insightful 

contribution to the field of Android malware detection. 

2. Background    
Android malware detection is a crucial task in 

identifying and mitigating cybercrimes in the digital world. 

Given the complexity of this problem, researchers have 

turned to advanced machine learning techniques to enhance 

detection accuracy. One such approach is the Gaussian 

Naive Bayes (GNB) algorithm [4], which has been widely 

utilized for both binary and multiclass classification tasks 

due to its efficiency and simplicity.  

GNB is particularly effective in text classification 

problems involving large feature spaces, making it suitable 

for Android malware detection. In this context, GNB can 

classify an Android application as either malicious or 

benign based on a variety of features, such as permissions 

requested by the application, API calls made [5], and 

specific patterns in the code. 

To train a GNB model for Android malware detection, 

a dataset of Android applications labeled as either malware 

or benign is required. The model extracts features from each 

application in the dataset and uses these to train the GNB 

classifier. Once trained, the model can classify new 

applications by extracting the same set of features and 

applying the GNB model to the feature vector, as shown in 

the following equation: 

P(Xi|Y=’S_B’)= 
1

√2∗𝜋∗𝜎2 * 𝑒
−(∑ 𝑋𝑖− 𝜇)2

2∗𝜎2               (1) 

While GNB is a powerful tool for malware detection, 

its accuracy is highly dependent on the quality of the 

features and the training dataset. Therefore, ensuring high-

quality data is crucial for achieving reliable results. 

To address the limitations of traditional approaches, 

this study proposes a model that utilizes stacking algorithms 

tuned with the Grid Search approach [6]. Stacking is an 

ensemble learning technique that combines multiple 

individual models to improve overall predictive 

performance. This method leverages the strengths of 

different models, leading to better generalization and 

robustness. Stacking also allows for greater flexibility by 

integrating models with different architectures or trained on 

various data types, which can reduce variance and provide a 

more stable estimate of the underlying relationships in the 

data. 

The proposed model addresses these issues using 

stacking algorithms tuned with Grid Search. Stacking is an 

ensemble learning technique that combines multiple 

individual models to improve overall predictive 

performance. By leveraging the strengths and mitigating the 

weaknesses of different models, stacking can enhance 

accuracy, generalization, robustness, and flexibility. This 

approach allows for the integration of various models with 

different architectures or training on different data types. 

Additionally, stacking can reduce variance and provide a 

more stable estimate of the underlying relationship between 

input and output variables. It also offers improved 

interpretability and scalability, making it suitable for large 

datasets and real-time applications. 

The process involved in stacking is illustrated in Figure 

1. Base prediction algorithms, known as "Level-0" models, 

predict elements based on training data, which is then cross-

validated to construct meta data. A meta-classifier algorithm 

is applied to this meta data for evaluation. Some thumb rules 

for the stacking process include ensuring the meta-classifier 

evaluates data not trained by any base prediction model, 

using two-layered stacks due to a large amount of data, and 

performing cross-validation with the Repeated K-Fold 

method. This method repeats the K-Fold process several 

times with different folds [7], providing a robust evaluation 

and reducing the risk of overfitting by testing the model on 
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various data subsets. The proposed model employs 5-fold 

cross-validation, as shown in Figure 2. 

Fig. 1 Stacking algorithm workflow to classify malware 

The reliability and validity of any machine learning 

model deployment are crucial. Reliability is measured using 

kappa statistics, which evaluate the agreement between 

different models on the same training data. The kappa score 

is calculated as shown in Equation (2): 

𝐾𝑆(𝑅𝑒𝑐𝑜𝑟𝑑[𝑖]) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙𝑠 𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑒𝑑 (𝑌𝑒𝑠)−𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙𝑠 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒(𝑌𝑒𝑠)

1−𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙𝑠 𝑃𝑟𝑜𝑏𝑎𝑏𝑙𝑒(𝑦𝑒𝑠)
  

(2) 

 

Fig. 2 5-Fold cross validation with kappa evaluation 

The process involves several key steps: 

• Data Transformation and Normalization: Transform 

class labels and normalize independent attributes to 

reduce variability. 

• Cross-Validation: Apply repeated K-Fold cross-

validation to create robust meta data and evaluate the 

model's performance. 

• Grid Search Optimization: Tune the hyperparameters of 

the base and meta-classifiers to enhance model 

accuracy. 

• Stacking Ensemble: Combine the models using a voting 

mechanism to improve overall predictive performance. 

The proposed model employs 5-fold cross-validation to 

ensure a reliable assessment of model performance, 

mitigating the risk of overfitting and reducing the impact of 

random fluctuations in the results. The reliability of the 

model is measured using the kappa statistic, which evaluates 

the level of agreement between different models on the same 

training data. 

3. Literature Survey 
The literature on Android malware detection reveals 

various innovative approaches leveraging machine learning 

to enhance detection accuracy and robustness. Researchers 

have explored diverse techniques, from traditional 

algorithms like Naive Bayes and Support Vector Machines 

to advanced methods such as deep learning and ensemble 

learning. This section provides a concise overview of 

significant contributions in this field, highlighting the 

methodologies, key findings, and performance metrics of 

notable studies. These insights lay the groundwork for 

understanding the evolution of malware detection strategies 

and underscore the necessity for continuous improvement in 

combating sophisticated cyber threats. Suleiman Y. Yerima 

et al. [8] proposed machine learning methods to analyze 

malware-affected Android devices, highlighting the 

transmission of viruses through links, applications, and .apk 

files. Their approach involved parallel classifications using 

a matrix of four different techniques: rule-based, function-

based, tree-based, and probabilistic methods. The initial 

data was trained using vectors from new applications, and 

intermediate outputs were predicted before combining 

classifications. This ensemble included decision trees, 

Naive Bayes, and PART (a rule-based method similar to 

decision trees but utilizing decision lists). Their evaluation, 

employing three validation techniques, achieved an 

accuracy of 96.3% in the PART approach. 

Rishab Agrawal et al. [9] addressed the challenge of 

identifying new malware on Android phones. They 

performed both semantic and permission-based analyses, 

utilizing a system with separate admin and user portals. The 

admin panel managed .apk files and comments, while the 

user panel allowed app uploads for analysis. Six attributes 

related to .apk files were considered, and both malware and 

semantic data were analyzed concurrently. This system 

effectively identified malware-infected devices and 

generated necessary permissions, achieving notable 

classification accuracy. 

Long Wen et al. [10] identified the limitations of 

traditional methods in recognizing signatures in unknown 

applications. They adopted a machine learning approach, 
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combining static and dynamic analyses to extract features. 

Principal Component Analysis (PCA) was used for feature 

selection, and Support Vector Machine (SVM) was 

employed for classification. The process involved 

examining unknown applications and extracting MD5 

signatures, followed by feature extraction and selection 

phases. The combined static and dynamic analyses achieved 

a classification accuracy of 95% using the PCA-Relief 

method.  

Nikola Milosevic et al. [11] focused on methods to 

identify malware on Android phones, which users often find 

difficult to detect. They implemented two approaches: one 

based on source code analysis and the other on permissions. 

Various machine learning methods such as Naive Bayes, 

SVM, C4.5 Decision Trees, and JRIP were used, with Weka 

tools facilitating the best performance through clustering 

techniques. Their ensemble learning approach, particularly 

SVM, achieved the highest precision of 95.8% and an F1-

score of 95.6%. 

Zhiwu Xu et al. [13] tackled malware issues on Android 

phones through three main tasks: graph extraction, graph 

encoding, and model training. Data was collected from 

Marvin and Contagio Dump, including malware and normal 

applications. The data was categorized into Control Flow 

Graph (CFG) and Data Flow Graph (DFG) forms and 

encoded into matrices for training deep learning models. 

The Convolutional Neural Network (CNN) approach, 

featuring reshaped layers and pooling, reduced training time 

and achieved high accuracy, with 99.8% in CDGDroid 

tools.  

Burak TAHTACI et al. [14] reported the use of machine 

learning to detect Android malware. They developed 

models using n-gram properties of tiny files, focusing on 

feature selection and merging different extractions with 

trained models. Features with low selectivity and 

computation time were eliminated using variance threshold 

and information gain methods. This approach emphasized 

the creation of automated malware-scanning solutions. 

Arvind Sangal et al. [15] developed 210 models using 

21 different machine learning approaches and ten feature 

selection techniques. Their web-based framework, 

MLDroid, is aimed at detecting malware in Android apps. 

Utilizing 30 disparate datasets representing Android apps, 

the framework achieved an accuracy rate of 98.8% 

compared to various antivirus scanners. The study 

incorporated a substantial malware sample size of up to 

55,000 and demonstrated superior performance using 

feature selection algorithms.  

Xinning Wang et al. [17] proposed a multidimensional 

kernel functionality system and feature weight-based 

identification to classify and understand malicious and 

benign apps. Their approach utilized dynamic and static 

analyses, employing machine learning methods such as 

Naive Bayes, Neural Network, Decision Tree, and K-

Nearest Neighbors. The TstructDroid Framework was 

suggested for investigating Android malware, founded on 

the dynamic study of kernel properties. 
 

Anam Fatima et al. [19] presented a method for 

detecting new Android malware variants using machine 

learning in conjunction with static and dynamic analysis. 

They employed a Genetic Algorithm to optimize feature 

selection, reducing feature dimensionality by more than 

half. The study suggested using large datasets for better 

results and integrating Genetic Algorithms with other 

machine-learning techniques. Zhuo Ma et al. [20] 

introduced Droidetec, a deep neural network-based platform 

for static and automated Android malware detection. The 

platform employed a weight distribution mechanism to 

assess malware behavior sequences. Droidetec identified 

harmful code with a 95% success rate and an F1-score of 

98.21%. The researchers utilized the AMD dataset, covering 

65732 APIs with a mix of benign and malicious 

applications, and emphasized the integration with methods 

for identifying native shared libraries. ElMouatez Debbabi 

et al. [21] developed PetaDroid, a resilient and adaptable 

Android malware detection tool. The framework used CNN 

ensembles and confidence-based decision-making, aiming 

to address the evolving nature of Android APIs. PetaDroid 

outperformed MaMaDroid and MalDozer in various 

evaluation scenarios, suggesting the need for further real-

world deployment validation. The study proposed 

expanding their work to include performance simulations 

for low-confidence detection, ensuring the dataset's proper 

division to avoid skewed findings. 
 

In conclusion, these studies collectively highlight the 

evolution of machine learning approaches in Android 

malware detection, emphasizing the importance of feature 

selection, ensemble methods, and deep learning techniques 

in improving detection accuracy and robustness. Despite 

significant advancements in Android malware detection, 

several research gaps remain unaddressed. A major 

challenge lies in the detection of new and evolving malware 

variants, which traditional machine learning methods often 

fail to identify due to their reliance on predefined patterns 

and static features. Furthermore, many existing models 

struggle with large and high-dimensional datasets, resulting 

in diminished prediction accuracy and increased 

computational complexity. Additionally, while ensemble 

and deep learning techniques have shown promise, their 

application is often limited by issues such as overfitting, 

lack of real-time detection capabilities, and high training 

times.  

The proposed Grid Tuned Two-Layered Stacking 

Approach for Malware Detection (GTTSAMD) aims to 

address these gaps by leveraging advanced stacking 

algorithms and grid search optimization. By integrating 

multiple base-level classifiers and a meta-classifier, our 

model enhances detection accuracy and robustness against 

dynamic malware threats. The use of repeated cross-

validation and grid search ensures optimal hyperparameter 

tuning, reducing the risk of overfitting and improving 

generalization to new data. 
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Table 1. Analysis of existing systems for Android Malware detection 

Author Objective Algorithm Methodology 

Used 

Merits Demerits Accuracy 

Suleiman 

Y. Yerima 

et al. 

To analyze 

malware-

affected 

Androids 

Machine 

Learning 

Parallel 

classifications 

with rule-based, 

function-based, 

tree-based, and 

probabilistic 

methods 

Parallel method 

facilitates easy 

value prediction 

Unable to predict 

new malware 

94.3% 

Rishab 

Agrawal et 

al. 

To identify 

new 

malware on 

Android 

phones 

Semantic 

Analysis 

Semantic and 

permission-based 

analysis using 

admin and user 

panels 

In-depth semantic 

verification 

Apk file upload 

varies between 

users 

86.9% 

Long Wen 

et al. 

To detect 

malware 

using feature 

extraction 

techniques 

SVM, PCA-

Relief 

Static and 

dynamic analysis, 

PCA for feature 

selection, SVM 

for classification 

Effective malware 

detection using 

static and dynamic 

analysis 

Difficult 

predictions with 

larger datasets 

95.2% 

Nikola 

Milosevic 

et al. 

To enhance 

malware 

detection in 

Android 

phones 

Machine 

Learning, 

SVM 

Source code and 

permission-based 

analysis, ensemble 

learning 

High precision 

achieved with 

SVM 

Dynamic 

analysis may 

enhance 

performance 

95.8% 

Zhiwu Xu 

et al. 

To improve 

malware 

detection 

using deep 

learning 

CNN, 

CDGDroid 

Extraction of data 

into CFG & DFG, 

training with CNN 

Easy recognition 

of data through 

initial extraction 

into two parts 

Training graph 

can be improved 

93.7% 

Burak 

TAHTACI 

To detect 

Android 

malware 

using 

machine 

learning 

PCA + SVM Feature selection 

using variance 

threshold and 

information gain, 

SVM for 

classification 

Reduced loss and 

utilization of high-

dimensional data 

It should include 

more features 

like n-gram 

frequencies, 

permissions, and 

threat 

intelligence 

91.33% 

Arvind 

Sangal 

To develop a 

robust 

malware 

detection 

framework 

MLDroid Feature selection 

algorithms, 

machine learning 

models, antivirus 

comparison 

Tested with 60 

different antivirus 

software and on 

many instances 

It does not 

provide real-time 

detection 

92.8% 

Xinning 

Wang 

To classify 

malicious 

and benign 

apps 

TstructDroid Automatic data 

collection, kernel 

functionality 

analysis 

Automatic data 

collection, 

multiple kernel 

analysis, and 

high-dimension 

reduction 

Time delay and 

high cost 

94.98% 

Anam 

Fatima 

To detect 

new Android 

malware 

variants 

Genetic 

Algorithm + 

SVM/NN 

Static and 

dynamic analysis, 

feature selection 

using Genetic 

Algorithm, 

Optimized feature 

subset reduces 

training 

complexity 

Working on 

small datasets 

takes more time 

94% 
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SVM/NN for 

classification 

Zhuo Ma To automate 

Android 

malware 

detection 

Droidetec LSTM network 

for sequence 

processing, Skip-

gram method 

LSTM network 

for sequence 

processing and 

automated 

learning using the 

Skip-gram method 

Complicated 

network, long 

learning time 

92.22% 

ElMouatez 

Billah 

Karbab 

To create a 

resilient 

Android 

malware 

detection 

tool 

PetaDroid CNN ensembles, 

static analysis, 

confidence-based 

decision-making 

Homogeneous 

clusters, adaptive 

and resilient 

Not resistant to 

sophisticated 

obfuscation 

methods, cannot 

detect malware in 

downloads at 

runtime 

91.15% 

Specifically, our model addresses the following 

research gaps: 

1. Detection of New Malware Variants: By combining 

various classifiers, our model adapts to new malware 

patterns and features, thereby improving the 

identification of previously unseen threats. 

2. Handling High-Dimensional Data: The two-layered 

stacking approach, coupled with Principal Component 

Analysis (PCA) for feature selection, effectively 

manages high-dimensional datasets, enhancing 

prediction accuracy and computational efficiency[18]. 

3. Mitigating Overfitting: Repeated K-Fold cross-

validation provides a more robust evaluation of model 

performance, mitigating the risk of overfitting and 

ensuring reliable detection across different data splits. 

4. Real-Time Detection Capabilities: The ensemble nature 

of the proposed model, along with the use of CNNs and 

other efficient algorithms, facilitates faster training and 

prediction times, making real-time detection more 

feasible [19]. 

Our proposed GTTSAMD model thus represents a 

significant advancement in the field of Android malware 

detection, offering a comprehensive solution that addresses 

critical limitations of existing methodologies. Through 

rigorous evaluation and optimization, this model aims to set 

a new standard for accuracy, robustness, and efficiency in 

cybersecurity applications. 

4. Proposed Methodology 
The proposed model employs a sophisticated two-

layered stacking approach, optimized using grid search 

techniques, to enhance the performance of machine learning 

classifiers in malware detection.  

 

The following explanation provides a detailed 

breakdown of the methodology, supported by the attached 

block diagram. 

 

4.1. Explanation of Block Diagram 

The block diagram illustrates the entire process flow of 

the proposed two-layered stacking model with grid search 

optimization. 

4.1.1. Training Data and Scalar Data 

The process begins with preparing the training data, 

which is then scaled to ensure that all features are on a 

comparable scale. This standardization process adjusts the 

values of each attribute so that the mean is close to zero and 

the variance is one. Mathematically, let 𝑋 be the matrix of 

input features where each row represents an observation, 

and each column represents a feature. The standardization 

formula is given by: 

𝑋𝑖𝑗
′ =

𝑋𝑖𝑗−𝜇𝑗

𝜎𝑗
                    (3) 

Where 𝑋𝑖𝑗
′  is the scaled value of the feature 𝑗 for 

observation 𝑖, 𝜇𝑗 is the mean of the feature 𝑗, and 𝜎𝑗 is the 

standard deviation of the feature 𝑗. This ensures that all 

features contribute equally to the model's performance. 

4.1.2. Cross-Validation 

Cross-validation is employed to evaluate the robust 

performance of the model. Cross-validation splits the scaled 

data into multiple subsets or folds. Each fold is used once as 

a validation set, while the remaining folds form the training 

set. This process is repeated multiple times, and the results 

are averaged to provide a stable assessment of the model's 

accuracy. In mathematical terms, for K-fold cross-

validation [20], the data is divided into 𝐾 subsets. For each 

fold 𝑘, the model is trained on 𝐾 − 1 folds and tested on the 

𝑘-th fold. The performance metric (e.g., accuracy) is 

averaged over all 𝐾 folds: 

𝐶𝑉_score =
1

𝐾
∑  𝐾

𝑘−1  score 𝑘                    (4) 

Where score  𝑘 is the performance metric for the 𝑘-th 

fold. 
 

4.1.3. Base-Level Models (Level-0) 

The cross-validated training data is fed into the base-

level models, which include tuned versions of Naive Bayes 

(NB)[21], K-Nearest Neighbors (KNN)[22], and Support 

Vector Machine (SVM)[23]. Each model's hyperparameters 

are optimized using grid search to ensure the best 

performance. The Naive Bayes model utilizes Bayes' 

theorem for probabilistic classification: 
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𝑃(𝐶 ∣ 𝑥) =
𝑃(𝑥∣𝐶)⋅𝑃(𝐶)

𝑃(𝑥)
                  (5) 

Where the goal is to find the class 𝐶 that maximizes 

𝑃(𝐶 ∣ 𝑥). The K-Nearest Neighbors model classifies a data 

point based on the majority class among its 𝑘 nearest 

neighbors, with the distance metric typically being the 

Euclidean distance: 

𝑑(𝑥𝑖 , 𝑥𝑗) = √∑  𝑚
𝑙−1   (𝑥𝑖𝑙 − 𝑥𝑗𝑙)

2
                          (6) 

The Support Vector Machine finds the optimal 

hyperplane that separates different classes, solving the 

optimization problem: 

min
𝐰,𝑏

 
1

2
∥ 𝐰 ∥2   subject to  𝑦𝑖(𝐰 ⋅ 𝐱𝑖 + 𝑏) ≥ 1, ∀𝑖                     

(7) 

4.1.4. Predicted Values 

The base-level models generate predicted values for the 

testing data, which are then used as inputs for the next level 

of the stacking process. These predictions form the basis for 

further modeling at the meta-level. 

4.1.5. Meta Data-1 and Meta-Level Models (Level-1) 

The predicted values from the base-level models form 

Meta Data-1, which is input into the metalevel models. 

These include tuned versions of Random Forest (RF) [24] 

and AdaBoost (ADA)[25]. Random Forest is an ensemble 

method that constructs multiple decision trees and merges 

their outputs. Mathematically, Random Forest is 

represented as an ensemble of decision trees: 

𝑅𝐹 = {𝑇1, 𝑇2, … , 𝑇𝑛}                  (8) 

Where each tree 𝑇𝑖  is trained on a bootstrapped sample 

of the data, and the final prediction is the majority vote (for 

classification) or average (for regression) of the trees. 

AdaBoost, a boosting algorithm, adjusts the weights of 

misclassified instances to improve classification accuracy. 

Each classifier ℎ𝑡 focuses on the errors of the previous 

classifiers, and the final model is: 

𝐻(𝑥) = ∑  𝑇
𝑡−1 𝛼𝑡ℎ𝑡(𝑥)                 (9) 

Where 𝛼𝑡 is the weight of the classifier ℎ𝑡. 

 

Fig. 3 Block diagram for two layered tuned stacking classifier 
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4.1.6. Predicted Values and Meta Data-2 

The meta-level models generate their own predicted 

values, which form Meta Data-2. These values are further 

processed to refine the model's predictions. 

4.1.7. Logistic Regression 

Meta Data-2 is used as input for the final logistic 

regression model. Logistic regression is used to make the 

final prediction by combining the strengths of the base and 

meta-level models. The logistic regression model predicts 

the probability of the target variable using the sigmoid 

function: 

𝑃(𝑦 = 1 ∣ 𝑥) =
1

1+𝑒−(𝑤⋅𝑥+𝑏)                     (10) 

Where the coefficients 𝐰 and intercept 𝑏 are learned 

using maximum likelihood estimation. 

 

4.1.8. Micro and Macro Evaluation 

The final predictions are evaluated using both micro 

and macro evaluation metrics to assess the model's 

performance comprehensively. The micro evaluation 

considers each individual prediction across all classes, while 

the macro evaluation averages the performance metrics of 

each class. Micro Precision is calculated as: 

Micro Precision =
∑  𝑇𝑃

∑  𝑇𝑃+∑  𝐹𝑃
              (11) 

and Macro Precision is calculated as: 

 Macro Precision =
1

𝑛
∑  𝑛

𝑖−1
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑃𝑖
                 (12) 

Where 𝑇𝑃 is True Positives, 𝐹𝑃 is False Positives, and 

𝑛 is the number of classes. By following these steps, the 

model leverages cross-validation, multiple base-level 

models, and meta-level models to improve accuracy and 

robustness, evaluated comprehensively using micro and 

macro metrics. 

The proposed model performs two-layered stacking by 

optimizing the parameters in the models. The algorithms 

used at the base predictor level are traditional tuned 

algorithms, but at level 1, the meta-classifiers are used as 

tuned ensemble algorithms. Here, the new predicted data 

exists in the form of numerical values. The proposed model 

has applied a logistic algorithm as the level 2 meta classifier. 

The model initially standardizes the data and then passes for 

the stacking classifier. The block diagram for the proposed 

model is projected in Figure 3.    

4.2. Enhancing Performance of Base-Level Machine 

Learning Classifiers with Grid Search Optimization 

  The proposed model employs a sophisticated two-

layered stacking approach, optimized using grid search 

techniques, to enhance the performance of machine learning 

classifiers in malware detection. The methodology is 

detailed below, explaining the process both theoretically 

and mathematically in an academic tone. 

4.2.1. Grid Search Optimization Process 

Definition of Hyperparameter Space 

Identify key hyperparameters for each base-level 

algorithm. Define a range of possible values for each 

hyperparameter. For example: For K-Nearest Neighbors 

(KNN): Number of neighbors 𝑘 ∈ {3,5,7,9} For Support 

Vector Machine (SVM): Penalty parameter 𝐶 ∈ {0.1,1,10} 

and kernel type ∈ { linear, rbf } 

Exhaustive Search 

Perform an exhaustive search over all possible 

combinations of hyperparameters. For each combination, 

train and validate the classifier using cross-validation. 

Select the combination that yields the highest cross-

validation accuracy. 

Model Training with Optimal Hyperparameters 

Retrain the classifier on the entire training dataset using 

the optimal hyperparameters identified in the exhaustive 

search. 

Performance Evaluation 

Evaluate the optimized classifier on a separate test 

dataset. Compute key performance metrics such as 

accuracy, precision, recall, and F1 score. Any machine 

learning model has two parameters: base parameters, which 

are fixed and tuning parameters, which are to be controlled 

and changed according to the model. If these parameters are 

not trained, the loss function will be maximum, and the 

misclassification rate will be high for the designed model. 

The tuning parameters update their values based on the 

training data available. These parameters are specific to the 

algorithm. There are different ways to optimize the 

parameters, as shown in Figure 4.  

 

 

 

 

 

 

 

 

Fig. 4 Types of optimizers 

The proposed model uses the Grid Search approach, 

which helps the model set its values before it trains the data. 

These are the crucial components of the algorithm, like the 

K value in KNN. Generally, this value is considered a 

Hyper 

Optimization 

Techniques 

Bayes 

search 

Manual 

search 

Grid 

search 

HR  

search 

Randomiz

ed  search 

Halving 

Grid search 

Hyper 

Opt 

Search 



Ravi Eslavath & Upendra Kumar Mummadi  / IJECE, 11(9), 253-269, 2024 

 

261 

random number between 3 to 10. The c value in SVM, 

which determines the penalty rate, generally lies between 0 

and 1, but the larger C values help define a good marginal 

hyperplane. The advantage of this optimization technique 

lies in presenting accurate values by checking every possible 

combination of the algorithms. Random search chooses and 

tests an arbitrary combination of hyperparameters, whereas 

grid search examines every conceivable arrangement of 

hyperparameters to identify the optimal model. This method 

uses random sampling from a matrix of hyperparameters 

rather than a thorough search. In Grid Search, we test every 

possible combination of a predetermined list of hyper-

parameter values and assess the model for each one. The 

design is comparable to a grid, where each value is 

organized into a matrix. The function is assessed at a range 

of arbitrary configurations in the dimensional space to 

optimize using random search. For smaller dimensional 

data, random search performs best because it takes fewer 

iterations and less time to identify the proper set. When there 

are fewer dimensions, a search algorithm is the optimal 

parameter search method. Grid search suffers from 

dimensionality issues when the range of hyperparameters 

increases exponentially, which is one of its main 

disadvantages. The process of tuning the algorithms using 

grid search is presented in Figure 5. 

 

Fig. 5 Tuning using a grid search process 

In the section below, the paper discusses the algorithm 

and its tuning parameters.   

4.3. Tuning of Naïve Bayesian (Base Level) 

The Naive Bayes algorithm, a supervised learning 

method based on Bayes' theorem, is widely used to address 

classification challenges. It is particularly effective for text 

categorization tasks and can handle large training sets 

efficiently.  

The simplicity and effectiveness of the Naive 

Bayes[27] method make it one of the most straightforward 

machine learning algorithms for constructing reliable 

predictive models. As a probabilistic classifier, Naive Bayes 

makes decisions based on the likelihood of specific events.  

It is known for its rapid classification capabilities and 

is suitable for both binary and multiclass categorization 

problems. The algorithm performs exceptionally well in 

multiclass predictions compared to other algorithms, 

making it the preferred choice for text categorization 

problems. The Bernoulli Naive Bayes [27] variant is 

particularly useful for binary/boolean features. The 

classification decision is based on the following 

equation:(13) 

𝑌𝑝𝑟𝑒𝑑 =  𝑚𝑎𝑥𝑦 ∗ 𝑃(𝑌) ∗ ∏ 𝑃(𝐹𝑖|𝑌)𝑛
𝑖=0 -               (13) 

Where: 

• 𝑃(𝑌) is the prior probability of class 𝑌, 

• 𝑃(𝐹𝑖 ∣ 𝑌) is the likelihood of a feature 𝐹𝑖 given 

class 𝑌, 

• 𝑌̂ is the predicted class. 

 

By tuning these parameters, the Naive Bayes model can 

be optimized to achieve higher accuracy and robustness in 

classification tasks, particularly in scenarios involving large 

and diverse datasets.  

This optimization process is integral to ensuring that the 

Naive Bayes algorithm can effectively differentiate between 

various classes, thereby enhancing its utility in practical 

applications. 
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Table 2. Tuning parameters of Bernoulli Naive Bayes approach 

Parameter Description Possible Values 

Binarize This setting is only relevant for the Bernoulli Naive Bayes methodology. It defines a 

cutoff value for binarizing sample characteristics. If sample features are already 

binarized, this parameter can be omitted. 

Floating value to 

define the threshold 

Priors Specifies the prior class probabilities. When priors are provided (in an array), they 

remain unchanged regardless of the dataset. 

Number of class 

labels 

Alpha The smoothing parameter α\alphaα for Laplace or Lidstone smoothing, which different 

Naive Bayes algorithms might use to handle zero probabilities. 

Any floating value 

between 0 and 1 

Table 3. Tuning parameters of the KNN algorithm 

Parameter Description Possible Values 

n_neighbors 
Specifies the number of nearest neighbors to consider. Optimal kkk values are 

typically small prime numbers to balance bias and variance. Any prime number 

Weights 

Determines the influence of each neighbor on the classification. "Uniform" gives 

equal weight to all neighbors, while "distance" weighs points according to the 

reciprocal of their distances. 

Uniform, Distance 

4.4. Tuning of K-Nearest Neighbors (Base Level) 

The K-Nearest Neighbors (KNN) algorithm is a 

straightforward yet powerful classification technique that 

assigns observations to the class of their k-nearest 

neighbors. It operates by identifying the k-nearest data 

points to a given observation based on a specified distance 

metric.  

Fine-tuning the hyperparameters of KNN is crucial for 

optimizing its performance, particularly in tasks like 

malware detection [28]. 

Key Tuning Parameters for KNN 

• Number of Neighbors (k): The parameter 𝑘 represents 

the number of nearest neighbors considered for 

classification. Choosing the appropriate value for 𝑘 is 

critical. Small values of 𝑘 make the model sensitive to 

noise and prone to overfitting, while larger values can 

lead to oversimplification and underfitting. A typical 

range for 𝑘 is between 3 and 10. 

• Distance Metric: KNN uses a distance metric to 

measure the similarity between data points. The default 

distance metric in many implementations, including 

scikit-learn, is Euclidean distance. However, other 

metrics such as Manhattan distance or cosine distance 

can also be used depending on the nature of the data and 

the specific application. 

• Weight Function: The algorithm can classify based on 

a simple majority vote or weigh the neighbors' votes 

according to their distance from the observation being 

classified. Weight functions such as inverse distance 

weighting or kernel density weighting can be 

employed. Using weights can improve classification 

accuracy by giving more influence to closer neighbors. 

• Preprocessing: KNN is sensitive to the scale and 

distribution of input data. Therefore, it is essential to 

preprocess the data to ensure all features are on a 

similar scale and distribution. Techniques like 

normalization or standardization are commonly used to 

prepare the data for KNN. 

4.4.1. Mathematical Framework 

Given an observation 𝑥, the classification decision in 

KNN can be mathematically expressed as: 

𝑦 = arg max
𝑐

 ∑  𝑖∈𝑁𝑘
𝑤𝑖 ⋅ 𝛿(𝑦𝑖 , 𝑐)             (14) 

Where: 

• 𝑁𝑘 represents the set of k -nearest neighbors, 

• 𝑤𝑖  is the weight assigned to neighbor 𝑖 based on its 

distance, 

• 𝛿(𝑦𝑖 , 𝑐) is the Kronecker delta function, which is 1 

if the class of neighbor 𝑖 is 𝑐 and 0 otherwise. 

 

By optimizing these parameters through grid search, the 

KNN algorithm can be fine-tuned to achieve superior 

performance in classification tasks. This optimization 

ensures that the KNN model effectively captures the 

underlying patterns in the data, leading to more accurate and 

reliable predictions. In summary, tuning the 

hyperparameters of KNN involves selecting the optimal 

number of neighbors, choosing the appropriate distance 

metric, and deciding on the weight function. Preprocessing 

the data is also essential to ensure the model performs well. 

By carefully adjusting these parameters, the KNN algorithm 

can be tailored to provide high accuracy and robustness.  

4.5. Tuning of SVM (Base Level)  

Support Vector Machine (SVM) is a powerful 

classification method that works by finding the optimal 

hyperplane to separate data points into different classes. The 

tuning of SVM parameters is crucial to achieving high 

classification performance, particularly when dealing with 

complex datasets such as those used in malware detection. 

4.5.1. Key Tuning Parameters for SVM 

• Penalty Parameter (C): The parameter 𝐶 controls the 

trade-off between achieving a low error on the training 

data and minimizing the complexity of the model. 

Higher values of 𝐶 put more emphasis on classifying all 

training examples correctly, which can lead to 

overfitting. Lower values of 𝐶 allow the margin to be 
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maximized at the cost of more training errors. The 

typical values for 𝐶 are multiples of 10, starting from 

0.1. 

• Gamma (𝛾): The parameter 𝛾 is relevant for non-linear 

SVMs such as the Radial Basis Function (RBF) SVM. 

It defines how far the influence of a single training 

example reaches. Low values of 𝛾 imply a large radius 

of influence, resulting in a smoother decision boundary. 

High values of 𝛾 imply a smaller radius of influence, 

resulting in a more complex decision boundary that 

may overfit the training data. Typical values for 𝛾 are 

powers of 10, starting from 0.1. 

• Kernel Type: The kernel function transforms the input 

data into the required format. SVMs can use various 

kernel functions such as linear, polynomial, and RBF. 

The choice of kernel affects the performance of the 

SVM, and it is essential to experiment with different 

kernels to find the one that best fits the data. 

• Probability Estimates: Enabling probability estimates 

allows the model to output the probability that a data 

point belongs to a particular class rather than just the 

predicted class label. This is useful for applications 

requiring a measure of confidence in the model's 

predictions. Enabling this feature involves additional 

computation as it uses internal cross-validation.

 
Table 4. SVM tuning parameters 

Parameter Description Possible Values 

C The penalty parameter determines the trade-off between classification accuracy on 

the training data and the complexity of the decision boundary. Higher values prevent 

misclassification. 

Multiples of 10 

starting from 0.1 

Gamma Defines the influence of a single training example. Low values signify "far" reach, 

and high values signify "near" reach. Higher values can lead to overfitting. 

Powers of 10 

starting from 0.1 

Kernel Specifies the kernel function to be used in the algorithm. Different kernels transform 

the data in various ways to find the optimal hyperplane. 

Linear, polynomial, 

RBF, etc. 

Probability Determines whether to enable probability estimates. Enabling this option can 

provide additional insights into the confidence of predictions but requires more 

computation. 

Boolean value 

(True/False) 

 

Algorithm for Two-Layered Stacking - Voting 

Classifier: The following algorithm outlines the process of 

implementing a two-layered stacking classifier with 

optimized base and meta-level models. 

Input: Load the Malware Dataset, “AMData” 

Output: Metric Analysis 

Begin: 

Step 1. An MDataLoad Malware Dataset 

Step 2. for i in len(AMData): 

      if(AMData[i].type==”String”): 

         AMData[i]label_encoder.transform(AMData[i]) 

       if(AMData[i].type==”int”): 

                  new_value[i]
∑ 𝐴𝑀𝐷𝐴𝑇𝐴[𝑖]− 𝜇

𝑙𝑒𝑛(𝐴𝑀𝐷𝑎𝑡𝑎)
𝑖=0

𝜎2  

                 AMData[i]new_value[i] 

Step 3 . a. AMData_new, 

AMData_new_testRepeatCV(folds=5) 

Step 4. base_estimators=[] 

Step 5. define parameters for BerunoliBN, KNN, SVM and 

fit grid search 

Step 6. compute best parameters and best score and append 

to base_estimators 

Step 7. for i in len(base_estimators) 

         for j in base_estimators[i] 

            

classpredict(base_estimator[i].fit(AMData_new[i][j])) 

Step 8. meta_estimators=[] 

Step 9. define parameters for Random Forest, ADA and fit 

to grid search 

Step 10. compute best parameters, best score and append to 

meta_estimators 

Step 11. for i in len(meta_estimators) 

            for j in meta_estimators[i] 

          

class_predpredict(meta_estimator[i].fit(AMData_new_t

est[i][j] 

Step 12. 

final_classStackingClassifier(meta_estimator,Tuned_Lo

gRegression) 

Step 13. print metrics 

End  
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This detailed explanation and algorithm outline how to 

effectively tune and implement a Support Vector Machine 

(SVM) as part of a two-layered stacking model for malware 

detection. By optimizing the key parameters, the SVM can 

be tailored to provide high accuracy and reliability, 

enhancing the overall performance of the detection system. 

4.6. Meta Classifier 

A meta-classifier is an advanced meta-learning 

algorithm used in classification predictive modeling tasks. 

It leverages the predictions of multiple base classifiers to 

generate a final prediction, combining their strengths to 

improve overall accuracy. In the stacking ensemble method, 

the meta-classifier uses the outputs from several base 

models as input features to produce the final classification.  

In a two-layered stacking framework, the first layer 

consists of multiple base classifiers, each trained on the 

entire training dataset. Their predictions are then used as 

input for the second layer, where the meta-classifier (or 

regression model) processes these predictions to generate 

the final output. This hierarchical approach enhances the 

model's ability to generalize by integrating diverse  

4.6.1. Tuning of Random Forest (Meta Level-1) 

The Random Forest algorithm, an ensemble technique, 

constructs a multitude of decision trees during training. 

Each tree in the forest votes for a class and the class with the 

most votes is chosen as the final prediction. This method 

leverages the power of multiple uncorrelated models to 

enhance prediction accuracy and robustness. The principle 

behind Random Forest is that combining the predictions 

from multiple trees reduces the risk of overfitting. 

Key Tuning Parameters for Random Forest 

• max_features: This parameter determines the 

maximum number of features Random Forest is 

allowed to consider when splitting a node. Using 'auto' 

or 'sqrt' is common to avoid overfitting. 

• n_estimators: The number of trees in the forest. More 

trees generally improve performance but also increase 

computational cost. Values are typically multiples of 

10. 

• min_sample_leaf: The minimum number of samples 

required to be at a leaf node. Smaller values can lead to 

a model that captures noise in the data. Powers of 2 are 

commonly used. 

• max_depth: The maximum depth of the tree. Limiting 

the depth prevents overfitting. Integer values with an 

interval of 2 are typical. 

• min_sample_split:  The minimum number of samples 

required to split an internal node. This parameter helps 

to control the growth of the tree and prevent overfitting. 

Values are usually multiples of 5. 
 

4.6.2. Tunning of Ada Boost (Meta Level-1) 

AdaBoost, or Adaptive Boosting, is an ensemble 

technique that adjusts the weights of incorrectly classified 

instances, giving them more emphasis in subsequent 

iterations.  

This method aims to convert weak learners into strong 

ones by focusing more on the challenging cases. AdaBoost 

is particularly effective in reducing bias and variance in 

supervised learning. 

Key Tuning Parameters for AdaBoost 

• base_estimator: Specifies the type of weak learner 

used. Common choices include decision trees, logistic 

regression, and Support Vector Classifiers (SVC). 

• n_estimators: Number of weak learners to use. More 

estimators generally improve performance up to a 

point. The default value is 50, but multiples of 10 are 

often used. 

• learning_rate: Shrinks the contribution of each weak 

learner. A smaller value requires more weak learners 

to maintain performance. Typical values range from 0 

to 1, with a fine-tuning interval. 

4.6.3. Designing the Meta Classifier 2 using Tuned Logistic 

Regression 

Logistic regression is a widely used classification 

algorithm that predicts the probability of an observation 

belonging to a certain class. It is particularly effective for 

binary classification problems. The model is trained using a 

labeled dataset with a binary output variable. 

Table 5. Random forest tuning parameters 

Parameter Description Possible Values 

max_features Maximum number of features considered for splitting a node. Auto or sqrt 

n_estimators Number of trees in the forest. More trees provide better performance but 

increase computation time. 

Multiples of 10 

min_sample_leaf Minimum number of samples is required to be at a leaf node. Smaller 

values may lead to overfitting. 

Powers of 2 

max_depth Maximum depth of the tree. Limiting depth helps prevent overfitting. Integer values with an 

interval of 2 

min_sample_split Minimum number of samples required to split an internal node. Controls 

tree growth. 

Multiples of 5 
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Table 6. AdaBoost tuning parameters 

Parameter Description Possible Values 

base_estimator Type of weak learners to use (e.g., decision tree, logistic regression). Any traditional ML 

algorithm 

n_estimators Number of weak learners. More learners can improve performance but 

increase computational cost. 

Multiples of 10 

learning_rate Reduces the contribution of each weak learner to avoid overfitting. 0 to 1, with fine-tuning 

intervals 

 

Key Tuning Parameters for Logistic Regression 

• C: The regularization parameter. Higher values reduce 

regularization, emphasizing fitting the training data. 

Lower values increase regularization, focusing on 

simplicity. 

• Penalty: Specifies the type of regularization. L1 (lasso) 

regularization can lead to sparse models, while L2 

(ridge) regularization tends to spread the error across all 

parameters. 

• Dual: Indicates whether to use the dual formulation, 

applicable for L2 penalty only. This is useful for large 

datasets with many features. 

• Solver: Optimization algorithm to use to fit the model. 

Choices include 'liblinear', 'sag', 'saga', etc., each suited 

for different types of datasets and objectives. 
 

Table 7. Logistic Regression tuning parameters 

Parameter 
Description Possible 

Values 

C 

Regularization 

parameter. High values 

reduce regularization, 

and low values increase 

it. 

Logarithmic 

values 

Penalty 

Type of regularization 

(L1 or L2). L1 for 

lasso, L2 for ridge. 

L1, L2 

regularizations 

Dual 

Dual or primal 

formulation. Dual is 

used for L2 penalty 

with 'liblinear' solver. 

Boolean 

Solver 

Optimization algorithm 

for fitting the model. 

Suitable choices 

depend on dataset size 

and type. 

'liblinear', 'sag', 

'saga', etc. 

By carefully tuning these parameters, the logistic 

regression model can achieve high accuracy and reliability 

in classification tasks, contributing significantly to the 

overall performance of the two-layered stacking model. 

5. Results & Discussion 
5.1. System Setup and Implementation Details 

The system setup involves a comprehensive approach 

to optimize and evaluate the performance of machine 

learning models for malware detection. The implementation 

utilizes a two-layered stacking ensemble method, 

combining various base and meta classifiers tuned using 

grid search optimization. The primary components of the 

system setup include data preprocessing, model training, 

and evaluation. 

5.1.1. Data Preprocessing 

The dataset undergoes normalization to scale the values 

of independent attributes. This process accelerates 

computations, particularly in the AdaBoost meta-

classification, by maintaining variance values close to 1. 

Normalization ensures that features are scattered around the 

nearest points, facilitating faster and more accurate learning. 

5.1.2. Model Training and Hyperparameter Tuning 

Various machine learning algorithms are tuned using 

the grid search approach to find the best hyperparameters 

that maximize model accuracy. The algorithms include 

Naive Bayes, K-Nearest Neighbors (KNN), Support Vector 

Machine (SVM), Random Forest, AdaBoost, and Logistic 

Regression. 

5.1.3. Dataset Used 

The dataset used in this research is the DroidFusion on 

the Drebin-215 dataset,[29] which contains 215 attributes 

representing various features extracted from Android 

applications, such as API call signatures, permissions, and 

other relevant characteristics.  

This dataset, sourced from the public repository 

Kaggle, includes 15,036 samples, comprising 5,560 

malware and 9,476 benign applications.  

The feature categories are detailed in an accompanying 

file, which classifies the attributes into specific groups. This 

dataset serves as the foundation for evaluating the 

effectiveness of feature selection techniques in enhancing 

malware detection accuracy on Android devices. 

5.2. Evaluation and Performance Analysis  

The performance of the proposed two-layered stacking 

model for Android malware detection was evaluated using 

a confusion matrix, as depicted in the heatmap (Figure 6).  

 

The dataset used for this evaluation was a reduced 

subset, comprising 0.452% of the original data, to facilitate 

more manageable computation. 

 

Original dataset: 

• Total samples: 15,036 

• Malware samples: 5,560 

• Benign samples: 9,476 

Confusion matrix:  Total samples represented: 68 
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The compression percentage is calculated as: 

Compression Percentage = (
 Total samples in confusion matrix 

 Total samples in original dataset 
) ×

100 

 

Using the given numbers: 

Compression Percentage = (
68

15036
) × 100 ≈ 0.452% 

Thus, the confusion matrix represents approximately 

0.452% of the original dataset. 

The confusion matrix provides a detailed breakdown of 

the model's classification results. It includes the following 

metrics: 

• True Positives (TP): Instances where malware was 

correctly identified as malware. 

• True Negatives (TN): Instances where benign 

applications were correctly identified as benign. 

• False Positives (FP): Instances where benign 

applications were incorrectly classified as malware. 

• False Negatives (FN): Instances where malware was 

incorrectly classified as benign. 

 
Fig. 6 Confusion matrix heatmap for reduced dataset 

The heatmap illustrates these values, with the x-axis 

representing the predicted classifications and the y-axis 

representing the actual classifications. The diagonal 

elements (TP and TN) indicate correct classifications, while 

the off-diagonal elements (FP and FN) represent 

misclassifications. 

This confusion matrix is essential for assessing the 

classification accuracy and the ability of the proposed model 

to distinguish between benign and malicious applications 

effectively. The visual representation in the heatmap 

highlights the model's performance, indicating a high level 

of accuracy with minimal misclassifications, thereby 

validating the efficacy of the two-layered stacking approach 

in Android malware detection. 

5.2.1. Hyperparameter Tuning Configuration 

The grid search [30] process involves specifying a 

range of values for each hyperparameter and evaluating all 

possible combinations to identify the optimal configuration. 

Table 8 summarizes the tuning parameters and the best 

values obtained through this process, along with their 

respective accuracies. “Fits” refers to the number of times 

the model is trained and evaluated during the 

hyperparameter tuning process. When using grid search or 

other hyperparameter optimization techniques, the 

algorithm evaluates various combinations of 

hyperparameters to determine the best set of parameters for 

the model. Each combination of hyperparameters represents 

a candidate configuration, and the model is "fit" to the 

training data using each configuration. Therefore, "Total 

Number of Fits" indicates the total number of times the 

model was trained and evaluated with different 

combinations of hyperparameters during the tuning process. 

This number is the product of the number of candidates 

(combinations of hyperparameters) and the number of cross-

validation splits used in the tuning process. 

 

Figure 7 illustrates the accuracy of the standalone 

algorithms after tuning. The X-axis represents the algorithm 

names, and the Y-axis denotes the accuracy. Among the six 

models, SVM and Logistic Regression achieved the highest 

accuracy, both reaching 95.4%

Table 8. Accuracy analysis using grid parameters 

Algorithm 

Name 

Number of 

Tuning 

Parameters 

Total Number 

of Fits 
Best Values Accuracy 

Naive 

Bayesian 
3 

40 Candidates 

& 200 Fits 

{'alpha': 0.01, 'binarize': 0.0, 'fit_prior': True} 
85.1% 

KNN 4 
480 Candidates 

& 2400 Fits 

{'metric': 'minkowski', 'n_neighbors': 13, 'p': 1, 

'weights': 'distance'} 
94.03% 

SVM 4 
200 Candidates 

& 1000 Fits 

{'C': 100, 'gamma': 0.0001, 'kernel': 'sigmoid', 

'probability': True} 
95.4% 

Random 

Forest 
5 

720 Candidates 

& 3600 Fits 

{'max_depth': 10, 'max_features': 'sqrt', 

'min_samples_leaf': 2, 'min_samples_split': 1, 

'n_estimators': 28} 

94.3% 

AdaBoost 3 
320 Candidates 

& 1600 Fits 

{'estimator': DecisionTreeClassifier(), 

'learning_rate': 1.02, 'n_estimators': 28} 
90.29% 

Logistic 

Regression 
4 

168 Candidates 

& 840 Fits 

{'C': 0.1, 'dual': False, 'penalty': 'l2', 'solver': 'lbfgs'} 
95.4% 



Ravi Eslavath & Upendra Kumar Mummadi  / IJECE, 11(9), 253-269, 2024 

 

267 

 
Fig. 7 Accuracy of different algorithms with tuned parameters 

The proposed two-layered stacking model, which 

integrates these algorithms, achieved an overall accuracy of 

96%, as shown in Figure 7. This combined approach 

surpasses the performance of standalone models, 

demonstrating enhanced accuracy, recall, and precision. 

Table 9. Confusion matrix for Malware analysis 

Actual Predicted Count 

Malware Malware (TP) 32 

Malware Benign (FN) 4 

Benign Malware (FP) 0 

Benign Benign (TN) 32 

Total  68 

True Positive and False Positive Rates 

True Positive and False Positive Rates 

The true positive malware rate is calculated as follows: 

True Positive Malware Rate =
TP

TP+FN
=

32

32+4
= 0.89 

The false positive malware rate is calculated as follows: 

False Positive Malware Rate =
FP

FP+TN
=

0

0+32
= 0 

Explanation: The confusion matrix provides a summary of 

the classification performance of the proposed model on the 

malware dataset. It categorizes the predictions into four 

types: 

• True Positive (TP) Malware: Correctly identified 

malware instances (32). 

• False Negative (FN) Malware: Malware instances that 

were incorrectly classified as benign (4). 

• True Negative (TN) Malware: Correctly identified 

benign instances (32). 

• False Positive (FP) Malware: Benign instances that 

were incorrectly classified as malware (0). 

The true positive rate of 0.89 indicates that the model 

correctly identified 89% of the actual malware instances. 

The false positive rate of 0 indicates that no benign instances 

were misclassified as malware, demonstrating the model's 

high precision in identifying benign applications. 

 

Fig. 8 ROC curve analysis 

Figure 8 presents the Receiver Operating 

Characteristics (RoC) curve of the proposed model, 

comparing true and false positive rates across different 

threshold points. The X-axis denotes the false positive rate, 

while the Y-axis denotes the true positive rate computed 

from the confusion matrix presented in Table 9. 

5.3. Findings of the Study 

The study's findings provide a comprehensive analysis 

of the performance of various machine learning algorithms 

in malware detection, with a focus on the optimization of 

these algorithms through grid search. The Naive Bayesian 

algorithm achieved an accuracy of 85.1%, demonstrating 

moderate effectiveness, while K-Nearest Neighbors (KNN) 

reached 94.03% accuracy, highlighting its efficacy in 

distinguishing between benign and malicious applications. 

Support Vector Machine (SVM) and Logistic Regression 

both achieved impressive accuracies of 95.4%, 

underscoring their robustness in handling complex 

classification tasks when appropriately tuned. Random 

Forest, with an accuracy of 94.3%, showed strong 

performance due to its ability to handle complex 

interactions and many features, whereas AdaBoost attained 

an accuracy of 90.29%, indicating its utility in enhancing 

weak learners' performance through iterative boosting. 

Notably, the combined approach using a two-layered 

stacking ensemble model achieved the highest overall 

accuracy of 96%, surpassing individual models and 

demonstrating significant improvements in recall and 

precision rates, with a 100% recall rate for class 0 labels and 

a 100% precision rate for class 1 labels. These results 

underscore the importance of hyperparameter tuning and 

ensemble methods in optimizing model performance, 

78.00%
80.00%
82.00%
84.00%
86.00%
88.00%
90.00%
92.00%
94.00%
96.00%
98.00%

P
er

fo
rm

a
n

ce

Classifiers

Accuracy in %



Ravi Eslavath & Upendra Kumar Mummadi  / IJECE, 11(9), 253-269, 2024 

 

268 

offering valuable insights for developing robust and 

accurate malware detection systems in the field of 

cybersecurity. 

5.4. Limitations of the Study and Future Suggestions 

Despite the promising results, the study has several 

limitations that need to be addressed in future research. One 

key limitation is the reliance on a specific dataset with 215 

attributes, which may not capture the full diversity of 

malware behaviors and characteristics present in real-world 

scenarios. This could limit the generalizability of the 

findings to other datasets and environments. Additionally, 

while the grid search optimization process was effective in 

enhancing model performance, it is computationally 

intensive. It may not be feasible for extremely large datasets 

or in resource-constrained settings. The study also primarily 

focused on the accuracy of the models, with less emphasis 

on other important metrics such as training time, model 

interpretability, and computational efficiency. Furthermore, 

the combined stacking model, although achieving high 

accuracy, introduces additional complexity and requires 

careful calibration to prevent overfitting and ensure 

robustness. 

For future research, it is recommended to explore more 

diverse and representative datasets to validate and 

generalize the findings across different contexts. 

Incorporating real-time data and evolving malware patterns 

could provide a more comprehensive assessment of model 

performance. Additionally, exploring alternative 

optimization techniques, such as Bayesian optimization or 

evolutionary algorithms, could reduce computational 

overhead while still effectively tuning hyperparameters. 

Future studies should also consider a broader range of 

evaluation metrics, including training time, computational 

cost, and model interpretability, to provide a more holistic 

evaluation of model performance. Finally, developing 

lightweight and scalable ensemble methods could enhance 

the practicality of the proposed approaches for real-world 

applications, particularly in environments with limited 

computational resources. These future directions will help 

refine the methodologies and improve the robustness and 

applicability of machine learning models for malware 

detection. 

6. Conclusion 
 The proposed model mainly focuses on dynamic 

attributes. So, it generates the subset from the 215 attributes 

based on the type of malware using the Integrated RFE and 

SVM approach. For these attributes, the model tries to 

combine multiple models, which are tuned using the Grid 

Search approach. Grid search always checks every 

possibility of the combination with all the unique values 

assigned to the estimator. The major goal of this research is 

to predict different types of malware without taking a single 

chance to misclassify the data and try to train the data with 

more records in the form of meta data instead of a few test 

datasets. The prediction levels are assigned a probability of 

both correct and incorrect classification rate, i.e., suppose 

the model has applied three traditional tuned approaches at 

the base level. It generates 8 possibilities by considering all 

models that have predicted true, all that have predicted 

wrong and other cases and considers the majority voted 

results as prediction output. In this way, the proposed 

research analyses every possibility in terms of both 

estimator and models and enhances the performance.       

 

References 
[1] Ivan Dychka et al., “Malware Detection Using Artificial Neural Networks,” Advances in Computer Science for Engineering and 

Education II, Advances in Intelligent Systems and Computing, vol. 938, pp. 3-12, 2019. [CrossRef] [Google Scholar] [Publisher 

Link] 

[2] Zarni Aung, and Win Zaw, “Permission-Based Android Malware Detection,” International Journal of Scientific & Technology 

Research, vol. 2, no. 3, pp. 228-234, 2018. [Google Scholar]  

[3] İsmail Atacak, Kazım Kılıç, and İbrahim Alper Doğru, “Android Malware Detection Using Hybrid ANFIS Architecture with Low 

Computational Cost Convolutional Layers,” PeerJ Computer Science, vol. 8, pp. 1-23, 2022. [CrossRef] [Google Scholar] [Publisher 

Link] 

[4] Imtiyaz Khan et al., “Secure and Efficient Data Sharing Scheme for Multi-User and Multi-Owner Scenario in Federated Cloud 

Computing,” Journal of Theoretical and Applied Information Technology, vol. 102, no. 6, pp. 2541-2555, 2024. [Google Scholar] 

[Publisher Link] 

[5] Min Zhao et al., “AntiMalDroid: An Efficient SVM-Based Malware Detection Framework for Android,” Information Computing and 

Applications, Communications in Computer and Information Science, vol. 243, pp. 158-166, 2021. [CrossRef] [Google Scholar] 

[Publisher Link] 

[6] Kuruva Laxmanna, K. Lakshmi, and S. Prem Kumar, “Identifying Malwares by Signature Distribution Algorithm in MANET with 

Assorted Strategy,” International Journal of Computer Engineering in Research Trends, vol. 2, no. 9, pp. 636-639, 2015. [Google 

Scholar] [Publisher Link] 

[7] Rodney Anthony Raj, and A.R. Chayapathi, “Malware as a Component in Cybercrime: A Survey,” International Journal of Computer 

Engineering in Research Trends, vol. 4, no. 5, pp. 176-179, 2017. [Google Scholar]  [Publisher Link] 

[8] Suleiman Y. Yerima, and Sakir Sezer, “DroidFusion: A Novel Multilevel Classifier Fusion Approach for Android Malware 

Detection,” IEEE Transactions on Cybernetics, vol. 49, no. 2, pp. 453-466, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[9] Rishab Agrawal et al., “Android Malware Detection Using Machine Learning,” International Conference on Emerging Trends in 

Information Technology and Engineering, Vellore, India, pp. 1-4, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

https://doi.org/10.1007/978-3-030-16621-2_1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Malware+Detection+Using+Artificial+Neural+Networks&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-16621-2_1
https://link.springer.com/chapter/10.1007/978-3-030-16621-2_1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&authuser=1&q=Permission-based+Android+Malware+Detection&btnG=
https://doi.org/10.7717/peerj-cs.1092
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&authuser=1&q=Android+Malware+Detection+Using+Hybrid+ANFIS+Architecture&btnG=
https://peerj.com/articles/cs-1092/
https://peerj.com/articles/cs-1092/
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&authuser=1&q=Secure+and+efficient+data+sharing+scheme+for+multi-user+and+multi-owner+scenario+in+federated+cloud+computing&btnG=
http://www.jatit.org/volumes/Vol102No6/24Vol102No6.pdf
https://doi.org/10.1007/978-3-642-27503-6_22
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&authuser=1&q=AntiMalDroid%3A+An+Efficient+SVM-Based+Malware+Detection+Framework+for+Android&btnG=
https://link.springer.com/chapter/10.1007/978-3-642-27503-6_22
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&authuser=1&q=Identifying+Malwares+by+Signature+Distribution+Algorithm+in+MANET+with+Assorted+Strategy&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&authuser=1&q=Identifying+Malwares+by+Signature+Distribution+Algorithm+in+MANET+with+Assorted+Strategy&btnG=
https://www.ijcert.org/index.php/ijcert/article/view/229
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Rodney+Anthony+Raj%2C+and+A.R.+Chayapathi%2C+Malware+as+a+Component+in+Cybercrime%3A+A+Survey&btnG=
https://www.ijcert.org/index.php/ijcert/article/view/396
https://doi.org/10.1109/TCYB.2017.2777960
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=DroidFusion%3A+A+Novel+Multilevel+Classifier+Fusion+Approach+for+Android+Malware+Detection&btnG=
https://ieeexplore.ieee.org/abstract/document/8245867/
https://doi.org/10.1109/ic-ETITE47903.2020.491
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Android+Malware+Detection+Using+Machine+Learning&btnG=
https://ieeexplore.ieee.org/document/9077693


Ravi Eslavath & Upendra Kumar Mummadi  / IJECE, 11(9), 253-269, 2024 

 

269 

[10] Long Wen, and Haiyang Yu, “An Android Malware Detection System Based on Machine Learning,” AIP Conference Proceedings, 

vol. 1864, no. 1, pp. 1-7, 2017. [CrossRef] [Google Scholar] [Publisher Link] 

[11] Nikola Milosevic et al., “Machine Learning Aided Android Malware Classification,” Computers & Electrical Engineering, vol. 61, 

pp. 266-274, 2017. [CrossRef] [Google Scholar] [Publisher Link] 

[12] K. Thejeswari, K. Sreenivasulu, and B. Sowjanya, “Cyber Threat Security System Using Artificial Intelligence for Android-Operated 

Mobile Devices,” International Journal of Computer Engineering in Research Trends, vol. 9, no. 12, pp. 275-280, 2022. [CrossRef] 

[Publisher Link] 

[13] Zhiwu Xu et al., “CDGDroid: Android Malware Detection Based on Deep Learning using CFG and DFG,” Formal Methods and 

Software Engineering, vol. 11232, pp. 177-193, 2018. [CrossRef] [Google Scholar] [Publisher Link] 

[14] Burak Tahtaci, and Beyzanur Canbay, “Android Malware Detection Using Machine Learning,” Innovations in Intelligent Systems 

and Applications Conference, Istanbul, Turkey, pp. 1-6, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[15] Arvind Mahindru, and A.L. Sangal, “MLDroid—Framework for Android Malware Detection using Machine Learning Techniques,” 

Neural Computing and Applications, vol. 33, pp. 5183-5240, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[16] T. Monisha, R. Sridevi, and K.R. Tirumalini, “Detection of Malicious URLs Using Artificial Intelligence,” International Journal of 

Computer Engineering in Research Trends, vol. 7, no. 8, pp. 6-10, 2020. [Publisher Link] 

[17] Xinning Wang, and Chong Li, “Android Malware Detection through Machine Learning on Kernel Task Structures,” Neurocomputing, 

vol. 435, pp. 126-150, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[18] Rodney Anthony Raj, and A.R. Chayapathi, “A Honeypot for a Small Network using Raspberry Pi,” International Journal of 

Computer Engineering in Research Trends, vol. 4, no. 8, pp. 319-324, 2017. [Publisher Link] 

[19] B. Prasanthi, Suresh Pabboju, and D. Vasumathi, “Query Adaptive Hash-Based Image Retrieval in Intent Image Search,” Journal of 

Theoretical & Applied Information Technology, vol. 93, no. 2, pp. 278-286, 2016. [Google Scholar] [Publisher Link] 

[20] Zhuo Ma et al., “Droidetec: Android Malware Detection and Malicious Code Localization through Deep Learning,” Arxiv, pp. 1-13, 

2020. [CrossRef] [Google Scholar] [Publisher Link] 

[21] ElMouatez Billah Karbab, and Mourad Debbabi, “PetaDroid: Adaptive Android Malware Detection Using Deep Learning,” Detection 

of Intrusions and Malware, and Vulnerability Assessment (DIMVA), Cham: Springer, pp. 319-340, 2021. [CrossRef] [Google Scholar] 

[Publisher Link] 

[22] Vasileios Kouliaridis, and Georgios Kambourakis, “A Comprehensive Survey on Machine Learning Techniques for Android Malware 

Detection,” Information, vol. 12, no. 5, pp. 1-12, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[23] Mohammed K. Alzaylaee, Suleiman Y. Yerima, and Sakir Sezer, “DL-Droid: Deep Learning-Based Android Malware Detection 

using Real Devices,” Computers & Security, vol. 89, pp. 1-11, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[24] Tianliang Lu et al., “Android Malware Detection Based on a Hybrid Deep Learning Model,” Security Communication Networks, vol. 

2020, no. 1, pp. 1-11, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[25] Omar N. Elayan, and Ahmad M. Mustafa, “Android Malware Detection Using Deep Learning,” Procedia Computer Science, vol. 

184, pp. 847-852, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[26] Halil Murat Ünver, and Khaled Bakour, “Android Malware Detection Based on Image-Based Features and Machine Learning 

Techniques,” SN Applied Sciences, vol. 2, pp. 1-15, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[27] Stuart Millar et al., “Multi-View Deep Learning for Zero-Day Android Malware Detection,” Journal of Information Security and 

Applications, vol. 58, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[28] Nadia Daoudi et al., “Lessons Learnt on Reproducibility in Machine Learning Based Android Malware Detection,” Empirical 

Software Engineering, vol. 26, pp. 1-53, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[29] Marília Prata, Android Malware LSTM, Kaggle, 2021. [Online]. Available: https://www.kaggle.com/code/mpwolke/android-

malware-lstm/input  

[30] Tsehay Admassu Assegie, “An Optimized KNN Model for Signature-Based Malware Detection,” International Journal of Computer 

Engineering in Research Trends, vol. 8, no. 2, pp. 46-49, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

 

 

https://doi.org/10.1063/1.4992953
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Android+malware+detection+system+based+on+machine+learning&btnG=
https://pubs.aip.org/aip/acp/article/1864/1/020136/628529/An-Android-malware-detection-system-based-on
https://doi.org/10.1016/j.compeleceng.2017.02.013
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+learning+aided+Android+malware+classification&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0045790617303087
https://doi.org/10.22362/ijcert/2022/v9/i12/v9i1207
https://www.ijcert.org/index.php/ijcert/article/view/694
https://doi.org/10.1007/978-3-030-02450-5_11
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=CDGDroid%3A+Android+Malware+Detection+Based+on+Deep+Learning+using+CFG+and+DFG&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-02450-5_11
https://doi.org/10.1109/ASYU50717.2020.9259834
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Android+Malware+Detection+Using+Machine+Learning&btnG=
https://ieeexplore.ieee.org/document/9259834
https://doi.org/10.1007/s00521-020-05309-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=MLDroid%E2%80%94Framework+for+Android+malware+detection+using+machine+learning+techniques&btnG=
https://link.springer.com/article/10.1007/S00521-020-05309-4
https://www.ijcert.org/index.php/ijcert/article/view/604
https://doi.org/10.1016/j.neucom.2020.12.088
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Android+malware+detection+through+machine+learning+on+kernel+task+structures&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0925231220320002
https://www.ijcert.org/index.php/ijcert/article/view/709
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Query+adaptive+hash-based+image+retrieval+in+intent+image+search&btnG=
http://www.jatit.org/volumes/Vol93No2/5Vol93No2.pdf
https://doi.org/10.48550/arXiv.2002.03594
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Droidetec%3A+Android+Malware+Detection+and+Malicious+Code+Localization+through+Deep+Learning&btnG=
https://arxiv.org/abs/2002.03594
https://doi.org/10.1007/978-3-030-80825-9_16
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=PetaDroid%3A+Adaptive+Android+Malware+Detection+Using+Deep+Learning&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-80825-9_16
https://doi.org/10.3390/info12050185
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Comprehensive+Survey+on+Machine+Learning+Techniques+for+Android+Malware+Detection&btnG=
https://www.mdpi.com/2078-2489/12/5/185
https://doi.org/10.1016/j.cose.2019.101663
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=DL-Droid%3A+Deep+learning-based+android+malware+detection+using+real+devices&btnG=
https://www.sciencedirect.com/science/article/pii/S0167404819300161
https://doi.org/10.1155/2020/8863617
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Android+Malware+Detection+Based+on+a+Hybrid+Deep+Learning+Model&btnG=
https://onlinelibrary.wiley.com/doi/full/10.1155/2020/8863617
https://doi.org/10.1016/j.procs.2021.03.106
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Android+Malware+Detection+Using+Deep+Learning&btnG=
https://www.sciencedirect.com/science/article/pii/S1877050921007481
https://link.springer.com/article/10.1007/s42452-020-3132-2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Android+malware+detection+based+on+image-based+features+and+machine+learning+techniques&btnG=
https://doi.org/10.1007/s42452-020-3132-2
https://doi.org/10.1016/j.jisa.2020.102718
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Android+malware+detection+based+on+image-based+features+and+machine+learning+techniques&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S2214212620308577
https://doi.org/10.1007/s10664-021-09955-7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Lessons+Learnt+on+Reproducibility+in+Machine+Learning+Based+Android+Malware+Detection&btnG=
https://link.springer.com/article/10.1007/s10664-021-09955-7
https://www.kaggle.com/code/mpwolke/android-malware-lstm/input
https://www.kaggle.com/code/mpwolke/android-malware-lstm/input
https://doi.org/10.22362/ijcert/2021/v8/i2/v8i206
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Optimized+KNN+Model+for+Signature-Based+Malware+Detection&btnG=
https://www.ijcert.org/index.php/ijcert/article/view/652

