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Abstract - Liver Disease (LD) is a severe health condition impacting over 2 million lives annually worldwide, as reported by the 

WHO. Factors such as rising alcohol consumption, increased type 2 diabetes cases, genetic predispositions, and various lifestyle 

influences are expected to heighten LD prevalence further, underscoring the need for a modern, accurate, and interpretable 

classification system. This paper aims to develop an effective and transparent Machine Learning (ML) framework using 

ensemble learning models and Explainable AI (XAI) techniques for LD classification. The proposed framework addresses 

dataset imbalance and size constraints by employing data balancing and upsampling, enabling the ensemble models to learn 

complex patterns in clinical data. The performance of each model is evaluated, and the best-performing model, Gradient 

Boosting (GB), is further analyzed using SHAP, LIME, and ELI5 to interpret its feature impact. GB achieved high classification 

metrics, including accuracy, precision, recall, specificity, and AUC, with Direct Bilirubin, Alkaline Phosphatase, Alanine 

Aminotransferase, and Age identified as key influential features. This paper successfully presents a reliable and interpretable 

ML-based framework for LD classification, combining quantitative performance and explainability, making it highly suitable 

for clinical application. 

Keywords - Classification, Ensemble learning, Explainable model, Feature analysis, Liver Disease. 

1. Introduction  
Liver diseases have become a significant global health 

concern, with traditional diagnostic methods often proving 

inefficient and lacking in accuracy. In response, Machine 

Learning (ML) technologies have emerged as powerful tools 

for enhancing liver disease prediction, diagnosis, and 

treatment. Recent algorithms and computational power 

advancements have driven considerable interest in machine 

learning-based liver disease prediction. Numerous studies 

have explored various ML approaches aimed at improving the 

accuracy and consistency of disease classification and 

prediction, making them a promising solution in the medical 

field. Every year, around 2 million individuals die from liver 

disease throughout the world. According to the “Global 

Burden of Disease” research published in BMC Medicine, one 

in every four fatalities from cirrhosis and approximately one 

million deaths from liver cancer occurred in 2010 [1]. Liver 

disease consists of chronic disorders that affect liver function, 

frequently going through four stages: hepatitis, fibrosis, 

cirrhosis, and, finally, liver failure. Hepatitis, which is 

typically caused by viral infections or alcohol, causes 

inflammation in the liver.  
 

Chronic inflammation, if left untreated, leads to fibrosis, 

which is scar tissue formation that impairs liver regeneration. 

Continued damage leads to cirrhosis, which is characterized 

by extensive scarring and reduced liver function that is 

generally permanent. Finally, liver failure is the end stage, in 

which the liver can no longer support crucial processes, 

needing urgent measures such as transplantation. Early 

identification and therapy are critical for slowing or halting 

this development [2].   
 

Effective ML algorithms like Logistic Regression (LR), 

K-Nearest Neighbour (KNN), Decision Tree (DT), Support 

Vector Machine (SVM), ensemble algorithms including Extra 

Trees (ET), Random Forest (RF), AdaBoost, XGBoost, and 

Gradient Boosting (GB), along with feature scaling are used 

for early-stage detection of liver diseases [3-10].   

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Explainable AI (XAI) is the transparent AI in healthcare, 

showing that explainable predictions build trust and provide 

clear insights for both medical professionals and patients [11]. 

These methodologies and insights have broader applications 

across healthcare, emphasizing the need for accuracy and 

explainability in improving diagnosis and treatment strategies. 

In [12], RF, XGBoost, and Explainable Boosting Machine 

(EBM) achieved the highest accuracy at 99.8%, proving its 

superior effectiveness in liver disease prediction. XAI 

approaches are critical in solving the difficulty of transparency 

in AI models because they provide explicit and understandable 

explanations of how algorithms create certain outputs. Several 

strategies, including Local Interpretable Model-Agnostic 

Explanations (LIME), ELI5, Accumulated Local Effects 

(ALE) and Shapley Additive Explanations (SHAP), have 

received substantial attention in the literature. These 

methodologies provide more in-depth knowledge of model 

behaviour, improving the interpretability and dependability of 

AI systems, especially in vital domains such as the medical 

field and healthcare, where transparent decision-making is 

essential [13]. 

 

2. Related Work 
A number of classification methods have been used in the 

literature to predict liver illness, including LR, KNN, and 

SVM. Furthermore, ensemble tree-based algorithms, 

including DT, RF, ET, AdaBoost, and XGBoost, are 

commonly employed. To improve the interpretability of these 

predictive models, XAI approaches such as ALE SHAP, ELI5, 

and LIME have been used, providing greater insights into how 

predictions are formed and increasing transparency and trust 

in model outputs, particularly in healthcare applications.  

Afreen et al. (2021) introduced a novel boosting 

technique for liver disease classification, showing how 

ensemble learning enhances prediction accuracy [3]. 

Similarly, Shobana and Umamaheswari (2021) employed 

gradient boosting with feature scaling, underscoring the 

importance of preprocessing in improving classification. 

Singh et al. (2021) conducted a comparative analysis of 

various ML models, highlighting the effectiveness of DT and 

SVM [4]. Singh et al. (2021) carried out a performance 

analysis of ML algorithms for liver disease classification [5].   

 

Dutta et al. (2022) focused on early-stage detection of 

liver diseases using machine learning algorithms, stressing the 

potential for early interventions [6]. Sokoliuk et al. (2020) 

explored binary classification approaches, proving the 

applicability of machine learning in differentiating between 

diseased and healthy cases [7]. Comparative analyses of 

algorithms by Ghosh et al. (2021) and Rabbi et al. (2020) 

reaffirmed the dominance of ensemble learning techniques in 

liver disease prediction, while Gupta et al. (2022) explored 

classification models for liver disease, demonstrating high 

accuracy rates. More recent studies have integrated 

explainable AI to interpret biomarkers associated with liver 

conditions, as evidenced by Arya et al. (2023) and Nilofer and 

Sasikala (2023), advancing transparency and trust in AI-

driven medical predictions [8-12].  

In specialized liver conditions like cirrhosis and Hepatitis 

C, explainable ensemble models were effectively employed 

by Alotaibi et al. (2023). Pei et al. (2021) also applied ML 

techniques to predict fatty liver disease, further broadening the 

scope of ML applications in liver health monitoring [12, 13]. 

Jei et al. (2024) created an explainable ML model for 

predicting High-Risk Nonalcoholic Steatohepatitis (NASH), 

attaining high accuracy and providing interpretable findings, 

which is critical for clinical decision-making and increasing 

trust in AI outputs [15]. Table 1 summarizes the existing work 

for liver disease classification in terms of methods used and 

key findings.  
 

Table 1. Existing work for Liver Disease classification with the key 

finding 

Literature Method Used Key Finding 

Afreen et al.  

[3] 

Boosting 

Algorithm 

Improved 

Classification 

Shobana & 

Umamaheswari 

[4]  

Gradient Boosting 

with Feature 

Scaling 

Enhanced 

Prediction 

Singh et al.  

[5] 

Performance 

Analysis of 

Algorithms 

Algorithm 

Comparison 

Dutta et al.  

[6] 

Machine Learning 

Algorithms 
Early Detection 

Sokoliuk et al. 

[7] 

Binary 

Classification 

Algorithms 

Effective 

Classification 

Ghosh et al. 

[8] 

Comparative 

Analysis of 

Algorithms 

Predictive 

Performance 

Rabbi et al.  

[9] 

Comparative 

Study of 

Algorithms 

Model 

Effectiveness 

Gupta et al. 

[10] 

Classification 

Techniques 

Disease 

Prediction 

Arya et al.  

[11] 

Explainable AI 

Techniques 

Biomarker 

Interpretation 

Nilofer & 

Sasikala et al. 

[12] 

Comparative 

Study Using 

Explainable AI 

Enhanced 

Interpretability 

Alotaibi et al. 

[13] 

Explainable 

Ensemble Models 

Detecting 

Cirrhosis 

Pei et al.  

[14] 

Machine Learning 

Algorithms 

Fatty Liver 

Prediction 

Njei et al.  

[15] 

Explainable 

Machine Learning 

Model 

High-Risk 

Prediction 
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Fig. 1 Block diagram of proposed framework for Liver Disease classification with explainable model 

 

Collectively, these studies indicate the critical role 

machine learning plays in liver disease prediction, enabling 

early detection and informed medical decisions. Emerging 

trends, such as the incorporation of explainable AI with 

boosting algorithms, resampling, use of tuned 

hyperparameters [16], folding, and feature scaling, are 

enhancing the interpretability of these models, making them 

more viable for clinical application [17-22]. 

3. Materials and Methods  
The complete workflow of the proposed method for Liver 

disease classification is illustrated in Figure 1. The 

classification task starts with acquiring the dataset and ends 

with explaining the trained models using explainable AI 

agents. 

 

3.1. Dataset Description 

The dataset is sourced from publicly available medical 

data of liver patients from Andhra Pradesh, India [23]. It 

contains data from 583 subjects, out of which 416 have liver 

disease, and 167 do not. In this dataset, there are 10 input 

features and a bi-class target variable, i.e., Liver Disease or No 

Liver Disease. Out of the 10 input features, 9 are numerical: 

“Age, Total Bilirubin, Direct Bilirubin, Alkaline Phosphatase, 

Alanine Aminotransferase, Aspartate Aminotransferase, Total 

Proteins, Albumin, and Albumin to Globulin Ratio”.  

Gender is the only categorical feature in this dataset, 

having two categories: Male and Female. The details of the 

numerical and categorical features are displayed in Table 2, 

along with their range, mean value, and correlation with liver 

disease diagnosis. It can be observed that age ranges from 4 to 

90 years, with the average age being 44.75 years. It must be 

noted that Ages above 89 years are all assigned 90 by the data 

publishers. Age has a correlation of 0.13 with the diagnosis. 

Total Bilirubin ranges from 0.4 to 75.0, having a mean value 

of 3.30 and a correlation value of 0.22 with the diagnosis. 

Direct Bilirubin ranges from 0.1 to 19.7, with a mean of 1.49 

and a correlation of 0.25 with the diagnosis.  

 
Enzyme features alkaline phosphotase, alamine 

aminotransferase, and aspartate aminotransferase, ranging 

from 63.0 to 2110.0, 10.0 to 2000.0 and 10.0 to 4929.0, 

respectively, with an average value of 290.58, 80.71, 109.91 

respectively. These enzymes have correlation values of 0.18, 

0.16 and 0.15, respectively. Total proteins have a range of 2.7 

to 9.6, with an average of 6.48 and a correlation of -0.03 with 

liver diagnosis. Albumin and Albumin to Globulin Ratios 

have the range of 0.9 to 5.5 and 0.3 to 2.8, with average values 

of 3.14 and 0.95, respectively. Albumin and Albumin-to-

globulin ratios both have a correlation value of -0.16 with liver 

diagnosis. Gender as male or female has a very low correlation 

value of -0.08 with liver diagnosis. 

Input  

Dataset Data Balancing Upsampling 

Training 

 

Ensemble Models 

HB ADB XGB GB 

Testing 

 

Classification 

LD No LD 

Evaluation 

 

Explainable AΙ 

SHAP LIME ELIS 
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Table 2. Feature values with range, mean and correlation with Liver 

Disease diagnosis 

SN Feature Range Mean 

Correlation 

with 

Diagnosis 

1.  Age 4 - 90 44.75 0.13 

2.  Total Bilirubin 
0.4 - 

75.0 
3.30 0.22 

3.  Direct Bilirubin 
0.1 - 

19.7 
1.49 0.25 

4.  
Alkaline 

Phosphotase 

63.0 - 

2110.0 
290.58 0.18 

5.  
Alamine 

Aminotransferase 

10.0 - 

2000.0 
80.71 0.16 

6.  
Aspartate 

Aminotransferase 

10.0 - 

4929.0 
109.91 0.15 

7.  Total Protiens 
2.7 - 

9.6 
6.48 -0.03 

8.  Albumin 
0.9 - 

5.5 
3.14 -0.16 

9.  
Albumin to 

Globulin Ratio 

0.3 - 

2.8 
0.95 -0.16 

10.  Gender Male or Female -0.08 

 

3.2. Feature Analysis 

An exhaustive feature analysis was performed on the 

dataset to thoroughly understand the input features. This 

section provides a detailed description of the feature analysis 

process, accompanied by intuitive figures. Figure 2 shows the 

count of Liver Disease (LD) and No LD cases for both 

genders, male and female.  

 

 
Fig. 2 Gender-wise distribution for Liver Disease classification 

 

The dataset includes 324 LD and 117 No LD cases among 

males and 92 LD and 50 No LD cases among females. The 

percentage of LD cases is 73.5% for males (100 * 324 / (324 

+ 117)) and 64.8% for females (100 * 92 / (92 + 50)). This 

minor difference suggests that the prevalence of LD is nearly 

equal across genders. Additionally, gender correlation is -0.08 

with the diagnosis, indicating minimal association. 

Figure 3 illustrates the maximum and minimum values, 

along with the interquartile range of the features of total 

bilirubin and direct bilirubin for both diagnosis classes. The 

figure shows that the 75th, 50th (median), and 100th percentiles 

of both total and direct bilirubin are higher for the LD classes. 

Additionally, total bilirubin and direct bilirubin have positive 

correlation values of 0.22 and 0.25, respectively, as per Table 

2, with a positive LD diagnosis. This indicates that higher 

levels of total and direct bilirubin contribute to an increased 

likelihood of the output being 1 (LD). Moreover, total 

bilirubin and direct bilirubin have relatively high correlation 

values compared to other features, thus significantly 

impacting the model's output. 

 

 
Fig. 3 Bilirubin measures for Liver Disease classification 

 

Figure 4 illustrates the minimum, maximum, and 

interquartile ranges of the enzyme features alkaline 

phosphatase, alanine aminotransferase, and aspartate 

aminotransferase.  

 
Fig. 4 Enzymes for Liver Disease classification 

 

It can be observed that the 25th, 50th (median), 75th, and 

100th percentile values of these enzyme features are higher for 

LD cases compared to No LD cases. The correlation values 
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for alkaline phosphatase, alanine aminotransferase, and 

aspartate aminotransferase are 0.18, 0.16, and 0.15, 

respectively, as per Table 2. This indicates that higher values 

of these enzyme features increase the probability of the 

classification being LD. 

 

Figure 5 displays the feature total proteins' maximum, 

minimum, and interquartile range for both classes. It can be 

observed that the 25th, 50th, 75th, and 100th percentile values in 

the LD class are slightly lower than those in the No LD class, 

though comparable. The correlation of total proteins with LD 

diagnosis is -0.03, indicating minimal association. The 

negative correlation suggests that lower values of total 

proteins slightly increase the probability of an LD 

classification. 

 
Fig. 5 Total proteins for Liver Disease classification 

 

Figure 6 illustrates the minimum, maximum, and 

interquartile ranges of the albumin features, albumin and 

albumin to globulin ratio, for both diagnosis classes.  

 

 
Fig. 6 Albumin for Liver Disease classification 

It is observed that the 25th, 50th, 75th, and 100th percentile 

values of “albumin and the albumin to globulin ratio” are 

lower for the LD class than for the No LD class. Both 

“albumin and the albumin to globulin ratio” have correlation 

values of -0.16 (as per Table 2), indicating a moderate 

association with LD diagnosis. The negative correlation 

suggests that lower values of “albumin and the albumin to 

globulin ratio” increase the probability of an LD classification. 

 

3.3. Data Balancing and Upsampling 

The input dataset originally contained data from 579 

patients. Figure 7 shows the original distribution of LD 

diagnoses in the dataset. Out of 579 entries, 415 are classified 

as LD and 165 as No LD.  

 

 
Fig. 7 Original distribution of Liver Disease dataset 

 

This imbalance in the count of LD and No LD cases may 

lead the models to become biased toward a particular class. It 

is necessary to balance the dataset through random 

upsampling to address this issue. Random upsampling 

involves increasing the number of No LD cases to match the 

number of LD cases by adding random rows with a No LD 

diagnosis. This approach effectively balances the dataset and 

helps prevent bias in the models. 

 

 
Fig. 8 Distribution of Liver Disease classes after data balancing and 

upsampling 

 

Given that the dataset size is relatively small, it may not 

be sufficient for the models to learn complex patterns, 

71.50%28.50%

Original Distribution of Diagnosis 

Liver Disease

No Liver Disease

50.40%

49.60%

Distribution of Diagnosis after sampling 

Liver Disease

No Liver Disease



Yogita Dubey et al. / IJECE, 12(2), 1-11, 2025 

 

6 

highlighting the need for further upsampling of the balanced 

dataset. For this study, we have tripled the balanced dataset 

through random upsampling. The distribution of LD 

diagnoses after data balancing and upsampling is illustrated in 

Figure 8. 

 

3.4. Methods for Liver Diseases 

3.4.1. Gradient Boosting (GB) 

GB is a sequential ensemble of multiple decision trees 

acting as weak learners. Each tree minimizes the errors of the 

previous ones. The model updation using GB is carried out 

using 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝜂ℎ𝑚(𝑥) (1) 

 

Where 𝐹𝑚−1(𝑥)is the prediction from the previous trees 

and ℎ𝑚(𝑥) = 𝑎𝑟𝑔 𝑚𝑖𝑛
ℎ

∑ (𝑟𝑖,𝑚 − ℎ(𝑥𝑖))
2

𝑖   

is the new tree that fits the negative gradient of the loss 

function given by  

𝑟𝑖,𝑚 = [
𝜕𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖))

𝜕𝐹𝑚−1(𝑥𝑖)
] 

(2) 

 

The new tree ℎ𝑚(𝑥)  is trained to minimize the squared 

error with respect to these residuals.  

 

The model iteratively builds decision trees that predict 

whether a patient has liver disease based on their clinical 

features.  

 

3.4.2. Extreme Gradient Boosting (XGB) 

XGB is an efficient version of GB that prevents 

overfitting using regularization techniques and supports fast 

tree building. The objective function used in XGB is  

 

𝐿(𝛩) = ∑ 𝑙(𝑦𝑖 , �̂�𝑖)

𝑛

𝑖=1

+ ∑ 𝛺(𝑓𝑘)

𝐾

𝑘=1

 (3) 

 

Here 𝑙(𝑦𝑖 , �̂�𝑖)is the loss function with 𝑦𝑖and �̂�𝑖 as the 

actual and predicted class of Liver disease.   

 

𝛺(𝑓𝑘) = 𝛾𝑇 +
1

2
‖𝑤‖2  is the regularization term for each 

tree 𝑓𝑘  to prevent overfitting with  𝑇 the number of leaves in 

the tree and w is the weight vector of the leaves. 

 

3.4.3. Adaptive Boosting (ADB) 

ADB assigns weights to misclassified instances and 

updates these weights iteratively to focus on difficult-to-

classify cases. Each instance (𝑥𝑖 , 𝑦𝑖)  is assigned an initial 

weight 𝑤𝑖 =
1

𝑛
  where 𝑛 is the number of training samples. At 

𝑚𝑡ℎ  iteration, a weak classifier ℎ𝑚(𝑥) is trained, and a weight 

𝛼𝑚 =
1

2
𝑙𝑜𝑔 (

1−𝜀𝑚

𝜀𝑚
)  is assigned based on the classifier’s error 

𝜀𝑚 =
∑ 𝑤𝑖.1{ℎ𝑚(𝑥𝑖)≠𝑦𝑖}𝑛

𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

.   

Finally, the weights for misclassified samples are updated 

using 

𝑤𝑖+1 = 𝑤𝑖 𝑒𝑥𝑝(𝛼𝑚. 1{ℎ𝑚(𝑥𝑖) ≠ 𝑦𝑖}) 
(4) 

 

 

The final model is obtained by taking a weighted sum of 

all weak classifiers using 𝐻(𝑥) = ∑ 𝛼𝑚ℎ𝑚(𝑥)𝑚    

 

3.4.4. Histogram-Based Gradient Boosting (HB) 

HB works by discretizing continuous clinical features 

into histograms with K bins, which reduces the complexity of 

the feature split search. It computes the first-order derivatives 

(gradients) 𝑔𝑖 =
𝜕𝐿(𝑦𝑖,�̂�𝑖)

𝜕�̂�𝑖
 and second-order derivatives 

(Hessians)ℎ𝑖 =
𝜕2𝐿(𝑦𝑖,�̂�𝑖)

𝜕�̂�𝑖
2 of the loss function with respect to the 

prediction 𝐹(𝑥𝑖). These derivatives are aggregated for each 

bin 𝑘rather than for each data point, significantly reducing the 

computational load. 

 

                       𝐺𝑘 = ∑ 𝑔𝑖𝑖∈𝑏𝑖𝑛𝑘
𝑎𝑛𝑑𝐻𝑘 = ∑ ℎ𝑖𝑖∈𝑏𝑖𝑛𝑘

  

 

After selecting the best split, the decision tree is updated 

by splitting the data according to the optimal threshold𝜃, and 

the leaf values are updated. The predictions for the terminal 

nodes 𝑤𝑘 based on leaf values are computed using the 

aggregated gradient and Hessian in each bin using  

𝑤𝑘 = −
𝐺𝑘

𝐻𝑘 + 𝜆
 

 

The final prediction for sample i is the sum of predictions 

from all trees in the ensemble 

𝐹(𝑥𝑖) = ∑ 𝑤𝑚

𝑀

𝑚=1

. ℎ𝑚(𝑥𝑖) 

 

Where ℎ𝑚(𝑥𝑖) is the output of the 𝑚𝑡ℎ tree for input 𝑥𝑖, 

and 𝑀 is the total number of trees. 

 

3.5. Explainable AI 

3.5.1. SHapley Additive exPlanations (SHAP) 

SHAP is used for both global as well as local 

interpretation, providing insights into feature importance 

through Shapley values based on cooperative game theory. It 

quantifies the contribution of each clinical feature to the 

prediction of liver disease, both across the entire dataset as 

well as for individual cases. 

 

For a model with function𝑓(𝑥) at an instant𝑥, the Shapley 

value of feature 𝑖 across all possible feature subsets 𝑆is 

calculated using 

𝜑𝑖(𝑓, 𝑥) = ∑
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
[𝑓(𝑆 ∪ {𝑖})

𝑆⊆𝐹\{𝑖}

− 𝑓(𝑆)] 

(5) 
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 Where: 

 𝐹is the set of all features. 

 𝑓(𝑆) is the model prediction from features in 𝑆  

 𝑓(𝑆 ∪ {𝑖}) is the model prediction for combined features 

of 𝑖  and 𝑆, 

 𝜑𝑖(𝑓, 𝑥) represents the contribution of feature i to the 

prediction, for instance 𝑥. 

 

The model's prediction 𝑓(𝑥) for a given sample 𝑥  can be 

expressed as the sum of all feature contributions (Shapley 

values) 

                      𝑓(𝑥) = 𝜑0 + ∑ 𝜑𝑖
𝑛
𝑖=1   

 

where 𝜑0 is the average model output (the baseline value, 

often the expected prediction without any features), and𝜑𝑖are 

the Shapley values for the individual features.  

 

3.5.2. Local Interpretable Model-agnostic Explanations 

(LIME) 

LIME offers local explanations by fitting a simple and 

interpretable model for the prediction around a specific 

instance. It explains predictions by focusing on feature 

contributions for each specific patient. It generates 

perturbations of the input instance and observes the changes 

in the model's prediction to learn which features are most 

important. LIME fits a local surrogate linear model 𝑔(𝑧′) to 

approximate the complex model 𝑓 around a specific 

instance𝑥. This model is trained on a neighborhood of 

perturbations 𝑧′ of the instance𝑥. The objective is to minimize 

the loss function that represents the difference between the 

original model 𝑓 and the local surrogate model 𝑔, subject to a 

complexity constraint on 𝑔  as given by  

 

𝑎𝑟𝑔 𝑚𝑖𝑛
𝑔∈𝐺

∑ 𝐿(𝑓(𝑥), 𝑔(𝑧′)). 𝜋𝑥(𝑧′)

𝑧′∈𝑍

+ 𝛺(𝑔) (6) 

Where: 

𝐿(𝑓(𝑥), 𝑔(𝑧′))is the loss function measuring the 

difference between the predictions of  𝑓  and 𝑔 

𝜋𝑥(𝑧′) is a proximity function that assigns higher weights 

to instances z′ that are closer to the instance 𝑥, 

𝛺(𝑔) is a regularization term that penalizes complex 

models 𝑔, 

𝑍 is the set of perturbed instances generated around 𝑥 

Liver disease presence is predicted using the linear 

regression model 

𝑔(𝑧′) = 𝛽0 + ∑ 𝛽𝑖𝑧′𝑖

𝑛

𝑖=1

 (7) 

Where 𝑧𝑖
′are the perturbed feature values, and 𝛽𝑖 are the 

weights representing the contribution of each feature to the 

local approximation. 

 

3.5.3. ELI5 

ELI5 is a tool that provides model interpretations by 

computing feature importance scores and explaining the inner 

workings of machine learning models. For tree-based models, 

ELI5 measures feature importance by evaluating how often 

and effectively a feature contributes to reducing the model's 

loss function at different splits. The importance score for 

feature i is calculated using  

 

Importance(𝑥)

= ∑
𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑖𝑛𝑙𝑜𝑠𝑠𝑑𝑢𝑒𝑡𝑜𝑠𝑝𝑙𝑖𝑡

𝑡𝑜𝑡𝑎𝑙𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑖𝑛𝑙𝑜𝑠𝑠
𝑠𝑝𝑙𝑖𝑡𝑠𝑜𝑛𝑥𝑖

 (8) 

 

This reflects how influential a feature is in guiding the 

model toward better predictions, which is used to understand 

the overall importance of features in a liver disease 

classification model.  

 

4. Results and Discussion  
This section provides the quantitative analysis of the 

proposed method for liver disease classification using various 

metrics and the interpretation of the diagnosis using XAI.  

 

4.1. Quantitative Metrics 

The four-ensemble ML algorithms are used for liver 

disease classification. The following metrics are used for 

assessment.  

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑁
 as the correct classification for both 

the presence and absence of liver disease.   

 Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 as the predicted liver disease cases for 

patients that were truly positive for liver disease.  

 𝑅𝑒 𝑐 𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
as the actual liver diseased cases that 

were correctly identified. 

 

 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
Precision×Recall

Precision+Recall
 is the harmonic mean of 

precision and recall, balancing both metrics.    

 

 Log Loss is a measure that penalizes underconfident and 

incorrect predictions significantly. It is expressed using 

the following equation for actual outcomes 𝑦𝑖  and 

predicted probabilities 𝑝𝑖  for total N cases: 

  𝐿𝑜𝑔𝐿𝑜𝑠𝑠 = −
1

𝑁
(∑ (𝑦𝑖 𝑙𝑜𝑔(𝑝𝑖) + (1 − 𝑦𝑖) 𝑙𝑜𝑔(1 −𝑁

𝑖=1

𝑝𝑖)))

  Jaccard Score 𝐽𝑆 =
|𝑦𝑖∩�̂�𝑖|

|𝑦𝑖∪�̂�𝑖|
is the measure of similarity and 

intersection between actual output 𝑦𝑖and predicted output 

�̂�𝑖. 

 Dice Coefficient 𝐷𝐶 =
2|𝑦𝑖∩�̂�𝑖|

|𝑦𝑖|+|�̂�𝑖|
is the measure of overlap. 

 Matthews Correlation Coefficient 𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
is the measure of 

difference. 

 

Table 3 shows the prediction performance of the 

ensemble learning models evaluated using training and testing 
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accuracies. It is observed that GB produced the highest 

training and testing accuracies of 0.9666 and 0.9598, 

respectively. HB emerged as the second-best performer, 

having training and testing accuracies of 0.9436 and 0.9316, 

respectively. XGB produced training and testing accuracy 

values of 0.9402 and 0.9357, respectively, slightly less than 

those of HB. ADB produced the least training and testing 

accuracy values of 0.8734 and 0.8405, respectively. 

 
Table 3. Evaluation of the ensemble learning models based on training 

and testing accuracies 

SN Model Training Accuracy Testing Accuracy 

1 GB 0.9666 0.9597 

2 HB 0.9436 0.9316 

3 ADB 0.8734 0.8404 

4 XGB 0.9401 0.9356 

 

Table 4 compares the prediction performances of the 

ensemble ML models based on precision, recall, F1 Score and 

specificity. It can be noticed that GB outperforms every other 

model with a Precision of 0.9617, Recall of 0.9598, specificity 

of 0.9920 and F1 score of value of 0.9597. XGB stood as the 

second-best performer, producing a precision of 0.9402, recall 

of 0.9357, specificity of 0.9866 and F1 Score value of 0.9355. 

HB exhibited a precision of 0.9355, recall of 0.9316, 

specificity of 0.9786 and F1 score value of 0.9315. ADB 

underperformed every other model, producing precision, 

recall, F1 score and specificity and values of 0.8460, 0.8405, 

0.8398 and 0.9035, respectively.  

 
Table 4. Performance evaluation of the ensemble learning models based 

on precision, recall, F1 score and specificity 

SN Model Precision Recall F1 Score Specificity 

1 GB 0.9616 0.9597 0.9597 0.9919 

2 HGB 0.9354 0.9316 0.93148 0.9785 

3 ADB 0.8459 0.8404 0.83984 0.9034 

4 XGB 0.9402 0.9356 0.93548 0.9865 

 
Table 5. Performance evaluation of the ensemble learning models based 

on JS, DC and MCC 

SN Model JS DC MCC 

1 GB 0.9202 0.9584 0.9214 

2 HGB 0.8661 0.9282 0.86709 

3 ADB 0.7090 0.8297 0.6864 

4 XGB 0.8730 0.9322 0.8758 
 

Table 5 shows the comparison of the prediction 

performances of these ensemble learning models based on JS, 

DC and MCC. It can be noticed that GB outperforms every 

other model in terms of all the metrics having JS, DC and 

MCC of 0.9202, 0.9584 and 0.9215, respectively. XGB stood 

as the second-best performer, producing JS, DC and MCC 

values of 0.8730, 0.9322 and 0.8759, respectively. HB 

exhibited JS, DC and MCC values of 0.8661, 0.9283 and 

0.8671, respectively. ADB underperformed every other 

model, producing JS, DC and MCC values of 0.7090, 0.8298 

and 0.6864, respectively.  

Figure 9 illustrates the performance comparison of the 

ensemble learning models based on Log Loss. It can be 

observed that GB, HGB, ADB and XGB generated log loss 

values of 0.24, 0.28, 0.66 and 0.26, respectively. GB generated 

the least log loss value, indicating better performance than 

every other model. XGB generated a log loss of 0.2476, 

slightly higher than GB and less than HGB and XGB, making 

XGB the second-best performer in terms of log loss. HGB 

produced higher log loss than GB and XGB, indicating 

relative underperformance compared to GB and HGB. ADB 

produced the highest log loss and appeared the worst 

performer among all the classifiers considered. Figure 10 

illustrates the ROC curves with AUC values for the ensemble 

models used in the study. It is observed that GB and XGB 

produced AUC values of 0.98, and HB produced an AUC 

value of 0.97, indicating good differentiating ability among 

LD and No LD cases. On the other hand, ADB produced an 

AUC of 0.92, indicating less differentiating ability relative to 

every other model.  

 
Fig. 9 Log Loss Values obtained by GB, XGB, ADB and HB for Liver 

Diseases classification 

 

 
Fig. 10 ROC Curves for ML models with AUC values 

Figure 11 illustrates the LIME explanation for the 

Gradient Boosting (GB) model applied to the 7th sample in the 

dataset. It can be observed that direct bilirubin, total proteins, 
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and gender have positive feature weights, while the remaining 

features have negative weights. For this instance, direct 

bilirubin had the highest absolute impact on the model's 

output, followed by alanine aminotransferase and age as the 

second and third most impactful features, respectively. It 

should be noted that LIME explanations are local and specific 

to individual instances; thus, these weights may not fully align 

with patterns in the complete dataset. 

 
Fig. 11 LIME explanation for Liver Disease classification 

 
(a) 

 
(b) 

Fig. 12 SHAP values for features contributing to Liver Disease, (a) 

showing impact on model output, and (b) Showing mean impact on 

model output 

Figure 12 illustrates the SHAP explanation for the GB 

model, displaying features and their corresponding mean 

absolute SHAP values. It is observed that alkaline phosphatase 

has the highest mean absolute SHAP value among all the 

features, indicating it has the greatest impact on the model’s 

predictions. Direct bilirubin follows with the second-highest 

mean absolute SHAP value, signifying it is the second most 

significant feature in the prediction process. 

 

Similarly, “alanine aminotransferase and age” rank third 

and fourth, respectively, in terms of mean absolute SHAP 

values. Thus, “alkaline phosphatase, direct bilirubin, alanine 

aminotransferase, and age” are the four most impactful 

features. “Aspartate aminotransferase, total proteins, albumin, 

albumin to globulin ratio, and total bilirubin” demonstrate 

moderate impacts on the model’s output. It is important to note 

that gender has an almost negligible mean absolute SHAP 

value, indicating it has minimal impact on the model’s 

predictions. 

 

Table 6 provides the ELI5 explanation of the Gradient 

Boosting (GB) model, listing features and their corresponding 

weights. ELI5 weights are expressed as X ± Y, where X 

represents the mean (or estimated) weight, and Y denotes the 

standard deviation, a measure of variability. A higher 

estimated weight indicates a greater impact on the model's 

output. Direct bilirubin has the highest estimated weight of 

0.2048, indicating the strongest influence on the model's 

predictions. Enzymes alkaline phosphatase, alanine 

aminotransferase, and age have estimated weights of 0.2045, 

0.1621, and 0.1119, respectively, signifying a high impact on 

the output. In contrast, gender has an estimated weight of only 

0.0164, indicating minimal to no impact on the model's output. 

 
Table 6. Feature weights for Liver Disease using ELI5 

SN Feature Weight 

1 Alkaline Phosphotase 0.2161 ± 0.2015 

2 Direct Bilirubin 0.2043 ± 0.2089 

3 Alamine Aminotransferase 0.1212 ± 0.1751 

4 Age 0.1205 ± 0.2197 

5 Aspartate Aminotransferase 0.0918 ± 0.2847 

6 Albumin 0.0815 ± 0.1299 

7 Total Protiens 0.0683 ± 0.1062 

8 Albumin and Globulin Ratio 0.0495 ± 0.1215 

9 Total Bilirubin 0.0401 ± 0.1223 

10 Gender 0.65 .0601 
 

5. Conclusion  
This paper effectively proposes an ensemble-based 

explainable ML framework for LD classification, combining 

robust quantitative performance with explainability, which 

enhances its suitability for clinical applications. The data 

balancing and upsampling approach also prevented model bias 

towards any class, resolving challenges related to dataset size 

limitations. After training on the balanced and upsampled 

dataset, Gradient Boosting (GB) emerged as the best 
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performer across all metrics, achieving training and testing 

accuracies of 0.9666 and 0.9597, respectively. GB also 

demonstrated strong results in Precision, Recall, F1 Score and 

specificity, with values of 0.9616, 0.9597, 0.9597 and 0.9919, 

respectively. Furthermore, the model achieved a Jaccard Score 

of 0.9202, a Dice Coefficient of 0.9584, and a Matthews 

Correlation Coefficient of 0.9214. With an impressive ROC 

AUC value of 0.98, GB showed excellent differentiating 

capability between LD and No LD classes. Additionally, GB 

achieved the lowest log loss among all ensemble models 

evaluated in this study, with a value of 0.24, underscoring its 

reliability in LD classification. Through explanations 

provided by SHAP, LIME, and ELI5, it was found that Direct 

Bilirubin, Alkaline Phosphatase, Alanine Aminotransferase, 

and Age are the most impactful features on the model’s output, 

indicating these as highly influential factors in classification.
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