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Abstract - Telemedicine has become a key instrument, enabling remote disease diagnosis in the last few years. Patients in 

underserved areas get access to medical services through telemedicine. Within the telemedicine framework to improve the 

accuracy of multiple disease prediction, this study presents a hybrid model that integrates a convolutional neural network and 

bidirectional long short-term memory. The dataset was gathered from the repository of the YBI foundation. This study employs 

a convolutional neural network to efficiently extract local patterns and features from the input data. Meanwhile, bidirectional 

long short-term memory captures long-term dependency and temporal patterns by sequentially processing the extracted features. 

The proposed model attains excellent performance, including 99.04 % recall, 98.99 % F1 score, 98.98 % accuracy, and 99.03 

% precision. Compared to current methods, the performance of the suggested methods demonstrates better results and greater 

efficiency. To improve patient outcomes and healthcare efficiency, the CNN-Bi LSTM model’s potential is high in telemedicine 

applications, showing how well it predicts various diseases. 

Keywords - Telemedicine, Convolutional Neural Networks, multiple disease prediction, Hybrid model, Bidirectional Long Short-

Term Memory.  

1. Introduction 
In order to enable communication between patients and 

medical professionals in different locations, telemedicine uses 

information technology [1]. The test results are analyzed 

during the telemedicine process and respond to patient calls. 

Disease risk assessment, online consultations, electronic 

health records, and health education are health care services 

that telemedicine provides through the use of the internet.  

Here, the internet serves as the carrier of this service, and 

it is the foundation for developing an efficient smart 

healthcare service model [2]. Figure 1 illustrates the general 

telemedicine system, together with its key components and the 

flow of information between patients, medical professionals, 

and diagnostic tools in a remote healthcare environment. 

The potential of telemedicine lies in its ability to predict 

multiple diseases to improve patient care and optimize health 

care delivery [3]. To enable timely interventions and 

personalized treatment plans for possible health problems, 

healthcare professionals utilizing advanced predictive 

analytics. This is especially important in telemedicine, where 

patients cannot access in-person consultations [4].  

 

Remote monitoring of patients facilitated by multiple 

disease prediction tools makes it possible to evaluate patient’s 

health state using real-time data. These predictive capabilities 

enable healthcare professionals to better manage resources, 

improve patient outcomes and reduce healthcare costs by 

preventing the spread of diseases and hospitalizations [5]. 

Using the advantages of CNN and RNN, the suggested work 

focuses on developing a hybrid CNN-Bi LSTM model for 

predicting multiple disease prediction. 

 

The main contributions of the proposed work are as 

follows: 

• Introduces a hybrid CNN-Bi LSTM model specifically 

designed for disease prediction in telemedicine, 

combining convolutional and recurrent neural network 

strengths. 

• Leverages CNN to extract spatial features from medical 

data and Bi LSTM to capture temporal dependencies, 

improving classification performance. 

• Provides a robust approach for predicting multiple 

diseases by integrating both spatial and temporal 

information, enhancing decision-making in telemedicine. 

The remaining section is arranged as follows: A quick 

overview of the previous research in the above-mentioned area 

is summarised in Section 2.  

A detailed description of the suggested CNN-Bi LSTM 

model is given in Section 3. Section 4 summarizes the results 

along with its discussion. Section 5 gives the conclusion of the 

paper.

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1 General telemedicine system 

2. Related Works 
This section reviews current methods related to multiple 

disease prediction, highlighting various approaches. It 

examines the effectiveness of algorithms, such as random 

forests, decision trees, and neural networks, in predicting the 

presence of multiple diseases based on patient data. 

Additionally, the review explores integrating telemedicine 

technologies that enhance disease prediction capabilities 

through remote monitoring and data analytics. 

A Machine Learning (ML) based remote system in 

telemedicine was suggested by Kadum et al. [6]; it gathered 

patient data via medical sensors and sources. The information 

was then sent to hospital telemedicine servers, where ML 

algorithms categorized patients into five groups according to 

their degree of medical emergency: normal, cold, sick, urgent, 

and risk.  

Decision Tree (DT) algorithm outperformed other 

algorithms, such as Neural Networks (NN) with an accuracy 

of 93%, Support Vector Machines (SVM) with an accuracy of 

91%, and Random Forests (RF) with an accuracy of 97%, 

according to simulation data. 

Faris et al. [7] presented an ML model that made use of a 

sizable health-related dataset. Patients’ symptoms and medical 

queries served as two modalities for training ML models. In 

addition to ML classifiers, various feature representation 

techniques were used for the experiments, including statistical 

and word embeddings. Combining these two modalities 

showed a result of 84.9% on classification. Furthermore, the 

model did not always indicate certain symptoms associated 

with common diseases, and the model sometimes 

recommended the same diagnosis twice. 

An integrated and scalable precision health service to 

boost health and prevent chronic diseases was provided by Wu 

et al. [8]. The research presented externally validated modular 

chronic illness prediction models for disorders like panic 

disorder, obesity, and chronic diseases. The models had an F1 

score of 79.8%, 75.6% sensitivity, 88.46% average accuracy, 

and a specificity of 93.0%. The study did find certain 

limitations, one of which was that more thorough data 

collection on lifestyle factors could have improved the 

precision of health services. Kothamali et al. [9] introduced a 

telehealth automation system for voice-based patient-doctor 

conversations using a deep learning-based classification 

model. The dataset included audio recordings acquired from 

Altibbi, a Middle Eastern and North African digital health 

company offering telemedicine and telehealth services. With 

a precision of 52%, the signal-based technique showed their 

performance. 

An automated quality assessment model was presented by 

Habib et al. [10] for Altibbi’s audio consultations. Different 

spectral and statistical properties were retrieved using the 

signal-based technique and then input into stacked layers of a 

neural network. Using pre-trained embedding models, text-

based features were retrieved from transcripts for the 

transcript-based technique. These features were then fed into 

a stacked layer of convolutional and deep neural networks. 

Hameed et al. [11] presented a cloud-based clinical decision 

support system with the Internet of Things for predicting 

diseases. Since a transparent blockchain is a secure method of 

exchanging and storing data. The framework gathers patient 

data via wearable medical devices, which are then saved in a 

cloud server. Blockchain and 5G technology deployment 

makes it possible to transfer patient data securely, quickly, and 

with an effective reaction time. 
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Fig. 2 Telemedicine trend 

The recent trend of telemedicine services is depicted in 

Figure 2. Telemedicine services are particularly common in 

offices, where people with busy lives may readily 

communicate with doctors, describe their symptoms, receive 

treatment plans, and receive advice on preventive measures 

without waiting for an appointment or incurring additional 

costs for travel. 

Men et al. [12] presented a Deep Learning (DL) method 

for multi-disease prediction to facilitate intelligent clinical 

decision-making. Based on medical records, their method 

performed multi-class classification using a long short-term 

memory network. They showed that controlling the 

interdependence between several therapeutic visits was done 

more skillfully in their model than with current attention-

based approaches.  

Ensemble Learning with a Weighted RBM Feature is a 

new computer-aided technique that Prakaash et al. [13] 

introduced. The dataset required for the study was gathered 

from Kaggle and the UCI repository. Ampavathi et al. [14] 

used an improved DL technique to create an intelligent system 

for multiple disease prediction. Different disease datasets 

were taken from the UCI repository for this study.  

A multiple disease risk prediction technique was 

presented by Wang et al. [15] and is intended to systematically 

evaluate patients’ future risks of disease based on their 

medical records. The method was verified on two separate 

hospital medical datasets. Because there were fewer tools and 

technology available in the past, healthcare providers had 

difficulty estimating and gathering the massive quantity of 

data needed for successful treatment and prediction. Fewer 

factors are taken into account for disease prediction based on 

current methodologies.  

The ML technique, on the other hand, is dependent on 

computing resources and employs a greater number of 

variables. Thus, in the sphere of healthcare, ML for disease 

prediction can achieve greater accuracy. Different algorithms 

are used to predict future medical states. These algorithms 

support the development of models for data analysis and result 

delivery by utilizing both historical and real-time data.  
 

Healthcare providers can make better decisions about 

patient data diagnosis and treatment options by utilizing ML, 

which enhances healthcare services. DL has made significant 

advancements in ML, using stacked and hierarchical learning 

techniques to extract significant characteristics from large, 

complicated datasets.  
 

3. Materials and Methods  
The proposed system is designed to predict multiple 

diseases based on 133 distinct symptoms. The model 

architecture consists of a hybrid model of Bi LSTM networks 

with CNN. The multiple disease prediction dataset was 

collected from the repository of the YBI Foundation, 

providing 41 different diseases as ground truth for training the 

model. In the proposed telemedicine system, a patient 

connects with a doctor through a secure video consultation 

platform integrating various medical devices and sensors.  
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Fig. 3 Proposed telemedicine framework 

The patient shares physiological data with the system 

using wearable health devices, which are immediately 

transmitted to the doctor’s dashboard. The hybrid DL model 

processes the incoming data, such as heart rate, blood 

pressure, or other health metrics. Then, the data preprocessing 

begins, and data augmentation techniques are performed.  

The CNN component serves as the feature extraction 

mechanism, and these learned features are then passed as input 

to the Bi LSTM component, which focuses on capturing the 

long-term dependency and temporal patterns in the sequential 

data.  

The learned features from the CNN and Bi LSTM 

components are passed through fully connected dense layers 

for final classification. The doctor receives these predictive 

results instantly, allowing the patient to adjust the treatment 

plan. This seamless integration of data collection, hybrid 

model analysis, and telemedicine ensures timely and accurate 

healthcare delivery. Figure 3 presents the proposed 

telemedicine framework, outlining the integration of a disease 

prediction system and the seamless interaction between 

patients, healthcare providers, and data analytics systems. 

3.1. Dataset 

Figure 4 displays an instance of data from the dataset 

gathered from the YBI Foundation. It consists of 133 columns 

and 4,920 rows, where each row is a patient’s medical record, 

and the 133 columns are the symptoms linked to different 

illnesses.  

The dataset is well-structured, with each patient record 

containing information about the presence or absence of 

specific symptoms. These 133 symptoms serve as input 

features for the proposed model, forming the basis for 

predicting the associated diseases. Class labels in the dataset 

are depicted in Table 1.

  

 
Fig. 4 Sample from the dataset 

Data warehouse Data pre-processing and 

augmentation 
Data splitting 

CNN-Bi-

LSTM model 

Performance 

Evaluation 
Diagnosis 
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Table 1. Class labels 

Type of Disease Count 

Fungal infection 120 

Hepatitis C 120 

Hepatitis E 120 

Alcoholic hepatitis 120 

Tuberculosis 120 

Common Cold 120 

Pneumonia 120 

Dimorphic hemmorhoids(piles) 120 

Heart attack 120 

Varicose veins 120 

Hypothyroidism 120 

Hyperthyroidism 120 

Hypoglycemia 120 

Osteoarthristis 120 

Arthritis 120 

(vertigo) Paroymsal Positional 

Vertigo 

120 

Acne 120 

Urinary tract infection 120 

Psoriasis 120 

Hepatitis D 120 

Hepatitis B 120 

Allergy 120 

hepatitis A 120 

GERD 120 

Chronic cholestasis 120 

Drug Reaction 120 

Peptic ulcer disease 120 

AIDS 120 

Diabetes 120 

Gastroenteritis 120 

Bronchial Asthma 120 

Hypertension 120 

Migraine 120 

Cervical spondylosis 120 

Paralysis (brain hemorrhage) 120 

Jaundice 120 

Malaria 120 

Chickenpox 120 

Dengue 120 

Typhoid 120 

Impetigo 120 

Thirty percentage of the dataset was for testing, and the 

remaining seventy percentage was for training. The dataset 

includes ground truth labels for 41 distinct diseases, providing 

a diverse set of medical conditions for the model to learn from 

and predict. By incorporating this wide range of diseases, the 

system aims to offer accurate and reliable predictions across 

multiple healthcare scenarios, making it a valuable asset in 

telemedicine applications. 

3.2. Data preprocessing and Augmentation 

The proposed study employed several key preprocessing 

techniques to enhance the quality and usability of the dataset. 

First, handling missing data was a crucial step, addressing any 

missing values in the dataset to ensure consistency. The 

imputation technique is applied to handle missing data based 

on the statistical measures of the dataset, such as using the 

mean, median, or mode, depending on the nature of the 

missing values.  

 

This step helped maintain the integrity of the dataset and 

prevented any potential biases arising from incomplete data. 

Next, apply to encode categorical variables to transform non-

numerical, categorical data into numerical values, essential for 

feeding into ML models. This process uses one-hot encoding 

or label encoding, which helps represent categorical 

symptoms or disease labels in a format that the model could 

easily process and learn from. This transformation ensured 

that all features were uniformly represented for efficient 

model training. These preprocessing steps collectively 

improved the dataset’s quality and enabled the CNN-Bi 

LSTM hybrid model to perform more effectively in predicting 

multiple diseases. Dataset statistics are shown in Figure 5.  

 

A histogram representation of the dataset, as shown in 

Figure 6, provides a visual summary of the distribution of 

symptoms across different disease categories. It helps to 

identify symptoms’ frequency and occurrence patterns, 

showing which symptoms are more prevalent or rare. This 

visualization also highlights potential imbalances in the 

dataset, enabling better understanding and handling of skewed 

data during model training. 

 

 
Fig. 5 Dataset description 



Amuthakkannan Rajakannu et al. / IJECE, 12(1), 1-13, 2025 

 

 
6 

 
Fig. 6. Histogram of distribution of different symptoms 

3.3. Model Development 

The hybrid model is designed to leverage both CNN for 

spatial feature extraction and Bi LSTM networks for capturing 

long-term temporal dependencies. The CNN component 

specializes in learning local patterns and spatial 

representations from the input data. Once the spatial features 

are extracted, they are passed to the Bi LSTM component, 

designed to capture long-term dependencies. Finally, the 

prediction of the desired output classes is produced based on 

the learned spatial and temporal features. 

3.3.1. Convolutional Neural Network 

Figure 7 illustrates CNN’s overall structure. Layers of 

neurons with learnable weights and biases comprise a CNN. 

After receiving certain inputs, each neuron computes the dot 

product and uses a nonlinear function to follow it. This process 

is repeated layer by layer to the output layer, where the 

network’s prediction is created [16]. Various building 

components make up a CNN, including the convolution, 

nonlinearity, pooling, and fully connected layer. 
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Fig. 7 CNN framework 

In order to generate feature maps, the convolutional layer, 

which has a set of filters inside it, convolutionally operates 

between the filters and the layer’s input. The filter is 

positioned over the upper left portion of the image using the 

convolution procedure. In order to obtain a single value, it will 

first execute an element-wise product between the filter’s 

parameters and the input’s matching grid. The filter then slides 

towards the right, and the convolution operation calculates the 

dot product in this new location. The filter can be applied at 

every location in the image, allowing the sliding filter to be 

applied across the input from top to bottom and left to right. 

The computation of the dot product among the convolutional 

filter and the matching grid in the input data is shown in Figure 

8. Eventually, the output of the convolution operation is stored 

in the feature map. The spatial links among the inputted grid 

are maintained by storing the data in a spatial grid structure. 

 
Fig. 8 The Convolution operation on the input data 

It handles a large volume of data accurately. By 

processing all the inputs for time 1 < p ≥ P, the forwarding 

pass yields the full predicted outputs. Onward pass and reverse 

pass for onward states and reverse states are done for p = 1 to 

P and p = P to 1. Similarly, after determining the objective 

function derivative utilized in the onward pass for time 1 ≤ p 

≥P, the reverse passes for onward states for time p = P to 1, 

and for time p = 1 to P is carried out. Equation 6 provides the 

mathematical expression for the Bi LSTM output. The layer A 

of the Bi LSTM at time t is theoretically expressed by 

Equations 1 to 6. 

Both forward and backward encodings are used to encode 

the ordered sequence. At each time step, the forward and 

backward LSTM output are merged to accurately capture all 

relevant information. Enhancing the representation of critical 

data was accomplished by utilizing the Bi-LSTM network. 

The hidden state of the forward LSTM is represented in 

Equation 1. It represents the evaluation of input from left to 

right. 

               ℎ𝑖𝑑⃗⃗⃗⃗⃗⃗ 
𝑡 = 𝐿𝑆𝑇𝑀(𝑆𝑡 , ℎ𝑖𝑑⃗⃗ ⃗⃗ ⃗⃗  

𝑡−1)                            (1) 

On the other hand, the backward LSTM processes input 

in a right-to-left direction. Its hidden state is expressed as in 

Equation 2. 

             ℎ⃖⃗𝑖𝑑𝑡 = 𝐿𝑆𝑇𝑀(𝑆𝑡 , ℎ𝑖𝑑⃖⃗ ⃗⃗ ⃗⃗⃗
𝑡+1)                              (2) 

The Bi-LSTM output can be derived by combining the 

forward and backward states, as per Equation 3. 

                  ℎ𝑖𝑑𝑡 = [ℎ𝑖𝑑⃗⃗⃗⃗⃗⃗ 
𝑡 , ℎ𝑖𝑑⃖⃗ ⃗⃗ ⃗⃗⃗

𝑡]                                   (3) 

The Bi-LSTM model generates its final output by pooling 

the forward and backward results at each time step. 

Incorporating both forward and backward information in the 

model enhances its capacity to accurately capture long-term 

relationships and contextual information in the input data, 

thereby improving its overall performance and prediction 

capabilities. 
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Fig. 9 Bi-LSTM architecture 

 

 

 

 

 

 

 

 

 

 

Fig. 10 Model architecture 

Equation 4 expresses the state variable of the hidden layer 

at time t. 

                 𝑋𝑡 = 𝑓(𝑈𝑥𝑡
+ 𝑊𝑠𝑡−1

)                                 (4) 

Equation 5 provides an expression for the state variable 

of the output layer at time t. 

                    𝑦𝑡 = 𝑔(𝑉𝑠𝑡 + 𝑉′
𝑠𝑡)                                  (5) 

Equation 6 represents the state variable of the reverse 

hidden layer at time t. 

                   𝑋′𝑡 = 𝑓(𝑈′
𝑥𝑡

+ 𝑊′
𝑠′

𝑡−1
)                         (6) 

The information flow and changes in design heavily 

depend on these weight matrices. In addition, the weight 

matrices 𝑉’, 𝑊’ and 𝑈’ are their reverse equivalents, which 

permit bidirectional information transmission in the model. 

These weight matrices allow the model to incorporate both 

forward and backward dependencies, which improves the 

capacity of the model to learn intricate patterns and 

relationships and enables a more thorough investigation of the 

input data. The forward projection result, 𝑋𝑡 and the reverse 

projection result, 𝑋′𝑡, are combined to yield the final output, 

represented as 𝑂𝑢𝑡𝑡.  
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3.3.2. Proposed CNN-Bi LSTM Hybrid Model 

The hybrid model is designed to leverage both CNN for 

spatial feature extraction and Bi LSTM networks for capturing 

long-term temporal dependencies. The CNN component 

specializes in learning local patterns and spatial 

representations from the input data. The model architecture is 

shown in Figure 10. It starts with a one-dimensional 

convolutional layer that applies 200 filters with a kernel size 

of 3, which allows it to learn important spatial features. This 

is followed by a max-pooling layer to downsample the learned 

feature map, effectively reducing their dimensionality. 

Subsequently, a set of three convolutional and max-pooling 

layers are applied sequentially to further refine and capture 

deeper feature hierarchies. 

 

Once the spatial features are extracted, they are passed to 

the Bi LSTM component, designed to capture long-term 

dependencies. The Bi LSTM layer has 64 units and processes 

the learned features from a forward direction and backward 

direction, enhancing the model’s ability to retain the memory 

of past states and update them based on new input.  

Ultimately, the output is fed into a fully connected layer 

after being flattened. The dense layer, with a softmax function, 

serves as the final classification, producing the prediction of 

the desired output classes based on the learned spatial and 

temporal features. Table 2 lists the hyperparameters that were 

employed in the model. Combining CNN for spatial learning 

and Bi LSTM for temporal learning ensures the model’s 

capability to handle complex patterns. 

Table 2. Hyperparameters 

Hyperparameters Values 

Number of Epochs 10 

Loss Sparse Categorical 

Crossentropy 

Activation Function ReLu, SoftMax 

Batch Size 64 

Optimizer Adam 

Total Parameters 251,887 

Trainable Parameters 251,887 

Non-trainable Parameters 0 

 

3.4. Hardware and Software setup 

The proposed hybrid CNN-Bi LSTM model was 

implemented using Google Collaboratory as the workstation 

platform. Google Colab is a cloud-based environment that 

allows users to write and execute Python code, providing free 

access to GPUs and TPUs. This platform was chosen for its 

flexibility, accessibility, and support for parallel processing, 

which is crucial for training DL models on large datasets. 

Colab’s integration with Google Drive allows seamless data 

storage and retrieval during model training and evaluation. 

The libraries, combined with Python’s robust community 

support, provided the necessary tools to implement, train, and 

evaluate the hybrid model efficiently. The Keras library, 

integrated with TensorFlow as the backend, was employed for 

the DL components. TensorFlow’s flexibility and GPU 

support ensured that the model could be trained efficiently, 

while Keras provided an intuitive framework for defining the 

CNN-Bi LSTM architecture. This combination of Python, 

Google Colab, Keras, and TensorFlow offered an efficient and 

scalable setup for developing and deploying the CNN-Bi 

LSTM hybrid model. 

4. Results and Discussion 
In evaluating the proposed model, several key 

performance metrics are employed to assess its effectiveness 

and reliability. These include precision, accuracy, F1-score, 

and recall. Accuracy is useful when the dataset is balanced, 

but it can be misleading in the case of imbalanced datasets 

where the majority class dominates the predictions. 

                  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                        (7) 

High precision indicates that the model is typically 

accurate when it predicts a positive class. 

                  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                   (8) 

Even if the model generates some false positives, a high 

recall shows that it has a good ability to capture real positive 

cases. 

                       𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                   (9) 

The F1 score is particularly helpful in situations where 

achieving a balance between precision and recall is important.  

       𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                     (10) 

The model’s performance is presented in Table 3, and its 

graphical representation is shown in Figure 11. The model 

achieves an impressive accuracy of 98.98%, indicating that 

nearly all predictions made by the model are correct. The 

precision of 99.03% signifies that out of all the positive 

predictions made by the model, 99.03% were accurate, 

minimizing false positives. The recall of 99.04% demonstrates 

that the model successfully identifies 99.04% of the actual 

positive cases, reducing the likelihood of false negatives. 

Lastly, the F1 Score of 98.99% reflects the balance between 

precision and recall, highlighting the model’s overall 

robustness and effectiveness. 

Table 3. Performance evaluation 

Performance Parameters Values 

Accuracy 98.98% 

Precision 99.03% 

Recall 99.04 % 

F1-Score 98.99% 
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Fig. 11 Performance evaluation of the model 

An accuracy plot visually represents the model’s 

performance over time or across different training epochs. 

Analyzing the accuracy plot, as shown in Figure 12, assesses 

how well the model is learning and improving during the 

training process and whether it achieves consistent 

performance on the test data. 

 
Fig. 12 Accuracy plot of the hybrid model 

The model’s accuracy shows a significant improvement 

from the initial to the final epochs, indicating successful 

learning. In the first epoch, the accuracy starts at a very low 

value of 1.4%, reflecting the initial stages of the model 

learning from the data. By the second epoch, the accuracy 

jumps to 59.8%, which shows a sharp increase as the model 

begins to understand the patterns in the data. From the third 

epoch onward, the accuracy continues to improve steadily, 

reaching 92.02% by the third epoch and further improving to 

98.52% in the fifth epoch. By the final epoch, the accuracy 

reaches an impressive value of 99.30%. The results show no 

significant fluctuations but rather a consistent upward trend in 

accuracy, indicating that the model learns effectively over 

time without overfitting. The loss plot tracks the decrease in 

the model’s error over time, indicating how well the model is 

learning. Figure 13 depicts the loss plot of the model. 

 
Fig. 13 Loss plot of the model 

From the first epoch, the model starts with a high loss of 

3.9146, indicating that the model initially struggled to fit the 

data. However, as the epochs progress, the loss consistently 

decreases, reaching a final value of 0.1601 by the 10th epoch. 

This gradual reduction in loss shows that the model is learning 

effectively over time without abrupt fluctuations. Figure 14 

shows a sample of the predicted result. 
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Fig. 14 Predicted result of the model 

Table 4 compares the accuracy of various models and 

methodologies used for predicting health outcomes in 

different studies. Dahiwade et al. achieved 84.5% accuracy 

using a CNN model, while Kohli et al. reported 81.30% 

accuracy with Logistic Regression. Segal et al. attained 95.8% 

accuracy using the XGBoost model, and Elhoseny et al. 

employed Ant Colony Optimization to reach 95% accuracy. 

Mienye et al. used Gradient Boost with 83% accuracy, while 

Tiwari et al. achieved 92.3% accuracy using the AdaBoost 

algorithm. The proposed hybrid CNN-Bi LSTM model 

outperforms these methods, achieving the highest accuracy at 

98.98%, demonstrating its superior performance. The 

graphical representation of the performance comparison is 

shown in Figure 15. 

Table 4. Performance comparison with existing methods 

Author Methodology Accuracy 

Dahiwade et al [18]  CNN 84.5% 

Kohli  et al [19] Logistic Regression 81.30 % 

Segal et al. [20] XGBoost 95.8 % 

Elhoseny et al. [21] Ant Colony Optimization  95 % 

Mienye et al. [22] Gradient Boost 83% 

Tiwari et al [23]  AdaBoost 92.3% 

Proposed model: CNN-Bi LSTM 98.98% 

 
Fig. 15 Performance comparison 
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5. Conclusion 
Telemedicine is crucial in expanding access to healthcare 

services, mainly in remote or underserved areas, by enabling 

timely diagnoses and treatments without needing in-person 

visits. The ability to predict multiple diseases through 

advanced analytical models enhances the efficiency of 

telemedicine by allowing healthcare providers to identify 

potential health risks early, leading to proactive management 

and improved patient outcomes. Moreover, integrating 

multiple disease predictions into telemedicine frameworks 

streamlines healthcare delivery and empowers patients with 

personalized insights into their health, fostering better 

engagement in their care. This study successfully 

demonstrates the efficacy of the hybrid model combining 

CNN and Bi LSTM networks for multiple disease prediction 

within telemedicine frameworks. The model’s remarkable 

performance, characterized by an accuracy of 98.98%, 

precision of 99.03%, recall of 99.04%, and an F1-Score of 

98.99%, highlights its potential to significantly enhance 

diagnostic accuracy and patient care in remote healthcare 

settings. By effectively extracting spatial and temporal 

features from patient data, the CNN-Bi LSTM model 

outperforms existing methods and addresses the critical need 

for reliable disease prediction in underserved populations. As 

telemedicine continues to evolve, the implementation of such 

advanced predictive models can play a pivotal role in 

improving healthcare outcomes and operational efficiency, 

ultimately contributing to a more accessible and effective 

healthcare system. 
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