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Abstract - The technique of recognizing and classifying emotions expressed in language spoken using audio features is Speech 

Emotion Recognition (SER). Human-computer interaction must enable machines to accurately perceive and respond to human 

emotions. Numerous challenges, like capturing both spatial and temporal features in speech signals, impact the accuracy of 

emotion recognition models. Conventional emotion recognition systems heavily depend on manual feature extraction and 

classification, which require significant effort and often lead to errors in detection. Advances in image processing and Artificial 

Intelligence (AI) have introduced hybrid Deep Learning (DL) approaches to improve SER tasks. This study developed an 

efficient Speech Emotion Recognition (SER) system utilizing a hybrid DL model combined with an ensemble approach to 

accurately classify emotions expressed through speech. The models were evaluated on the CREMA dataset which contains 7,442 

audio samples across six different emotions. After preprocessing and data augmentation, Mel Frequency Cepstral Coefficients 

(MFCC) were captured as features from speech data. The proposed models include CNN-LSTM and CNN-GRU to extract both 

spatial and temporal features. Outputs from these frameworks were combined using an ensemble learning approach with a 

Support Vector Machine (SVM) classifier as the meta-learner. Experimental results specify that the suggested model attained 

improved performance with an accuracy of 98.69%, precision of 98.70%, recall of 98.72% and an F1 score of 98.70%. The 

results highlight the effectiveness of combining advanced neural networks for achieving high performance in emotion detection 

from speech signals, providing valuable information for developing real-time emotion recognition systems and enhancing 

human-computer interaction.  

Keywords - Speech emotion recognition, Support vector machine, MFCC, Convolutional neural network, CREMA dataset, 

Ensemble learning.

1. Introduction 
The most essential forms of human communication are 

speech signals. Many studies are continuously working in the 

field of human-machine interaction. Machines are able to 

understand human language and identify it in a meaningful 

way. Even though there have been significant advancements 

in speech recognition, it requires a lot of effort to make a 

natural interaction between humans and machines. One of the 

important factors is that it is difficult for machines to 

recognize the emotional states hidden in words spoken. Here, 

SER refers to identifying a speaker’s emotional states through 

speech analysis [1].  

SER can be utilized to enhance speech recognition system 

performance and extract relevant meanings from speech. SER 

focuses on identifying the emotions present in the voice 

signals in any case of their technical information. It can be 

used in many applications, such as in-car systems to monitor 

drivers’ mental condition and initiate safety procedures, as a 

diagnostic tool for therapists, in cockpits of airlines, etc. The 

prime goal of a SER system is to identify different traits in 

speakers under various emotional circumstances. Typically, 

SER extracts information from voice signals, followed by a 

classification process to predict the emotions.  

The researchers face several challenges, such as selecting 

proper speech features, assuring robustness to tone and style 

of speaking, and accounting for emotional expression across 

diverse cultures and situations. Extracting strong, effective, 

and discriminative features constitutes a primary research 

challenge. The advancement of effective SER models 

improves user experience in systems related to human-

machine interactions, particularly in the domains of Artificial 

Intelligence (AI) and mobile health [2].  

The capability to predict emotions from audio samples 

and mimic these emotions has a significant effect in the field 

of AI. DL models are currently used to address these 

http://www.internationaljournalssrg.org/
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recognition problems. Various approaches utilizing Deep 

Neural Networks (DNN) have been developed for SER, with 

some of the models focusing on determining important 

features directly from raw audio samples to enhance accuracy 

and efficiency [3].  

The proposed approach employed a hybrid DL model 

using an ensemble method to recognize speech emotions. The 

model combines the strength of CNN-LSTM and CNN-GRU 

architectures to effectively collect both spatial and temporal 

features for speech signals, improving the accuracy and 

integrity of emotion recognition. By employing the 

advantages of these frameworks, the ensemble approach 

ensures improved generalization and robustness.  

The primary contributions of the proposed research are as 

follows: 

• To create a hybrid DL framework that combines the 

CNN-LSTM and CNN-GRU models to efficiently extract 

temporal and spatial features from the speech data. 

• To propose an ensemble learning approach that combines 

the outputs of CNN-LSTM and CNN-GRU models, 

improving the accuracy and robustness of emotion 

classification from speech data. 

• To examine the performance of the suggested hybrid 

ensemble framework employing performance metrics.  

• To compare the suggested ensemble hybrid model with 

previous models, indicating the benefits of the proposed 

method for better emotion recognition accuracy.   

The remaining portions of the paper are organized as 

outlined below: Section 2 presents a literature review 

highlighting existing works and identifying research gaps. 

Section 3 elaborates on the proposed model. Section 4 presents 

the findings of the study, while Section 5 provides the 

conclusion of the paper. 

2. Related Works 
Using a lightweight 1-D deep CNN, Bhangale and 

Kothandaraman (2023) [4] suggested an acoustic feature set 

for improving feature distinctiveness in speech emotion 

signals. The system's efficiency was examined using EMODB 

and RAVDEES datasets, achieving 94.18% accuracy on the 

RAVDEES dataset, outperforming conventional SER 

methods.  

In order to capture global contextualized long-term 

dependencies in speech data, Kakuba et al. (2022) [5] 

developed an Attention-Based Multi learning Model (ABMD) 

that used Residual Dilated Casual Convolution (RDCC) 

blocks and dilated convolutional layers with multi-head 

attention. The framework performed well with fewer 

parameters than deeper models, confirmed its efficiency in 

SER and attained 95.3% accuracy on the EMODB dataset.  

Aftab et al. (2022) [6] suggested a lightweight, Fully 

Convolutional Network (FCNN) for SER, which is designed 

for systems with limited hardware resources. The model used 

three parallel paths with different filter sizes to extract 

features, allowing deep convolutional blocks to capture high-

level features. The model's integrity was verified by 

classifying emotions over the IEMOCAP and EMO-DB 

datasets, outperforming the modern SER systems.  

Aggarwal et al. (2022) [7] studied two feature extraction 

methods to improve SER. They used Principal Component 

Analysis (PCA) and implemented a DNN with dense and 

dropout layers as an initial approach. On the second approach, 

images of a Mel spectrogram were utilized as an input to the 

pretrained VGG-16 framework, thereby achieving better 

accuracy on the RAVDEES dataset than using numeric 

features on DNN.  

Li et al. (2022) [8] suggested a dense-DCNN framework 

to address the challenges that occurred due to limited speech 

datasets and lengthy training times in conventional and 

modern SER. The model was combined with StarGAN to 

extract features for better classification and generate 

numerous log-mel spectra with emotional labels. Various 

datasets (Emo-DB, SAVEE, RAVDESS, and CASIA) are 

used in this study, thereby attaining a classification accuracy 

of 97.36% on the RAVDESS dataset, showing strong 

generalization and robustness in multi-noise and multi-scene 

environments.  

Mustaqeem and Kwon (2021) [9] created an end-to-end 

real-time SER framework based on a 1D Dilated 

Convolutional Neural Network (DCNN). A multi-learning 

strategy was employed by them to extract long-term 

contextual dependencies and spatial emotional features 

utilizing a fusion layer to combine these features for the 

recognition of emotion. The framework demonstrated its 

effectiveness in processing real speech signals by achieving 

90% accuracy on EMO-DB datasets and 73% accuracy on 

IEMOCAP datasets.  

For discrete SER, Zhao et al. (2021) [10] suggested an 

effective Deep Neural Network (DNN) design combining 

Connectionist Temporal Classification (CTC) loss. The model 

utilized a Self-Attention Residual Dilated Network (SADRN) 

for classification and integrated Parallel Convolutional layers 

(PCN) with a Squeeze and Excitation network (SEnet) to 

acquire relationships from 3D spectrograms acquiring 73.1% 

accuracy on the IEMOCAP dataset, presenting its 

effectiveness for discrete SER tasks.  

In their study of DCNN for feature extraction, Amjad et 

al. (2021) [11] studied the drawbacks of handcrafted 

characteristics for identifying emotion from audio signals and 

examined its benefits. To determine the most discriminative 

features, they employed various classifiers for categorising 
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seven emotions, resulting in an accuracy of 93.6% over the 

RAVDEES dataset, surpassing conventional handcrafted 

feature-based frameworks.  

An attention-based 3D CNN LSTM model developed by 

Atila and Sengur (2021) [12] was employed to recognise 

speech emotions. It uses speech images from MFCC 

spectrograms, fractal dimensions and cochleagrams. The input 

speech signals were preprocessed, resampled and transformed 

into speech images, then given to the proposed 3D CNN-

LSTM model. The model was performed across RAVDESS, 

SAVEE and RML datasets, which acquired an accuracy of 

96.18% over RAVDESS datasets, demonstrating its efficiency 

across these datasets.  

Tuncer et al. (2021) [13] created a non-linear multilevel 

feature generation model that is utilized to recognize speech 

emotions from a cryptographic structure. The framework 

employed the Tunable Q Wavelet Transform (TQWT) to 

generate features, a twine shuffle pattern for feature extraction 

and an iterative neighborhood component for feature 

selection. By employing a 10-fold cross-validation method, 

the framework obtained 90.09% accuracy on the EMO DB 

dataset.  

Wang et al. (2020) [14] created a dual-level framework 

for emotion recognition using features of MFCC in addition to 

Mel spectrograms from raw audio signals. The model 

consisted of a conventional LSTM for MFCC processing with 

a new Dual Sequence LSTM (DSLSTM) for instantaneous 

mel-spectrogram processing, which resulted in a weighted 

accuracy of 72% on the IEMOCAP dataset, highlighting the 

potential of frameworks that depend only on audio signals.  

Nediyanchath et al. (2020) [15] suggested a Multi-Head 

Attention DL network employing Log Mel-Filter Bank 

Energies (LFBE) as the input features for SER. For capturing 

gender-specific emotional features, the model combined 

gender identification as an auxiliary task in addition to multi-

task learning and position embedding, resulting in an overall 

accuracy of 76.4%, enhancing the SER efficiency and 

improving human-like conversational approaches with 

improved emotion recognition skills.    

In order to simplify the categorical recognition of four 

unique emotions, Yao et al. (2020) [16] developed a model 

that combined three different classifiers: DNN, Recurrent 

Neural Networks (RNN), and CNN. They used Mel 

spectrograms, low-level descriptors and high-level statistical 

functions to train the single models and employed an attention 

mechanism-based weighted-pooling technique that integrates 

the outputs of RNN and CNN, thereby acquiring 58.3% 

accuracy on the IEMOCAP dataset, presenting the 

effectiveness of combining different classifiers for emotion 

recognition.  

Sajjad et al. (2020) [17] presented a new framework on 

SER that utilized an essential sequence segment selection 

method. The selected sequence was transformed into a 

spectrogram, and salient features were gathered utilizing a 

CNN model, which was then regularized and given to a deep 

bi-LSTM for temporal analysis. The system showed better 

efficiency in emotion recognition with 85.57% accuracy on 

the EMO DB dataset.  

In order to capture features from modern emotional 

speech datasets, Farooq et al. (2020) [18] used a DCNN 

network for SER by using a pre-trained network. A 

correlation-based selection framework was utilized to identify 

the most distinctive features and employed distinct classifiers 

such as SVM, RF, k-NN and neural networks that obtained 

95.10% accuracy on the EMO-DB datasets, demonstrating its 

performance for speaker-independent SER.  

Although several DL models have shown tremendous 

progress in SER, several gaps exist in the previous studies. 

The majority of the studies focused on increasing the accuracy 

of models using a single database. It often lacked 

generalization across multiple datasets or real-world scenarios 

involving noise and diverse environments.  

Many models achieved better accuracy on specific 

datasets but neglected to consider computational efficiency 

especially on systems with limited hardware resources. Also, 

there exist difficulties in effectively capturing long-term 

dependencies in speech signals and handling complex 

emotional states. There was also limited focus on the hybrid 

or ensemble approaches that combine the DL architectures to 

improve SER performance. Therefore, more research is 

required to develop robust, efficient and generalized models 

to fill these gaps in SER.          

3. Materials and Methods  
The diagrammatic illustration presented in Figure 1 

demonstrates a structured procedure for recognising speech 

emotions utilizing an ensemble learning approach based on a 

hybrid DL model. Initially, a speech emotion dataset, 

“CREMA,” was preprocessed, and exploratory data analysis 

was performed to understand the features within the dataset. 

Data augmentation techniques enhance the dataset size and 

model generalization. After that, the feature extraction method 

MFCC was carried out to determine relevant features essential 

for emotion recognition. The split data were given to the two 

hybrid DL models, CNN-LSTM and CNN-GRU. These 

models were trained parallelly, and the outputs from these 

models were combined through a stacking mechanism, which 

improves the prediction accuracy. Finally, this stacked output 

was passed through an SVM classifier, and the model 

efficiency was examined based on the outputs from the 

classifier.       



I. Manolekshmi & M.A. Mukunthan / IJECE, 12(1), 216-235, 2025 

 

219 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Block diagram of SER  

3.1. Dataset  

The “CREMA” dataset, sourced from the Kaggle 

repository, was utilized for speech emotion recognition [19]. 

It consists of 7,442 audio samples collected from 91 actors, 

including 48 men and 43 women. The actors are between the 

ages of 20 and 74, which signifies a wide range of cultural 

backgrounds, consisting of American, Asian, Hispanic, 

African, Caucasian, and Unspecified.  

Each actor portrays a set of 12 predefined sentences, 

delivering them with one among the six distinct emotions like: 

anger, disgust, happy, fear, sad and neutral. Also, these 

sentences reflect four different levels of emotional intensity, 

specified as low, medium, high and unspecified. Figure 2 

represents the emotional Categories with File Paths Data 

Frame, and Figure 3 displays the histogram of speech emotion 

signals showing the count plot of six emotions. 

  Emotion Path 

0 Angry 
CREMA-

D/AudioWAV//1001_DFA_ANG_XX.wav 

1 disgust 
CREMA-

D/AudioWAV//1001_DFA_DIS_XX.wav 

2 fear 
CREMA-

D/AudioWAV//1001_DFA_FEA_XX.wav 

3 happy 
CREMA-

D/AudioWAV//1001_DFA_HAP_XX.wav 

4 neutral 
CREMA-

D/AudioWAV//1001_DFA_NEU_XX.wav 
Fig. 2 Emotional categories with file paths data frame

 
  Fig. 3 Histogram of speech emotion labels 
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3.2. Data Preprocessing and Exploratory Data Analysis 

In this study, preprocessing plays an essential role in SER 

to improve the quality of audio data. At first, an array of 

samples was obtained from the audio signal representing the 

raw sound signal. Then, the silence was trimmed from the 

beginning and end of the audio to ensure that only meaningful 

areas of the speech were retained. Lastly, padding is applied 

to ensure that every audio sample is of the same length, which 

is essential for consistency in model input and enabling batch 

processing during training. All these steps make the audio 

more standard for effective analysis.  

Wave plots present the amplitude and loudness of the 

audio signal, which helps understand the intensity and 

variations of sound. In SER, these plots provide information 

about the emotional intensity of speech. Emotions like anger 

or happiness result in higher amplitudes, while emotions like 

sadness or disgust result in lower amplitude waveforms. By 

visualizing the changes in loudness, wave plots provide a 

quick overview of how emotional expressions appear on the 

voice signals. The wave plots of six emotions are illustrated in 

Figure 4. 

 
(a) Fear 

 

(b) Angry 

 
(c) Disgust 
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(d) Happy 

 
(e) Neutral 

 
(f) Sad 

Fig. 4 Wave plot for emotions 

 
(a) Fear 
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(f) Sad 

Fig. 5 Spectrogram of emotions 

Spectrograms showed the detailed audio representation 

by displaying how the frequency spectrum changed over time. 

In the spectrogram, the x and y axes indicate the time and 

frequency, respectively, and the intensity of the color 

represents the energy at each frequency. It is mainly used to 

extract the tonal and pitch variations of the emotions. In cases 

of sadness or fear, the spectrogram shows lower frequencies, 

while for anger or happiness, the spectrogram shows higher 

frequencies. The spectrograms for six emotions are displayed 

in Figure 5. 

3.3. Data Augmentation 

The process of creating new synthetic instances by 

making minor modifications to the existing training dataset is 

known as data augmentation. The proposed research uses 

various methods, such as adding noise, time shifting, altering 

speed, and modifying pitch, to generate synthetic audio data. 

Adding noise, for example, involves incorporating 

background sounds into the audio signal.  

This approach simulates real-world noise conditions, 

allowing the model to develop greater resilience to 

background disturbances. As illustrated in Figure 6, the 

normal audio signal presents a clear representation of sound, 

while Figure 7 depicts the same audio signal with added noise, 

showcasing the impact of this augmentation technique. This 

process not only enriches the dataset but also enhances the 

ability of the model to generalize by exposing it to a wider 

range of audio scenarios. 

Time stretching was employed to adjust the duration of 

the audio signal while preserving its pitch, as illustrated in 

Figure 8. This technique allows for modifications in the 

speaking rate enabling the model to effectively accommodate 

various speech tempos. Such adaptability is particularly 

beneficial for applications like speech recognition, where the 

ability to understand different speaking speeds can enhance 

performance and accuracy. 

Pitch shifting allows for altering an audio signal pitch 

without affecting its duration. This technique can produce 

variations in the speaker's pitch and intonation, enhancing the 

model’s ability to generalize across different voice tones. 

Figure 9 illustrates the audio signal after pitch shifting, while 

Figure 10 showcases the original audio signal alongside its 

modified pitch. By leveraging this method, a more versatile 

model that effectively recognizes and processes diverse vocal 

characteristics can be created.

 
Fig. 6 Normal audio signal 
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Fig. 7 Normal audio with noise 

 
Fig. 8 Stretched audio 

 
Fig. 9 Shifted audio

 
Fig. 10 Audio with pitch 
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3.4. Feature Extraction 

MFCC is the commonly used feature extraction method 

in SER, as it efficiently extracts the features of speech signals. 

They are a representation of a sound signal’s short-term power 

spectrum. The human vocal tract produces a spectrum that 

maps the known variation of the critical bandwidth of the ear 

using two filters: a logarithmic filter at a frequency above 1 

kHz and a linear filter at a frequency below 1 kHz, which 

allows them to capture the features of speech [20]. The steps 

for MFCC feature extraction are depicted in Figure 11. 

 

   

 

 

 

 

Fig. 11 MFCC feature extraction 

Pre-emphasis was used on the speech signals to 

compensate for the high-frequency components that were 

blocked during human sound production. It is achieved by 

applying a high-pass filter to the audio signal, amplifying the 

higher frequencies shown in Equation (1).   

𝑝(𝑥) = 𝑟(𝑥) −  𝛼 ∗ 𝑟(𝑥 − 1)                        (1) 

Where, 𝑝(𝑥) represents the output signal, 𝑟(𝑥) and 𝑟(𝑥 −
1) denotes the present and past signals. The value of 𝛼 is 

between 0.9 and 1. The audio signal is split into 𝑁 samples of 

small frames, with 𝑀 samples separating 𝑁 − 𝑀 samples 

overlapping the adjacent frames. This procedure continued 

until the entire signal was divided into small frames.  

Through windowing, the spectral distortion was 

decreased by reducing the signal to zero at the beginning and 

end of every frame. Once the input signal 𝑟(𝑥), is multiplied 

with a window 𝑤(𝑥), at time 𝑥, the extracted signal is obtained 

and shown by Equation (2). 

𝑞(𝑥) = 𝑟(𝑥) ∗ 𝑤(𝑥), 0 ≤ 𝑥 ≤ 𝑁 − 1                   (2) 

Where N is the sample count in every frame, a Hamming 

window was employed in this case as it lowers the frequency 

resolution of spectral analysis while reducing the sidelobe 

levels in the window transfer function. Equation (3) represents 

the Hamming window function. 

𝑤(𝑥) = 0.54 − 0.46 cos [
2𝜋𝑥

𝑁−1
] , 0 ≤ 𝑥 ≤ 𝑁 − 1     (3) 

Fast Fourier Transform (FFT) is a broadly utilized 

algorithm that proficiently calculates Discrete Fourier 

Transform (DFT). It is employed to transform N samples from 

the time domain to the frequency domain. The output obtained 

from FFT is referred to as a periodogram or spectrum. DFT is 

defined as a set of N samples {𝑞𝑥}, which is shown in Equation 

(4). 

𝑄𝑘 = ∑ 𝑞𝑥
𝑁−1
𝑥=0 𝑒−𝑗2𝜋𝑘𝑛/𝑁 , 𝑘 = 0,1,2, … … … . . , 𝑁 − 1 (4) 

Where, 𝑄𝑘, represents the signal frequency components. 

Mel frequency is the study of sound frequencies experienced 

by humans. Human hearing shows variation in sensitivity 

across different frequency bands. The sensitivity decays at 

frequencies beyond 1000 Hz, and the spacing of the Mel 

frequency scale is linear, below 1 kHz, while above this 

threshold, the scale becomes logarithmic. The speech signal is 

given in Equation (5). 

𝑀𝑒𝑙(𝑓) = 2595 ∗ log10(1 +
𝑓

700
)                    (5) 

The last step in the MFCC process is the calculation of 

the cepstrum, where the log Mel spectrum is transformed back 

to the time domain. This transformation is performed by DCT 

and captures the essential energy components of the signal. 

The output obtained from DCT is known as MFCC and is 

represented by Equation (6).  

𝐶𝑥 = ∑ log |∑ 𝑟(𝑥)exp (
−𝑗2𝜋𝑘𝑥

𝑁
)𝑁−1

𝑥=0 | exp (
𝑗2𝜋𝑘𝑥

𝑁
)𝑁−1

𝑥=0     (6) 

Where, 𝑥 = 0,1,2, … … … … 𝑁 − 1,  𝐶𝑥 represents the 

MFCC, and 𝑛 represents the coefficients. These factors extract 

essential information about speech signal frequency, making 

them effective for recognizing emotions based on vocal 

patterns and tone. 
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3.5. Model Development 

3.5.1. Convolutional Neural Network 

A CNN network is a DL model especially created to 

process and analyze images. It has several advantages: its 

resemblance to a human visual processing system, its highly 

structured design for processing both 2D and 3D images and 

its efficiency in learning and extracting features [21]. It is 

composed of multiple layers, as illustrated in Figure 12. 

Convolutional layers apply kernels or filters all over the image 

to obtain features from the input images.  

These layers capture textures, edges, and shapes. A 

pooling layer is employed to down sample the feature maps 

produced by the convolutional layer, hence reducing the 

spatial dimensions of the data. Ultimately, the fully connected 

layer analyses the extracted features and performs tasks such 

as regression or classification. CNN proved effective in 

identifying objects from images due to their capability to share 

parameters and connect the pixels nearby, allowing them to 

learn patterns at distinct levels such as textures and shapes. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 12 Architecture of CNN 

During the convolution operation, a filter moves across 

the input image, performing element-wise multiplication with 

the corresponding pixel values and then summing the results 

to produce a feature map. This process effectively extracts 

important features from the image. The mathematical 

representation of this convolution operation is illustrated in 

Equation (7). 

(𝐼 ∗ 𝐾)(𝑥, 𝑦) = ∑ ∑ 𝐼(𝑚, 𝑛)𝐾(𝑥 + 𝑚, 𝑦 + 𝑛)𝑁−1
𝑛=0

𝑀−1
𝑚=0  (7) 

Where 𝐾 denotes the convolution kernel, 𝐼 is the input 

image, and 𝑥 and 𝑦 are the coordinates in the output feature 

map. After applying convolution, the resulting feature map 

undergoes a non-linear transformation through an activation 

function, commonly Rectified Linear Unit (ReLU), defined in 

Equation (8). 

𝑓(𝑥) = max (0, 𝑥)                        (8) 

To effectively reduce dimensionality while preserving 

essential features in a neural network, pooling layers are 

utilized. Among the various pooling techniques, max pooling 

is the most commonly employed method.  

This approach entails choosing the greatest value from a 

specified region of the feature map, hence highlighting the 

most significant features while discarding less critical 

information. The mathematical representation of max pooling 

is articulated in Equation (9) as follows: 

     𝑃(𝑥, 𝑦) =  max
(𝑚,𝑛)𝜖𝑅

𝐹(𝑚, 𝑛)          (9) 

Where 𝑅 is the region over which max pooling is applied. 

The resulting feature maps are then flattened into a one-

dimensional vector and passed through fully connected 

(dense) layers. This is where classification or regression tasks 

are performed. The computations for the dense layer are 

expressed in Equation (10). 

𝑧 = 𝑊 ∙ 𝑥 + 𝑏                                       (10) 

Where 𝑊 denotes the weight matrix, 𝑥 is the input vector 

from the previous layer, 𝑏 is the bias term, and 𝑧 is the fully 

connected layer output. Finally, the output layer produces a 

probability distribution from a softmax function, as shown in 

Equation (11). 

𝜎(𝑧)𝑥 =
𝑒𝑧𝑥

∑ 𝑒𝑧𝑦𝐾
𝑦=1

                                     (11) 

Where, 𝜎(𝑧)𝑥 is the probability of class 𝑥, and 

𝐾 represents all classes. 

Output 
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3.5.2. Long Short-Term Memory Networks (LSTM) 

LSTM is one of the many variations of Recurrent Neural 

Networks (RNNs) and is widely recognized for its 

effectiveness in feature extraction. Figure 13 showcases the 

architecture of an LSTM cell. The forget gate plays a crucial 

role in determining whether to retain or discard data from both 

the current input and previous states. This decision is 

influenced by a sigmoid function, yielding an output value 

between 0 and 1. A score of 0 signifies the elimination of prior 

information, whereas a value of 1 denotes preserving that 

information. The input gate evaluates the significance of the 

current input required for the task, whereas the output gate 

determines the output according to the hidden state. Another 

sigmoid function is applied to determine what information 

should be transmitted through the output gate. At last, the tanh 

function is employed to activate the cell state, which is then 

multiplied to regulate the flow of information within the cell 

[22]. 

 
Fig. 13 Architecture of LSTM 

The basic equation for calculating the hidden state at time 

step 𝑡 is shown in Equation (12). 

ℎ𝑡 = 𝑓(𝑈𝑥𝑡 + 𝑉ℎ𝑡−1)                                     (12) 

Where 𝑈 and 𝑉 are the weight vectors of the hidden 

state, 𝑥𝑡  is the current input state, and the previous hidden state 

is given by ℎ𝑡−1 from the time steps 𝑡 and 𝑡 − 1.  

The forget gate functions like a filter for previous 

memories, monitoring how much information is retained or 

discarded. When the forget gate is closed, it makes sure that 

no prior memories are saved, effectively blocking any 

influence from past experiences. On the other hand, if the gate 

is fully open, all previous memories can move through, 

making them contribute to current decisions and actions. This 

mechanism is necessary for sustaining an optimal balance 

among acquiring relevant information and obstructing the 

overload of unnecessary memories, thereby enhancing the 

system’s overall efficiency. Equation (13) represents this 

functionality, mathematically illustrating how the forget gate 

controls memory retention based on its state. 

𝑓𝑡 = 𝜎(𝑈𝑓 ∗ 𝑥𝑡 + 𝑉𝑓 ∗ ℎ𝑡−1)                           (13) 

Where 𝑈𝑓 and 𝑉𝑓 are the weight vectors for the forget 

gate. 

If the previous memory is multiplied by a vector that is 

close to zero, it results in the erasure of most of the previous 

memory. On the other hand, if the forget gate is set to 1, it 

allows all previous memory to pass through without any 

modification. This conduct can be mathematically shown in 

Equations (14) and (15). 

𝐶𝑡−1 ∗ 𝑓𝑡 = 0, 𝑖𝑓 𝑓𝑡 = 0                                  (14) 

𝐶𝑡−1 ∗ 𝑓𝑡 = 𝐶𝑡−1, 𝑖𝑓 𝑓𝑡 = 1                             (15) 

Where, 𝐶𝑡−1 represents the cell’s previous memory. 

The input gate plays a crucial role in defining how much 

new information should be combined into the current memory. 

By altering the parameters of this gate where, we can influence 

how current and past memories are affected. The input gate, 

as stated in Equation (16), is specifically designed to assess 

the implication of incoming data, making sure that only the 

most pertinent evidence is retained and incorporated. 

 𝑖𝑡 = 𝜎(𝑈𝑖 ∗ 𝑥𝑡 + 𝑉𝑖 ∗ ℎ𝑡−1)                            (16) 
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Where, 𝑈𝑖 and 𝑉𝑖 are the weight vectors for current input 

and previous hidden states. The cell state in LSTM represents 

the network memory that flows through the whole sequence 

of data. 𝐶𝑡 is the cell state at the time step 𝑡. Equation (17) 

represents the cell state. 

𝐶𝑡̂ = tanh (𝑈𝑐 ∗ 𝑥𝑡 + 𝑉𝑐 ∗ ℎ𝑡−1)                      (17) 

Therefore, the updated internal memory state at the time 

step 𝑡 is given in Equation (18). 

𝐶𝑡 =  𝐶𝑡−1 ∗ 𝑓𝑡 + 𝐶𝑡̂ ∗ 𝐼𝑡                                (18) 

The output gate regulates the current input, the previous 

output and the new memory. It determines how much 

additional memory should be incorporated into the following 

LSTM unit. The Equation (19) describes the function of the 

output gate. This mechanism ensures that the LSTM network 

retains relevant information while discarding what is no longer 

needed, thus maintaining an effective flow of information 

through the network.  

𝑜𝑡 = 𝜎(𝑈𝑜 ∗ 𝑥𝑡 + 𝑉𝑜 ∗ ℎ𝑡−1)                          (19) 

Where, 𝑈𝑜 and  𝑉𝑜  are the weight vectors for current input 

and previous hidden states. As a result, the sigmoid function 

value lies in the range between 0 and 1 so that the cell states 

are modified,  𝑜𝑡  and the tanh function is employed to identify 

the current hidden state, presented in Equation (20). 

ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝐶𝑡)                                  (20) 

3.5.3. Proposed CNN-LSTM Model 

The proposed CNN-LSTM model is designed to 

effectively process sequential data by integrating 

convolutional layers for feature extraction and LSTM layers 

for temporal pattern recognition. The architecture begins with 

a 1D convolutional layer comprising 200 filters, followed by 

ReLU activation to capture essential features from the input 

data. A max-pooling layer then reduces the spatial dimensions 

while preserving important information. Successive 

convolutional layers consisting of 100 and 50 filters, 

respectively, are each convoyed by max-pooling layers to 

further down-sample the data. The features captured from 

these layers are then given into an LSTM layer with 64 units, 

making the model acquire temporal data from the sequences. 

To reduce the hazard of overfitting, a dropout layer is unified 

after the first LSTM layer. 

A second LSTM layer, also with 64 units methods the 

sequential data further. The model then includes two dense 

layers, each with 50 units and ReLU activation, enabling it to 

learn more complex patterns. The output from these layers is 

flattened and passed to a 100-unit dense layer that employs L2 

regularization to reduce overfitting. At last, a softmax function 

transforms the model output into a probability distribution 

across six classes of speech emotions, making the model well-

suited for classification tasks. The architecture of the proposed 

CNN-LSTM model is illustrated in Figure 14. 

 
Fig. 14 Proposed CNN-LSTM model architecture 
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3.5.4. Gated Recurrent Network (GRU) 

GRU is an advanced form of normal RNN that resolves 

short-term memory problems by utilizing a combined gating 

mechanism similar to an LSTM. The information flow inside 

the GRU is managed and even circulated by the internal gate 

mechanisms. These gates help the GRU cell to decide if the 

data should be retained or deleted, allowing relevant 

information to be passed to make accurate predictions [23]. 

Figure 15 shows the basic architecture of GRU. 

 
Fig. 15 Architecture of GRU 

An update gate, 𝑧𝑡 is created by connecting the forget and 

input gates. The amount of memory that can retain both new 

and previous data is maintained by the update gate. 𝑥𝑡 is the 

current input vector, and ℎ𝑡−1 is the value obtained from the 

previous neighboring layer. Therefore, the learnable weight 

matrix for the update gate 𝑤𝑧 is shown in Equation (21). 

𝑧𝑡 = 𝜎(𝑤𝑧 ∙ [ℎ𝑡−1, 𝑥𝑡]                                    (21) 

GRU uses the reset gate 𝑟𝑡 represented in Equation (22) 

to integrate the current input 𝑥𝑡, with the previous memory 

ℎ𝑡−1. The reset gate is responsible for identifying the 

integration of the Equation with the previous state and new 

output. 

𝑟𝑡 = 𝜎(𝑤𝑟 ∙ [ℎ𝑡−1, 𝑥𝑡]                                   (22) 

Where the learnable weight matrix for the reset gate is 

denoted by 𝑤𝑟. The output range of a hyperbolic tangent 

function 𝑡𝑎𝑛ℎ varies from -1 to 1. Besides, ℎ𝑡 is the computed 

value for the current cell is shown in Equations (23) and (24). 

ℎ𝑡 = tanh (𝑟𝑡 ∗ [ℎ𝑡−1, 𝑥𝑡])                            (23) 

ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ𝑡                      (24) 

3.5.5. Proposed CNN-GRU Model 

The CNN-GRU model is designed to effectively manage 

sequential data by integrating convolutional layers for feature 

extraction and GRU layers for recognizing temporal patterns. 

It starts with a 1D convolutional layer consisting of 200 filters 

to capture low-level input features, followed by a ReLU 

activation function to introduce non-linearity. A max-pooling 

layer is employed to lessen the spatial dimensions of the 

feature maps. This extraction process is repeated in the second 

and third convolutional layers, which utilize 100 and 50 filters, 

respectively, and are followed by max pooling to further 

down-sample the data. 

 

Fig. 16 Proposed CNN-GRU model architecture 
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After completing the feature extraction phase, a GRU 

layer with 64 units is introduced to capture the temporal 

information present in the sequence. To combat over fitting, a 

dropout layer with a rate of 0.5 is included. This is succeeded 

by another GRU layer, again with 64 units, which refines the 

extraction of sequential patterns.  

The extracted features are then processed through two 

dense layers containing 50 units and employing ReLU 

activation before being flattened. The final stages of the model 

include a dense layer with 100 units incorporating L2 

regularization to mitigate overfitting, followed by a softmax 

output layer with 6 units that classifies the data into one of six 

emotional categories. The architecture of the CNN-GRU 

framework is illustrated in Figure 16. 

Ensemble learning is a widely used machine learning 

technique aimed at enhancing predictive accuracy by 

integrating multiple individual models. The core principle of 

this approach is that combining predictions from several 

models often yields better performance than relying on a 

single model. One effective ensemble method is Stacked 

SVM, which improves classification performance by 

amalgamating multiple SVM classifiers. 

In this study, we employ CNN-LSTM and CNN-GRU 

models as base learners. The CNN-LSTM model is designed 

to extract spatial features while capturing temporal 

dependencies in speech signals. Meanwhile, the CNN-GRU 

framework is utilized for effective feature extraction. The 

predictions generated by both models are then fed into a meta-

learner, another SVM classifier.  

This meta-learner synthesizes the outputs from the base 

models to achieve a final emotion classification. This stacked 

architecture allows the system to uncover compound 

relationships within the data, resulting in greater performance 

in emotion recognition tasks. The algorithm for the suggested 

system is given below. 

 

Algorithm : SER Recognition Using Ensemble Model 

Input : Speech Signals for various emotions (Anger, Fear, Disgust, Neutral, Happy, Sadness) 

Output : Emotion Recognition Model 

Begin : 

❖ Load and preprocess data: 

1. Collect dataset: D = {(Xi , yi)}i=0
N−1, were Xi is the Speech signal and yi∈ {0, 1, ...N-1}. 

2. Preprocess: 

• Normalize: Bi
′ →

Bi
′−μ

σ
 

• Resize: Bi→Bi
′∈R224×224 

• Data Augmentation: Bi
′ → {Bi

′′} 

❖ Define CNN-LSTM Model: 

1. Input: 224 × 224 × 3 

Block 1: Conv1D (200, (3,3), activation=’relu’) 

              MaxPooling2D (pool size= (2, 2)) 

                      Block 2: Conv1D (100, (3,3), activation=’relu’) 

                         MaxPooling2D (pool size= (2, 2)) 

                      Block 3: Conv1D (50, (3,3), activation=’relu’) 

            MaxPooling2D (pool size= (2, 2)) 

            LSTM (64) 

            Dropout (0.5) 

            LSTM (64) 

            Dense (50, activation=’relu’) 

            Dense (50, activation=’relu’) 

            Flatten () 

            Dense (100, activation=’relu’) 

           Dense (6, activation=’softmax’) 

❖ Define CNN-GRU Model: 

1. Input: 224 × 224 × 3 

Block 1: Conv1D (200, (3,3), activation=’relu’) 

              MaxPooling2D (pool size= (2, 2)) 

                      Block 2: Conv1D (100, (3,3), activation=’relu’) 

                         MaxPooling2D (pool size= (2, 2)) 

                  Block 3: Conv1D (50, (3,3), activation=’relu’) 
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             MaxPooling2D (pool size= (2, 2)) 

             GRU (64) 

             Dropout (0.5) 

             GRU (64) 

             Dense (50, activation=’relu’) 

             Dense (50, activation=’relu’) 

             Flatten () 

             Dense (100, activation=’relu’) 

             Dense (6, activation=’softmax’) 

❖ Define Ensemble model: 

          stacked_predictions = np. concatenate ([ypred cnn_lstm_model, ypred cnn_gru_model], axis=1) 

svm_model.fit (stacked_predictions, ytest) 

ensemble_predictions=svm_model.fit. predict(stacked_predictions) 

❖ Model Compilation and Training: 

1. Compile each model P: 

                   optimizer=Adam () 

                   loss=sparse_ categorical _crossentropy 

                  metrics=[accuracy] 

2. Train: P.fit (Xtrain , ytrain ,validation_data= (Xval, yval), batch size= (32,64), epochs= (200,100) 

❖ Model Evaluation and Comparison: 

1. Evaluate:  

           metrics=P.evaluate(Xtest , ytest), where metrics contain accuracy recall precision.  

❖ Save the Model 

End 

 

3.6. Hardware and Software Setup 

The study utilized a high-performance computational 

configuration comprising an Intel Core i7 CPU, 32GB of 

RAM and an NVIDIA GeForce GTX 1080Ti GPU, 

facilitating the better management of challenging 

computational workloads. The framework was accomplished 

with the Keras library a high-level neural network API based 

on TensorFlow known for its user-friendly interface and 

robust functionalities. The training practice was conducted on 

Google Colab, a cloud-based Python notebook platform that 

provides easy availability to substantial computational 

resources, hence enabling model training. An essential 

element of this research was the selection of hyper parameters 

that profoundly influence model performance during training. 

Unlike model parameters derived from the data, hyper 

parameters are predetermined by the user and are crucial in 

shaping the configuration of the training process to optimize 

the efficiency of the SER model. The precise hyper parameter 

selections and model configuration are detailed in Table 1. 

 

Table 1. Hyperparameter specifications 

Model Optimizer Dropout 
Learning 

Rate 

Batch 

Size 

Loss 

Function 

Number 

of Epochs 

Activation 

Function 

CNN-LSTM 

Adam 0.5 0.001 

32 Sparse 

Categorical 

Cross-

Entropy 

200 
ReLU, 

Softmax CNN-GRU  64 100 

4. Results and Discussion 
The accuracy and loss plots are crucial for assessing the 

effectiveness of the SER framework. The accuracy plot 

illustrates the model’s performance over time, showcasing its 

ability to predict outcomes accurately in comparison to actual 

results. Likewise, the loss plot demonstrates the model’s 

learning process by tracking the decrease in the loss function 

over time, that lower loss values signify improved 

performance. Together, these plots highlight the model’s 

proficiency in identifying various emotions from speech data. 

. 

Figures 17 and 18 present the CNN LSTM accuracy and 

loss plots. Initially the system’s accuracy is relatively low at 

approximately 81.76%. However, as the epochs progress, 

accuracy improves, ultimately reaching around 85.83% by the 

final epoch. This upward trend signifies the model’s enhanced 

capability to classify data correctly over time. Regarding loss, 

the system starts with a value of around 0.50. As training 

continues, this loss value gradually decreases, finishing at 

approximately 0.42 in the final epoch. This reduction indicates 

that the model’s predictions increasingly align with the actual 

values reflecting its learning effectiveness. 
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Fig. 17 Accuracy plot of CNN-LSTM model 

 

 
Fig. 18 Loss Plot of CNN-LSTM model 

 
Fig. 19 Accuracy plot of CNN-GRU model 

 
Fig. 20 Loss plot of CNN-GRU model 

Figures 19 and 20 illustrate the accuracy and loss plots for 

the CNN GRU model. Initially, the model demonstrates 

relatively low accuracy at around 71.22% during the early 

epochs. As training progresses, there is a significant 

improvement in accuracy, ultimately reaching approximately 

97.74% by the final epoch. This increase indicates the model’s 

effectiveness in accurately classifying the data over time. 

The initial loss value is high, approximately 0.78. Whereas 

as the epochs advance the loss decreases steadily, culminating 

at 0.07 by the final epoch. This loss reduction indicates that the 

model’s predictions closely align with the actual values, 

showcasing improved performance and reliability throughout 

the training process. 

Initially, several factors are defined to quantify essential 

performance parameters as represented in the following 

Equations. These metrics, based on the principles of False 

Positive (FP), True Negative (TN), False Negative (FN) and 

True Positive (TP), are crucial for evaluating the efficacy of the 

model. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                             (25) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                   (26) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                  (27) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                         (28) 

The graphical representation of the performance 

comparison of the proposed system is depicted in Figure 21, 

summarizing the performance of three different models: CNN-

LSTM, CNN-GRU, and an ensemble model. The CNN-LSTM 

model attained an accuracy of 85.83%, with precision at 
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86.19%, recall at 85.97%, and an F1 score of 85.79%, 

indicating a balanced performance across these metrics. In 

contrast, the CNN-GRU model significantly outperformed the 

previous model, reaching 97.74% accuracy, 97.78% precision, 

97.79% recall, and an F1 score of 97.76%. This improvement 

highlights its strong ability to generalize and accurately detect 

emotions. Finally, the ensemble model, which leverages the 

strengths of multiple models, excelled further, attaining 

98.69% accuracy, 98.70% precision, 98.72% recall, and an F1 

score of 98.70%. This demonstrates its superior efficiency in 

emotion recognition, confirming the effectiveness of 

combining model strengths for enhanced performance. 

 
Fig. 21 Performance comparison of proposed model 

The comparison of the ensemble model with various 

existing approaches, assessing the accuracy of Speech Emotion 

Recognition (SER) across different datasets, is presented in 

Table 2. The CNN-based model utilizing an acoustic feature 

set achieved an impressive 94.18% accuracy on the RAVDEES 

dataset. Meanwhile, a dilated CNN framework designed to 

capture both spatial emotional features and long-term 

dependencies reached 90% accuracy on the EMO-DB dataset. 

The DCNN combined with Random Forest (RF) to identify 

discriminative features also performed well, attaining an 

accuracy of 93.6% on the RAVDEES dataset. In addition, a 

cryptographic structure using the Time-Warping Quantization 

Technique (TWQT) attained an accuracy of 90.09% on EMO 

DB. The LSTM and multi-head attention network models 

yielded lower accuracies of 72% and 76% on the IEMOCAP 

dataset. In contrast, the proposed ensemble model significantly 

outperformed these existing methods, achieving an accuracy of 

98.69% in classifying emotions from speech signals. Figure 22 

provides a graphical representation of the performance 

comparison between the existing approaches and the proposed 

ensemble model, highlighting the superior performance of the 

ensemble method. 

 

Fig. 22 Accuracy comparison of ensemble model with existing 

approaches 

Table 2. Accuracy comparison of existing methods and proposed model 

AUTHOR & REF MODEL DATASET ACCURACY 

Bhangale and Kothandaraman [4] CNN RAVDEES 94.18% 

Mustaqeem and Kwon [9] DCNN EMO-DB 90% 

Amjad et al. [11] DCNN + RF RAVDEES 93.6% 

Tuncer et al. [13] TQWT EMO-DB 90.09% 

Wang et al. [14] LSTM IEMOCAP 72% 

Nediyanchath et al. [15] Multi-head Attention Network IEMOCAP 76.4% 

Proposed Ensemble Model CREMA 98.69% 

5. Conclusion 
Speech Emotion Recognition (SER) is a method that 

identifies and categorizes emotions such as anger, happiness, 

and sadness expressed through speech. It employs Deep 

Learning (DL) techniques to analyze features like tone, pitch 

and rhythm, enabling the accurate detection of emotional states 

in both real-time and recorded speech. This study developed an 

efficient SER system using a hybrid deep-learning model with 

an ensemble approach. Utilizing the “CREMA” dataset, which 

comprises 7,442 audio samples from various actors, the system 

recognized six distinct emotional states. The methodology 

involved several key steps: preprocessing, data augmentation 
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and feature extraction using Mel-Frequency Cepstral 

Coefficients (MFCC). Two hybrid models were designed, 

CNN-LSTM and CNN-GRU which effectively capture both 

temporal and spatial features from the speech data.  

The outputs from these models were then combined 

through an ensemble learning approach utilizing a Support 

Vector Machine (SVM) classifier as the meta-learner. The 

proposed system achieved impressive performance metrics, 

including an accuracy of 98.69%, precision of 98.70%, recall 

of 98.72% and an F1 score of 98.70%.  

These results demonstrate the superior performance of the 

ensemble system compared to both the individual CNN-LSTM 

and CNN-GRU models and several existing methods in 

previous studies. Overall, the findings underscore the 

effectiveness and superiority of the proposed ensemble system 

in accurately identifying emotions in speech. 
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