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Abstract - One of the most persistent neurological diseases is epileptic seizures, which have an impact on people’s daily lives by 

endangering them with frequent seizures. In recent years, seizure detection techniques have been categorized into a number of 

groups, mainly rational function, empirical mode decomposition, wavelet (time-frequency), time, and frequency. Current 

diagnostic techniques have focused on developing techniques for electrocardiograms (ECGs) and electroencephalograms 

(EEGs) due to their noninvasiveness and their capacity to provide repetitive patterns of epileptic-related electrical information. 

In this work, Power Spectrum Density Estimation (PSDE) is used to examine the magnitude squared wavelet coherence (MSWC) 

between the ECG and EEG during an epileptic seizure in the typical frequency range of 0–128 Hz. The datasets used in this work 

are PhysioNet and “N&C-TEC: ECG and EEG files”. Mendeley data are used to collect all signals from epileptic seizure patients 

aged 3 to 25 at Children’s Hospital Boston at a sampling rate of 512 samples/second. Each signal is comprised of 30 seconds 

(15,360 samples). The mean values of the MSWC between the ECG and EEG are calculated. According to the measurement, the 

MSC values between the ECG and EEG signals in epileptic seizure sample-1 are 0.05, 0.1, and 0.4. Similarly, in epileptic seizure 

sample-2, MSC values are 0.4 and 0.55; in sample-3, MSC values are 0.15 and 0.4, respectively, in the frequency range of 0 to 

128 Hz. Finally, the mean of the MSC value between the ECG and EEG for the first sample, second sample, third sample, and 

fourth sample is less than 0.55. It shows that the coherence value between the circulatory system and the central nervous system 

is diminished in epileptic seizure patients, i.e., the coherence between the heart and brain is very low in seizure patients. 

Keywords - Electrocardiogram (ECG), Electroencephalogram (EEG), Heart Rate Variability (HRV), Fast Fourier Transform 

(FFT), Morlet Wavelet, Magnitude Squared Wavelet Coherence (MSWC), Seizures, Epilepsy. 

 

1. Introduction 
1.1. Motivation 

 One of the most important neurological diseases that has 

detrimental effects on the human nervous system is epilepsy. 

Individuals of all ages are affected by this lifelong, non-

communicable brain disease. Based on the latest data from the 

World Health Organization (WHO), between 60 and 70 

million individuals globally, or around 2% of the total 

population, suffer from epileptic seizures. After 

cerebrovascular accidents, epilepsy and Alzheimer’s disease 

is presently the third leading neurological disorder in the US; 

thus, It is among the most prevalent neurological conditions in 

the world [1]. 85% of those affected live in developing 

nations, which adversely impacts their efficiency and the 

standard of their existence.  

 

 Globally, there are 3 million new cases of epilepsy each 

year, with 10 million of them living in India [2-3]. Epilepsy is 

predicted to strike 1 in 26 Americans at some point during 

their lifetime. In lower-middle-income countries, more than 

80% of the population suffers from epilepsy. The risk of dying 

young is almost three times higher for people with epilepsy 

than for the general population. 75 percent of epileptics in 

low-income countries do not obtain the appropriate care.  

 

 There is stigma and discrimination against people who 

have epileptic seizures along with their loved ones everywhere 

in the world. Statistics show that 70% of people with epilepsy 

could avoid having seizures if their condition was 

appropriately identified and managed.  

 

 Patients with epilepsy who have tried and failed at various 

forms of treatment must endure a difficult existence. Their 

standard of living is really poor. Many patients suffer serious 

injuries, such as burns, fractures, and head traumas, as a result 

of the extreme rapidity of the seizure attack and the confusion, 

unconsciousness, and loss of motor control that some types of 

seizures are accompanied by. These injuries greatly impact the 

risk associated with epilepsy [4]. Figures 1 and 2, respectively, 

display epileptic facts and epilepsy statistics.

 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1 Epilepsy Facts [25] 

 

 
Fig. 2 Epilepsy statastics[25] 

Note:3.4m=3.4 million and 65m=65millions 

 

1.2. Seizures and Epilepsy 

1.2.1. Seizures 

A seizure describes “a transient, momentary change in 

the electrical activity of the brain” and can cause issues with 

speech, eye movement, muscular coordination, and behavior. 
 

1.2.2. Epilepsy 

Epilepsy is a neurological disorder marked by frequent 

seizures, consciousness loss with or without movements, and 

electrical impulses in brain activity. It is believed to be the 

outward sign of an overabundance and abnormal release of a 

particular subset of nerve cells [5]. During a seizure, sudden 

and uncontrolled nerve-cell discharges in the brain result in 

aberrant bodily functions, often leading to unconsciousness, 

uncontrollably contracted muscles, or abnormal sensations. 

[6]. Although seizures are the main sign of epilepsy, they can 

also be brought on by a variety of other circumstances. Brain 

electrical abnormalities are the primary cause of epileptic 

seizures.  
 

A seizure is characterized by a brief period of unusually 

high or coordinated neuronal activity in the brain. The patient 

may experience uncontrollable changes in behavior, 

movement, sensation, or awareness as a result of the rapid 

breakdown of the brain’s neural activity [7-8]. 

The characteristics that differentiate epilepsy from non-

epileptic seizures. Epilepsy is (a) At least one or two 

unexplained seizures that happen at least 24 hours apart are 

considered to be epilepsy. (b) One uncontrollable seizure with 

a high likelihood of more spontaneous seizures; and (c) 

Recognizing an epileptic condition [9]. Seizures without 

epilepsy are a response to disturbances beyond the central 

nervous system, including drinking, abusing drugs, not getting 

enough sleep, or having a serious disease. According to its 

genesis, epilepsy might be classified into the following 

categories 

 

Genetic: probably as a result of genetic disposition. 

Structural/metabolic: related to a brain injury. 

Unknown: No specific emphasis or syndromes to be found. 

Unknown causes of epilepsy are currently identified in six out 

of ten patients, which is regrettable. Over 450,000 adolescents 

and kids, as well as 2.3 million adults in the US, currently live 

with epilepsy. Each year, epileptic seizures are identified in 

about 150,000 people. Every year, 120 people out of every 

100,000 in the United States have a newly diagnosed seizure. 

A seizure will occur in at least 8% of the overall population. 

Within 5 years, there is a 23 to 80% chance that the first 

uncontrolled seizure will occur again [10]. In the United 

States, neurological illnesses have an annual economic cost of 

around $800 billion. In the US, epilepsy alone brings in about 

$37 billion annually [11]. 

 

Nearly one-sixth of all epilepsy cases worldwide are 

found in India, and there are projected to be close to 12 million 

epileptic sufferers. Prevalence was reported to be 3–11/1000 

and incidence to be 0.2–0.6/1000 in recent research conducted 

in India. In developing countries, epilepsy was more prevalent 

in rural regions than in urban areas [12]. 

 

1.3. Analyzing Physiology Signals of Epileptic Seizure 

 Monitoring several biomedical parameters from the 

human system, such as (1) electroencephalography, (2) 

electromyography, (3) electrocardiography, (4) mobility, and 

(5) an audio message, may help identify epileptic seizures [13, 

14]. EEG is the most widely used of these physiological 

signals due to its benefits, including its (1) high spatial 

resolution, (2) high temporal resolution, and (3) the ability to 

capture brain neuronal activity. Traditional EEG 

measurements can only be carried out in a controlled situation 

by a trained technician because of their intrusiveness and 

complicated setup.  

 

 Monitoring physiological indicators or other body 

processes can also help diagnose some seizure types, like 

generalized onset motor seizures [15,16]. Consequently, in 

addition to using EEG signals, researchers have developed 

seizure detection techniques that use a range of non-EEG 

signals [17]. By separating the methods used to identify 

seizures into ECG and EEG, we will illustrate about how these 

recorded signals are employed in the discussion that follows. 
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1.3.1. Electrocardiogram (ECG) 

 Electrocardiogram (ECG) monitoring determines the 

electrical characteristics of the heart, along with the rhythm of 

the heart and variability in heart rate (HRV). When a person 

has Generalized Tonic Clonic Seizures (GTCS), their heart 

rate usually rises. The risk of unexpected unexpected fatalities 

in epileptics (SUDEP) is thus increased by such events [18]. 

Furthermore, HRV can be used to detect focal seizures that 

occur while exercising [19]. When focal onset seizures occur 

with diminished consciousness, the most typical HRV pattern 

linked to these seizures is an abrupt, quick acceleration at the 

start of the seizure [20]. Temporal lobe seizures exhibit a 

different HRV than psychogenic non-epileptic seizures [21]. 

An ECG is a useful tool for identifying seizures. Still, there 

are still many limitations in terms of accuracy and early 

seizure detection. The ECG signal is portrayed in Figure 3. 

 

 
Fig. 3 ECG signal [25] 

 

1.3.2. Electroencephalogram (EEG) 

 EEG recording is the method most frequently used to 

collect brain waves for epilepsy. The brain’s electrical activity 

is measured. Due to the abnormal signal patterns that epileptic 

seizure activity causes on the EEG, we can recognize seizures 

using fluctuations in the EEG signal.  
 

 The paroxysmal aberrant EEG signals depicted in Figure 

4. include sharp waves that last 20–70 ms, spikes, and spike-

and-slow waves. Slow waves last 200–500 ms after a spike 

wave [22,23]. 
  

 With a focus on epileptic seizure detection, we employed 

both ictal and interictal EEG data, disregarding postictal 

scenarios, to identify abnormal EEG signals. Whereas ictal 

action is typified by uninterrupted discharges of polymorphic 

waves with fluctuating frequency and amplitude, inter-ictal 

activity’s EEG signature is characterized by sporadic transient 

waveforms [24]. Figure 4 shows the EEG signals. 

 

 
Fig. 4 EEG Signal [25] 

 

A potentially less invasive way of recording EEG signals 

than with conventional EEG procedures is this promising 

development. Recording EEG signals close to the ear is a 

promising development that may lessen the intrusiveness of 

traditional EEG procedures. While the amplitude of the 

evoked responses from traditional scalp EEG recordings is 

generally 10–20 dB higher, their Signal––Noise Ratio (SNR) 

is often compared [26]. Mikkelsen et al. examined 12 

traditional ear electrodes and 32 common scalp electrodes. 

Similar brain activity is represented by the data collected from 

the hearing electrodes as by adjacent scalp electrodes [27]. 

Cleeren et al. used the unilaterally and cross-head bands of the 

behind-the-ear EEG. In terms of frequency content and 

temporal waveform, behind-the-ear EEG recordings made 

during seizures were similar to scalp recordings. Coherence 

was observed between the scalp EEG channels of twelve 

patients and the best-matching behind-the-ear EEG channels 

[28]. According to McLean et al., ambulatory EEG data in 

epilepsy showed abrupt death; the EEG went flat as soon as 

the seizure activity stopped. According to the EEG variations 

graph, some EEG channels may have significant patterns that 

can be used to identify seizures [29]. The paper is divided into 

six sections: Section 2 discusses relevant work, and Section 3 

presents the materials and procedures for the proposed 

methodology. Section 4 presents the results, Section 5 

analyzes the conclusions, and Section 6 provides a summary 

of the work. 

 

2. Background 
Epileptic seizures can be recognized using a variety of 

signal-processing techniques and transformations. They are 

the time domain, frequency domain, and wavelet domain 
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(time-frequency). The time domain is the basis of threshold-

based methods. In the frequency domain, the Fast Fourier 

Transform (FFT), techniques for estimating the power 

spectrum density, the Minimal Variance Distortionless 

Response (MVDR) method, and wavelets. There are several 

temporal and frequency-related restrictions on FFT. The 

Continuous Wavelet Transform (CWT), which functions in 

the wavelet domain, is a helpful tool for evaluating the 

coherence between two signals (CWT). Wavelets are 

employed for local analysis of the big signal. The wavelet’s 

coefficients display where the signal breaks up. Figure 5 

presents a categorization of epilepsy seizure detection 

techniques. 
 

2.1. Time Domain (or) Threshold-based Methods 

The term “time domain” describes how a signal’s value 

changes with time. Time-domain techniques evaluate discrete 

time and analyze the given epochs (time window), and they 

are often problem-specific. A healthcare system module 

developed by IosifMporas et al. in 2007 employs EEG and 

ECG data as seizure detectors. The module uses support vector 

machines for classification and short-time evaluation utilizing 

time-domain and frequency-domain data. Three individuals 

with absence-diagnosed idiopathic generalized epilepsy 

served as test subjects for the seizure detection module. For all 

patients investigated, the obtained seizure detection accuracy 

was 90% [30]. An automatic method for identifying seizures 

in the EEG was described by Gotman et al. This method’s 

basis is the breakdown of an EEG into its fundamental waves 

and the identification of periodic epileptic episodes with a 

frequency between 3 and 20 c/sec.Simple methods are used to 

calculate the size of the waves with respect to the background, 

their length, and their rhythmicity [31]. The technique has 

been evaluated using 44 samples from intracerebral electrodes 

and 24 surface recordings, both of which had average 

recording times of 18.7 hours and 12.4 hours, respectively. A 

thorough review of the many seizure detection methods was 

provided by S. Nasehi et al., along with an emphasis on their 

potential applications in both diagnosis and therapy. EEG and 

ECG readings are used by many of the algorithms used today 

to determine the start and end of seizures. 

 

    
Fig. 5 Classification of Epileptic Seizure detection methods 

Until the patients are separated into seizure or non-seizure 

categories, these methods extract a range of factors from the 

EEG data alone or in conjunction with the ECG signal. Seizure 

detectors are categorized into two primary groups: 

electroencephalography seizure-event detectors and 

electroencephalography status epilepticus detectors [32]. 

Electroencephalogram (EEG) signals are acquired using 

wireless, portable brain monitoring equipment, according to 

Md. Nazmus Sahad et al. This setup is the basis for the 

collection of HRV and ECG data. Using the bandpass filter’s 

bandwidth adjusted between 0.5 Hz and 126 Hz, the overall 

gain has been adjusted to 93.86. The left leg, right leg, left 

arm, and right arm were all connected to separate inputs. 

 

In settings of elevated cognitive load and a relaxed state, 

ECG signals and HRV data were collected. Wirelessly 

transmitting the signals to a distant computer for analysis after 

they had been digitalized at 256 SPS [33]. MATLAB was used 

to filter and plot these cardiac signals. 

 

Khan and Shanir presented that the minimum and mean 

energy values per epoch, as well as the mean energy of all 

sample points within an epoch, are features for categorization 

in the suggested method for automated seizure detection. The 

window size was set at one second. In this case, the classifier 

is a linear classifier. The CHB-MIT database’s algorithm 

testing involved three subjects, with training and testing using 

60% and 40% of the data, respectively. Their average 

specificity, sensitivity, and detection accuracy were 99.81%, 

100%, and 100%, respectively. Based on factors including the 

mean and median of energy, which have larger values in the 

seizure epoch compared to the non-seizure epoch, it is easy to 

discern between seizure and non-seizure epochs [34]. Thomas 

De et al. claim that the ECG is an electrical signal from the 

body that can be utilized for automatic home detection online. 

According to earlier research, tonic-clonic seizures are 

frequently accompanied by a sharp rise in heart rate. The ictal 

heart rate characteristics’ significant patient-specific 

behaviour, however, is the fundamental problem that is 

challenging in creating a patient seizure identification [35]. 

  

 To identify a channel and identify seizures, Alotaiby et al. 

presented the multichannel scalp electroencephalogram 

(EEG) recording histograms. During the training phase, the 

signal was windowed with a 10-second non-overlapping 

window, and five histograms were measured from each signal 

segment. Throughout testing, each section is classified as 

either ictal or non-ictal using those channel-histogram bins. 

Following an average moving filter to reduce noise, the 

sequence is compared to a patient-specific detection threshold. 

The CHB-MIT dataset, which comprised 26 seizures in 5 

individuals, and SEEG of 309.9 Hz were used to test the 

technique. Their average specificity and sensitivity were 

determined to be 98.58% and 97.14%, respectively. Asuvaran 

et al. state that epilepsy is more prevalent in older people and 

children, A frequently occurring neurological. It is important 

 
Time 

domain 

 
Frequency 

domain 

 
Wavelet 

domain 

 
Epileptic seizure 

detection methods 



Polepogu Rajesh & Vaegae Naveen Kumar  / IJECE, 12(1), 14-32, 2025 

 

18 

to distinguish focal seizures from illnesses of the brain, such 

as epilepsy. Despite the widespread usage of 

electroencephalograms and electrocardiograms (ECG), the 

objective of this research is to develop an algorithm that 

evaluates both EEG and ECG data in order to predict the 

likelihood of a seizure. The power distributions were 

calculated in order to identify seizures in the EEG, especially 

in the delta and theta bands [36]. 

  

 A hybrid model was presented by Mursalin et al. to 

determine if an EEG signal contains epilepsy by taking into 

consideration factors in both the frequency and spatial 

domains. The frequency domain features are shown together 

with the assessment of the detruded changes, movement, and 

the standard deviation and mean of the wavelet coefficients. 

The findings demonstrate that, in comparison to other 

contemporary methods and the conventional correlation-based 

method, the recommended method is more effective at 

identifying epileptic seizures [37]. 

 

  Observations: Time-domain techniques are frequently 

quick and applicable to real-time systems. Frequency-domain 

analysis, which offers a more in-depth examination of the 

signal than time-domain analysis, reveals details about the 

signal’s frequency content, overcoming the drawback of time-

domain analysis. This frequency domain transform is 

explained in the next section. 

 

2.2. Frequency Domain 

  In the time domain approach, the signal is simply 

analyzed in terms of its amplitude and time components, 

which is blind to the signal’s frequency component. However, 

if we want to analyze the signal as a whole, the frequency 

component is equally important. The frequency spectrum of 

the signal is described in the frequency domain. The advantage 

of shifting a signal’s domain is that it highlights and reveals 

significant elements of the signal that are not visible upon a 

visual examination of the initial signal or an undetectable 

signal in the time domain. 

  

 Bhopal proposed the FFT method for identifying epileptic 

seizures. The neural networks are given the extracted FFT-

based characteristics. For their classifiers, they used 

generalized feed-forward neural network models (GFFNN) 

and Multi-Layer Perception Networks (MLP). The approach 

can achieve 100% accuracy, according to the results of the 

Bonn dataset test [38]. 

  

 Hills performed an FFT on each one-second-long frame 

in order to take part in the “U Penn and Mayo Clinic’s seizure 

detection challenge” and gathered magnitudes between 1 and 

47 Hz as well as phase data. The feature vector is created using 

the FFT data and eigenvalues that have been computed in both 

the time and frequency domains. A random forest classifier 

with 3000-trees is then used to classify this feature vector [39]. 

Christine Rosquist et al. described that this illness has always 

occupied a significant position in biomedicine due to the 

health risks it presents. Its electroencephalogram can be 

utilized to make the diagnosis and is characterized by 

recurrent, unprovoked seizures. EEG measures the brain’s 

electrical activity, and a key component of epilepsy research 

is the analysis of EEG data to spot epileptic seizures in their 

early stages.  

 

The machine learning algorithms for pattern recognition 

that are used to identify epileptic seizures based on EEG were 

compared. Support Vector Machines (SVM) and K-Nearest 

Neighbors (KNN) were the two methods that were compared. 

Although KNN occasionally exhibited somewhat higher 

reliability, our analysis demonstrates that the two approaches 

perform similarly [40]. 

  

 Jing Li et al. analyzed and evaluated the frequency 

domain properties of electroencephalography (EEG) signal in 

order to more precisely identify epileptic episodes. On the test 

EEG signal, the spectrogram and power spectrum were 

computed using FFT, and the Continuous Wavelet Transform 

(CWT) was utilized to establish the scalogram. Additionally, 

two methods, 1 and 2, were tested for their applicability in the 

detection of epileptic seizures using electrocardiogram (ECG) 

signals. The third method for identifying irregularities in ECG 

signals has undergone testing [41]. 

  

 Darjani, N. et al. calculated epileptic seizure frequency as 

a feature supplied to k-nearest Neighbor (KNN) to assess the 

effectiveness of the proposed techniques. With data from 

neurology and sleep EEG and an accuracy of 99%, the current 

study was able to tell the difference between pre-ictal and ictal 

EEG signals [42]. 

 

Li, Y. N. et al.showed how to use a hybrid approach based 

on the Fisher vector technique and multiscale radial basic 

function to investigate high-resolution time-frequency 

estimation and evaluate the dynamic behaviour of 

nonstationary EEG data [43]. Sourabh Banik et al. presented 

the interaction between EEG and PPG signals during 

emotional elicitation by audio-visual stimulus, which is 

analyzed to determine how the brain and heart interact. 

Using the DEAP database, this investigation discovers that 

CFC between EEG and PPG signals typically diminishes in 

the beta and gamma bands as arousal levels increase [44]. 

 

  Observations: When there is a lot of data to analyze, such 

as long-term data, frequency domain methods are a good 

option because they don’t need to account for the temporal 

component of the signal. A mixture of traits from many 

domains, on the other hand, may lead to extremely positive 

outcomes. For a more thorough look at the signal, we need a 

transform that shows both the time and frequency components 

at the same time. This kind of transformation is explained in 

the next section.
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2.3. Wavelet Domain (Time–Frequency) 

 In 2016, Hasan et al. presented a novel approach to 

seizure detection using Hilbert and wavelet transforms. For 

wavelet and Hilbert transform coefficients, the absolute values 

of the average, highest, lowest, standard deviation, and 

average power parameters are obtained separately. The 

performance was evaluated on the Bonn database, and it was 

found that applying the Hilbert transform produced some very 

encouraging results. For the A-E and B-E data sets, accuracy 

is 100 and 96% in the wavelet case and 100 and 100% in the 

Hilbert case. Additionally, they have shown that they are 

100% sensitive and 100% specific for the Hilbert transform. 

The algorithm’s strength is that it achieves the best accuracy 

by using only a single decomposition level [45]. 

 

In a study by Sharma et al., ten-fold the cross-validation 

was used on the EEG databases of Bonn University and the 

Neurology and Sleep Center to test a new approach relying on 

an Orthogonal Wavelet Filter Bank (OWFB) for the separation 

of ictal and non-ictal EEG signals. The proposed technique 

offers a 98% accuracy rate for identifying pre-ictal and ictal 

brain signals and an accuracy rate of 100% for identifying 

inter-ictal and ictal EEG signals [46]. 

 

The Discrete Cosine Transform (DCT)-based filter bank 

is proposed to separate EEG signals into five different brain 

rhythms. The autoregressive moving average and Hurst 

exponent are produced by these rhythms and supplied into the 

SVM classifier to carry out the binary recognition of EEG 

data. Assessment measurements on two publicly accessible 

EEG datasets are used to evaluate the effectiveness of the 

current study [47]. 

  

 In order to accurately diagnose an epileptic episode, 

Hadiyoso et al. proposed two characteristics: absolute wavelet 

energy and wavelet entropy. Two features have emerged from 

the EEG data’s division into five bandwidths. The results of 

the simulation demonstrated that an SVM classifier was able 

to differentiate between inter-ictal and ictal EEG data with a 

maximum accuracy of 96% [48]. 

 

 Andzejak presented various electroencephalography 

(EEG) states into healthy, rhythmic, and epileptic states. The 

confusion matrix was used to evaluate the algorithm’s 

sensitivity, specificity, and accuracy. When put to the test on 

the Bonn database, they were discovered to be 98.33, 100%, 

and 97.1% respectively. In this situation, Daubechies-4 is the 

parental wavelet [49]. 

  

 In order to extract features, Zainuddin et al. developed a 

set of variables from the wavelet transform of the brain signals 

based on the standard deviation, maximum, and minimum of 

the actual values of the wavelet coefficients in each sub-band. 

After recovery, the features are classified using wavelet neural 

networks, or WNNs. To evaluate the effectiveness of the 

suggested method, they investigated several mother wavelets, 

including the Mexican Hat, Gaussian, and Morlet, for feature 

extraction using the Bonn database. They found that WNNs 

with the order 4 Daubechies wavelet and the Morlet wavelet 

activation function performed best [50]. 

 

Two characteristics, relative wavelet energy and wavelet 

entropy, were proposed by Abbasi et al., who reported the 

precise detection of an epileptic episode. The EEG data is 

separated into five frequency bands for examination, and two 

characteristics have been extracted from each band. The 

simulation result revealed the greatest classification accuracy 

of 96% for inter-ictal vsictal EEG signals using an SVM 

classifier [51]. 

  

 Panda et al. also describe a five-level decomposition 

method for feature extraction. The characteristics that were 

retrieved are entropy, energy, and standard deviation. 
Daubechies (db-2) is the reference wavelet in this case, and 

SVM is employed as a classifier. The energy feature had the 

highest accuracy of 91.2% when the results of the various 

features were compared. 500 EEG epochs are used to detect 

epileptic episodes for the purpose of testing the algorithm (100 

epochs for each event), which were collected from five distinct 

neural activities, including eye movement, eye-opening and 

seizure [52]. 

 

Neural network classifiers and discrete cosine harmonic 

wavelet transform-based features were suggested by G. R. 

Kiranmayi et al. for the detection of epilepsy[53]. An EEG 

classification model based on machine learning for the 

identification of epileptic seizures was presented by M. B. 

Qureshi et al. [54], and H. Peng et al. reported on automatic 

epileptic seizure identification via stein kernel-based sparse 

representation[55].M. Sahani et al., suggested employing a 

decreased deep convolutional layer autoencoder from EEG 

signals in conjunction with an upgraded kernel random vector 

for detection of epileptic episodes [56]. J. Cao et al. presented 

epileptic classification using a feature fusion approach based 

on deep transfer learning[57]; machine learning algorithms 

were first presented by Andreas Miltiadous et al. for the 

diagnosis of epilepsy [58]. 

 

Observations: The precision of signal processing 

techniques has been significantly improved by the use of 

wavelets. According to our findings, seizure detection can be 

accomplished with a breakdown level of up to 5. When 

working with wavelets, It’s challenging to recommend a 

particular classifier, but SVM, artificial neural networks, and 

KNN might be viable choices. There is a lot of use of the 

Daubechies wavelet, and the outcomes are extremely 

fascinating. The purpose of this research is to provide a 

wavelet coherence function that can be used to compare two 

signals, which not only reveals the frequencies that two signals 

overlap but also reveals the timing of these frequencies. We 

suggest a novel method for analyzing the coherence between 

the circulatory and central nervous systems of epilepsy 
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patients using electrocardiograms and electroencephalograms 

based on the above-mentioned literature review. 

 

3. Materials and Methodology 
Epileptic seizure detection generally consists of three 

stages: data gathering, preprocessing, and computation of 

magnitude squared wavelet coherence. This section covers the 

signal processing procedures required to analyze the 

physiological signals of epilepsy seizures that have been 

recorded. The data processing allowed detection and 

magnitude-squared wavelet coherence to be constructed. 

 

3.1. Steps for Calculation of Magnitude-Squared Wavelet 

Coherence between EEG and EEG Signals of Seizure 

Patients 

3.1.1. Database 

Children’s Hospital Boston Database 

This research used data acquired from Boston Children’s 

Hospital. ThePhysioBank ATM, a feature of the PhysioNet, 

contains ECG and EEG recordings from paediatric patients as 

well as from young people (up to 25 years old) who have 

seizures. These recordings are used to obtain physiological 

signals (ECG and EEG) from healthy participants. 22 people’s 

recordings are included in this database (seventeen females, 

aged 1.5–19, and Five males, aged 3–22). For an ECG signal 

calculated using 30-second non-overlapping epochs, these 

signals were gathered with a resolution of 16 bits at a rate of 

512 samples per second. These recordings were made with a 

one-channel ECG and EEG capture utilizing the International 

10-20 method [59]. 

 

N&C TEC - ECG and EEG Data 

The database for this research was collected using “N&C-

TEC: ECG and EEG files, “Mendeley Data [60], 16 people’s 

electrocardiogram (ECG) and electroencephalogram (EEG) 

data was saved in MAT format. Sixteen undergraduate 

students were willingly recruited for the study; nine of them 

were men, and seven of them were women. From 19 to 25 

years old, they ranged. Four groups were formed, and two 

cooperative activities, one with and one without noise, were 

carried out between them. Each subject’s baseline EEG and 

ECG data were captured for three minutes, followed by ten 

minutes of noise-free collaboration on the second and ten 

minutes of silence on the third. 

 

ECG Signals 

The heart’s electrical activity is known as the ECG. In this 

work, the BIOPAC system and the Einthoven triangle lead 

were used to capture it at a frequency of 200 hertz and within 

a bandwidth of 0.1 to 100 Hz. 

 

EEG Signals 

The brain’s electrical activity is measured by EEG. The 

recording locations on the MUSE headband were attached 

using the 10/20 International System, and four EEG channels 

with a bandwidth of 0.1 to 100 Hz were recorded at 128 Hz. 

On the EEG, they were TP7, TP8, AF7, and AF8. The source 

code was created using MATLAB R2022a [60]. 

 

3.1.2. Pre-Processing 

ECG Signal Preprocessing: Baseline wanders noise and 

power line interference noises are the two principal noise 

types found in Electrocardiogram (ECG) data. The low-

frequency noise, known as baseline wander noise, has a 

frequency of 0.5 to 0.6 Hz. With a 0.5 to 0.6 Hz cutoff 

frequency high-pass filter, it can be removed. A notch filter 

with a 50 or 60 Hz cutoff frequency can be used to eliminate 

power line interference noise or noise from the main supply at 

that frequency [61]. 

 

EEG Signal Preprocessing 

Blind Source Separation preprocessing (BSS) is 

employed in EEG signal preprocessing. In order to remove 

EEG artifacts, a notch filter with a 50 Hz center frequency is 

used as the first filter on the EEG signal; for obtaining the 

necessary EEG data for feature extraction, an IR filter between 

8 and 25 Hz has been utilized [62]. 

 

3.1.3. Modeling of Magnitude-Squared Wavelet Coherence 

(MSWC)  

The magnitude-squared wavelet coherence assessment 

evaluates the level of coherence in the time-frequency domain 

between signals x and y. The inputs x and y have to be equal-

length, 1-D real-valued signals. The empirical Morlet wavelet 

is used to determine the coherence. The block diagram and 

workflow of the recommended magnitude-squared wavelet 

coherence method are shown in Figures 6 and 7.  

 

Step : 1 A nonstationary ECG signal is converted into an 

ECG wavelet using the Morlet wavelet. 

Step : 2 A nonstationary EEG signal is converted into an EEG 

wavelet using the Morlet wavelet. 

Step : 3 Calculation of wavelet autocorrelation of the ECG 

wavelet. 

Step : 4 Calculation of wavelet autocorrelation of the EEG 

wavelet. 

Step : 5 Calculation of wavelet cross-correlation of ECG and 

EEG wavelets 

Step : 6 Calculation of magnitude-squared wavelet coherence 

of ECG and EEG wavelets using wavelet 

autocorrelation of the ECG wavelet, wavelet 

autocorrelation of the EEG wavelet, and wavelet 

cross-correlation of ECG and EEG wavelets 
 

Consider X (ECG signal) and Y (EEG signal), two-time 

series X(n) and Y(n) whose wavelet transforms are 𝑋𝑛
𝑥(𝑎, 𝑏) 

and 𝑌𝑛
∗𝑦
(𝑎, 𝑏),  

 

The wavelet cross-spectrum between𝑋𝑛
𝑥(𝑎, 𝑏) and 

𝑌𝑛
∗𝑦
(𝑎, 𝑏) is 𝑀𝑛

𝑥𝑦
(𝑎, 𝑏) 

𝑀𝑛
𝑥𝑦
(𝑎, 𝑏) = 𝑋𝑛

𝑥(𝑎, 𝑏) ∗ 𝑌𝑛
𝑦
(𝑎, 𝑏)         (1) 
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The wavelet auto-spectrum between𝑋𝑛
𝑥(𝑎, 𝑏) and 

𝑌𝑛
∗𝑦
(𝑎, 𝑏) is𝑀𝑛

𝑥𝑥(𝑎, 𝑏) 
𝑀𝑛

𝑥𝑥(𝑎, 𝑏) = 𝑋𝑛
𝑥(𝑎, 𝑏) ∗ 𝑋𝑛

∗𝑥(𝑎, 𝑏)         (2) 

 

The wavelet auto-spectrum between 𝑋𝑛
𝑥(𝑎, 𝑏)

 
and𝑌𝑛

∗𝑦
(𝑎, 𝑏) is𝑀𝑛

𝑦𝑦
(𝑎, 𝑏) 

𝑀𝑛
𝑦𝑦
(𝑎, 𝑏) = 𝑋𝑛

𝑦
(𝑎, 𝑏) ∗ 𝑌𝑛

∗𝑦
(𝑎, 𝑏)         (3) 

 

Calculation of Magnitude-Squared Wavelet  

Coherence between wavelet transforms of 𝑋𝑛
𝑥(𝑎, 𝑏) and 

𝑌𝑛
∗𝑦
(𝑎, 𝑏) is

 
𝑊𝑛

𝑥𝑦(𝑎, 𝑏) =
𝑀𝑛
𝑥𝑦
(𝑎,𝑏)

√𝑀𝑛
𝑥𝑥(𝑎,𝑏)∗𝑀𝑛

𝑦𝑦
(𝑎,𝑏)

         (4) 

 

𝑊𝑛
𝑥𝑦(𝑎, 𝑏) =

|𝑀𝑛
𝑥𝑦
(𝑎,𝑏)|

2

𝑀𝑛
𝑥𝑥(𝑎,𝑏)∗𝑀𝑛

𝑦𝑦
(𝑎,𝑏)

  (5)

 

 

 

3.3. The Block Diagram of Proposed Method for Determination of Magnitude-Squared Wavelet Coherence ECG and EEG 

Wavelets 

 
Fig. 6 The Block diagram of MSWC calculation between Electrocardiogram and Electroencephalogram of epilepsy patients 

Note: A/D-Analog to Digital Converter, WT-Wavelet Transforms 
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3.4. The Work Flow of Proposed Method for Determination of Magnitude-Squared Wavelet Coherence ECG and EEG 

Wavelets 

 

 
Fig. 7 The Work Flow of Proposed Method for Determination of Magnitude-Squared Wavelet Coherence ECG and EEG Wavelets 

 

Work flow 

 

1. The physiological signals database of epileptic seizure subjects' ECG and EEG 

are taken from the PhysioBank ATM available in the PhysioNet and Mendeley 

Data. 

2. A nonstationary analog ECG signal is converted into a digital ECG andadd with 

Power Line Noise and Baseline Wander Noise to Digital ECG signal. 

 

7. Calculation of wavelet autocorrelation of EEG wavelet. 

8. ECG and EEG wavelet cross correlation is calculated. 

9. Calculation of magnitude-squared wavelet coherence of ECG and EEG wavelets 

using wavelet autocorrelation of the ECG wavelet, wavelet autocorrelation of the 

EEG wavelet, and wavelet cross-correlation of ECG and EEG wavelets 

10. The mean magnitude-squared wavelet coherence of the ECG and EEG wavelets 

is calculated. MATLAB is used in the development of the MWSC source code. 

4. Calculation of wavelet autocorrelation of the ECG wavelet 

5. A nonstationary analog EEG signal is converted into a digital EEG andadd with 

white Gaussian Noise and 60Hz hum Noise to Digital ECG signal. 

3. A digital ECG signal is converted into an ECG wavelet using the Morlet wavelet. 

6. A digital EEG signal is converted into an EEG wavelet using the Morlet wavelet. 
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4. Results 
The data were taken from the physiobank and Mendeley 

data, 110 epileptic patient samples at a 512-sample/second 

sampling rate, aged 3 to 25, for investigation and correlation 

analysis. For the purpose of understanding MSWC four 

samples are presented here. 

 

4.1. MSWC Analysis 

For the MSWC analysis, four samples are chosen at 

random from a total of 110 samples. An overview of the 

investigation into the MSWC between the electrocardiogram 

and corresponding electroencephalogram of epilepsy patients, 

Figures 8, 9, 11, 12,14,15,17 and18 are depicted, respectively.  

 

Figures 10, 13, 16 and 19 are the variables for the 

evaluation of MSWC for samples 1, 2, 3 and 4, respectively.

  

4.1.1. MSWC Analysis for Sample-1  

 
Fig. 8 Input ECG signal for sample-1 is shown in (a) (each signal is sampled for 30 seconds at a sampling rate of 512 samples/second, with a total of 

15,360 samples taken). (b) The ECG signal increased in noise (baseline wander and 50 Hz power interference). (c) A noise-free ECG signal that has 

been filtered, and (d) a straightening ECG signal 

 
Fig. 9 (a) Input EEG signal for sample- 1 (each signal is sampled for 30 seconds with a sampling rate of 512 samples/second, for a total of 15,360 

samples per signal). (b) EEG signal with added noise (white Gaussian plus 60 Hz hum) (c) EEG signal filtered to remove white Gaussian noise (d) 

Removal of 60 Hz hum from the EEG signal. 
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Fig. 10 MSWC between ECG and EEG of sample-1 

 

From Figure 10 it is observed that the average MSC is 0.05, near 0.125 Hz. In addition, two MSC peaks were observed; the 

average value of MSC is 0.1 in the frequency range from 0.125 Hz to 0.25 Hz, and it was also observed that the highest average 

value of MSC is 0. Near 1.5-2 Hz, with a bandwidth of 0-128 cycles per second. 

 

4.1.2. MSWC Analysis for Sample-2 

 
Fig.11 The sample-2 input ECG signal is shown in (a) (each signal is sampled for 30 seconds at a sampling rate of 512 samples/second, with a total of 

15,360 samples taken). (b) The ECG signal increased in noise (baseline wander and 50 Hz power interference). (c) A noise-free ECG signal that has 

been filtered, and (d) a straightening ECG signal. 
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Fig. 12 (a) Input EEG signal for sample- 2 (each signal is sampled for 30 seconds with a sampling rate of 512 samples/second, for a total of 15,360 

samples per signal). (b) EEG signal with added noise (white Gaussian plus 60 Hz hum) (c) EEG signal filtered to remove white Gaussian noise (d) 

Removal of 60 Hz hum from the EEG signal. 

 
Fig. 13 MSWC between ECG and EEG of sample-2 

 

Figure 13 shows that the mean MSC value is 0.4, which is just around 2 Hz. There is yet one more MSC peak that has been identified; the greatest mean 

value of MSC is 0.55, or about 6 Hz in the bandwidth of 0-128 cycles/second. 
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4.1.3. MSWC Analysis for Sample-3 

 
Fig. 14 The sample-3 input ECG signal is shown in (a) (each signal is sampled for 30 seconds at a sampling rate of 512 samples/second, with a total of 

15,360 samples taken). (b) The ECG signal increased in noise (baseline wander and 50 Hz power interference). (c) A noise-free ECG signal that has 

been filtered, and (d) A straightening ECG signal 

 

 
Fig. 15 Input EEG signal for sample- 3 (each signal is sampled for 30 seconds with a sampling rate of 512 samples per second, for a total of 15,360 

samples per signal). (b) EEG signal with added noise (white Gaussian plus 60 Hz hum) (c) EEG signal filtered to remove white Gaussian noise (d) 

Removal of 60 Hz hum from the EEG signal. 
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Fig. 16 MSWC between ECG and EEG of sample-3 

 

Figure 16 demonstrates that the highest mean value of MSC is 0.4, which is about equal to the frequency of 2 Hz in the 

bandwidth of 0-128 cycles/second. The mean value of MSC is 0.15, which is near the frequency of 0.252 Hz, and another MSC 

peak is observed. 
 

 

4.1.4. MSWC Analysis for Sample-4 

 
Fig. 17 Input ECG signal for sample-4 is shown in (a) (each signal is sampled for 30 seconds at a sampling rate of 512 samples/second, with a total of 

15,360 samples taken). (b) The ECG signal increased in noise (baseline wander and 50 Hz power interference). (c) A noise-free ECG signal that has 

been filtered, and (d) a straightening ECG signal. 
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Fig. 18 Input EEG signal for sample- 4 (each signal is sampled for 30 seconds with a sampling rate of 512 samples/second, for a total of 15,360 samples 

per signal). (b) EEG signal with added noise (white Gaussian plus 60 Hz hum) (c) EEG signal filtered to remove white Gaussian noise (d) Removal of 

60 Hz hum from the EEG signal. 

 
Fig. 19 MSWC between ECG and EEG of sample-4 

 

Fig.19 Bandwidth of 0–128 cycles/second, the mean value of MSC is 0.1, near 0.2 Hz, and two further MSC peaks are found; the mean value of MSC 

is 0.3, close to 1.5 Hz, and the highest mean value of MSC is 0.4, close to 2 Hz.
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5. Discussion 
In this proposed method, the main objective of predicting 

brain-to-heart maximum coherence at an epileptic seizure is 

achieved, which is in line with the recent methods proposed in 

the literature. Abbasi et al. discussed improving prediction 

accuracy and categorizing various EEG signal states into 

normal, kinetic, and epileptic states in 2017 [51]. The signal is 

divided into five levels using this method. The fifth low-

frequency level was rejected, leaving them with the first four 

levels for further processing. The highest value, lowest value, 

median, and standard deviation are among the features derived 

for each sub-band. MLP neural network multilayer perceptron 

technology served as the classifier. The Bonn database test 

method had 98.33% accuracy, 100 percent sensitivity, and 

97.1% specificity. The performance was calculated using the 

confusion matrix. In this case, the mother wavelet is 

Daubechies-4 [49]. Jing Li et al. evaluated 

electroencephalography (EEG) signals’ frequency domain 

characteristics in 2018 with the goal of improving the ability 

to recognize epileptic seizures. Both CWT and FFT were used 

to analyze the test EEG signal to produce the power spectrum, 

spectrogram, and scalogram, respectively. Additionally, for 

the purpose of identifying epileptic seizures, two schemes, 

namely, procedures 1 and 2, were put into practice. The two 

methods’ suitability for use with Electrocardiogram (ECG) 

signals was also examined. Tests were conducted using the 

third technique for detecting anomalies in ECG signals [41]. 

In 2019, Li, Y. Cui., et al. [43] introduced a hybrid approach 

for investigating high-resolution time-frequency estimation to 

examine the dynamic behavior of nonstationary EEG signals. 

Multiscale radial fundamental functions and the Fisher vector 

approach form the foundation of this methodology. Dajani, N. 

et al. evaluated the k-nearest neighbor algorithm and used the 

seizures with an epileptic density as an element as input to 

assess the effectiveness of the KNN. In the present work, pre-

ictal and ictal EEG signals could be distinguished with 99% 

accuracy using an EEG dataset from neurology and sleep [41]. 

Hadiyoso et al. recommended wavelet entropy and relative 

wavelet energy as two features for the precise identification of 

an epileptic episode in 2021. The five frequency bands are 

used to separate the EEG signals into two characteristics. 

Inter-ictal vs. ictal EEG signals showed the highest 

classification accuracy, scoring 96%, according to the findings 

of the simulation employing an SVM classifier [46]. The 

larger value of the mean MSC indicates the maximum level of 

coherence between the electroencephalography and 

electrocardiography data in accordance with the intended 

research. The lower mean MSC value also suggests a lack of 

coherence between the electroencephalography and 

electrocardiography data. MSC values of 0.05, 0.1, and 0.4 

between the ECG and EEG signals are found in epileptic 

seizure sample 1. In the bandwidth of 0 to 512 

samples/second, the MSC values are also 0.4 and 0.55 in 

sample 2 of an epileptic seizure and 0.15 and 0.4 in sample 3 

of an epileptic seizure, respectively. The MSC value between 

the ECG and EEG is smaller than 0.55 on averages in the first, 

second, third, and fourth samples. In patients with epileptic 

seizures, the mean of the MSC is determined as the minimum 

between the ECG signal and the EEG signal. 

6. Conclusion 
In this paper, the maximum coherence values of epileptic 

seizures were estimated using the MSWC between the ECG 

and EEG signals. Children’s Hospital Boston’s 

electrocardiogram and electroencephalogram signals are 

obtained using PhysioNet and Mendeley data from “N&C-

TEC: ECG and EEG files “.110 samples from the epileptic 

seizure are considered in the analysis. The mean MSC value 

between the electrocardiogram and electroencephalogram was 

determined for the first sample, the second sample, the third 

sample, and the fourth sample, which were selected from the 

38 unhealthy samples for validation. For the four samples, the 

MSC mean of the electrocardiogram and 

electroencephalography signals were found to be very low 

(less than 0.55). It shows that the coherence value between the 

cardiovascular system and the central neurological system—

i.e., the coherence between the heart and the brain is decreased 

in epileptic seizure patients. The assessment of anomalies in 

the brain and heart is more useful for the proposed method of 

magnitude squared coherence estimation. The future scope of 

our experimental research is more useful for early 

identification and diagnosis of heart and brain problems. 
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