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Abstract - The Millimeter-Wave (mmWave) Multiple-Input Multiple-Output (MIMO) systems offer high data rates and capacity 

but face challenges in sparse propagation environments. Beamforming is one of the techniques by which these challenges can 

be addressed. It can be done by searching for an appropriate beam and accurately aligning the beam in the direction of User 

Equipment (UE). Hybrid Beamforming (HBF) has emerged as a promising solution, combining analog and digital processing 

to improve performance and by minimizing hardware requirements. Compared to an exhaustive search, the overhead in the 

beam selection can be reduced by using machine learning and the subset of it, Neural Networks (NN). This paper presents a 

novel approach to enhance the performance of mmWave MIMO systems by integrating Neural Networks (NNs) with hybrid 

beamforming. Our proposed Neural Network Hybrid Beamforming (NHBF) method combines multiple streams into a single 

beam, transmitted via high-order transmission, achieving improved Bit Error Rate (BER) performance compared to traditional 

Hybrid Beamforming (HBF). By optimizing power distribution, the NHBF beamforming approach eliminates the need for 

tedious hardware requirements, simplifying the implementation process. Simulation results demonstrate significant 

performance enhancements, including up to 18% gain in spectral efficiency, a minimum 50% decrease in bit error rate, a 25% 

increase in energy efficiency, and a 20% reduction in total power consumption compared with Hybrid Beamforming (HBF).  

Keywords - Bit error rate, Energy efficiency, Hybrid beamforming, MIMO, Neural network, Spectral Efficiency. 

1. Introduction  
Millimeter wave (mmWave) communication is regarded 

as a promising technology for future cellular networks due to 

its large available bandwidth and potential to offer gigabits-

per-second communication data rates. The increasing 

demand for high-speed wireless communication has driven 

the need for innovative solutions that balance hardware costs 

and transmission performance. To combat the higher free-

space path loss compared to microwave signals below 6 GHz, 

a large antenna array is essential. The large antennas make 

channel estimation a challenging issue because of the large 

number of channel matrices [1-4]. 

To address the challenges, mmWave channel estimation 

face, beam scanning, beamforming and alignment methods 

are studied in the literature. Beamforming is a technique used 

in modern wireless systems that directs the radio signal on a 

specific device/User Equipment (UE) [5]. For the 

effectiveness of directional beamforming, reliable Channel 

State Information (CSI) is required. However, because of the 

mobility of the UE, transmitter, and the presence of scattering 

objects, the channel conditions vary over time, and acquiring 

CSI is a challenging task in wireless communication. The use 

of large antenna arrays and complex hardware architecture of 

transceivers is another reason which makes it difficult to 

acquire CSI [6]. These challenges have driven the recent 

efforts in developing hardware-efficient transceivers, 

supported with efficient beamforming algorithms that reduce 

the overhead in beam selection tasks. The initial proposal in 

the literature is analog beamforming, supported with a phase 

shifter network to give different phases to the signal fed to 

each antenna called analog beamforming which has low 

complexity and is used for indoor mmWave systems [7]. 

However, analog beamforming only supports single-stream 

transmission, so available spatial resources are underutilized. 

To further improve performance, hybrid beamforming (HBF) 

has been proposed as a cost-effective approach to support 

spatial multiplexing with the limited number of RF chains 

whose potential is demonstrated in [8, 9]. HBF technology 

has emerged as a promising solution to meet this demand, 

particularly at Millimeter-Wave (mmWave) frequencies 

where losses are high. HBF balances hardware complexity 

and transmission performance by combining analogue and 

digital beamformers, making it an attractive solution for next-

generation wireless communication systems. It achieves 

spectral efficiency comparable to fully digital beamforming 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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with much-reduced hardware complexity. The use of 

Machine Learning (ML) for the next-generation wireless 

network has been explored in recent studies to address 

various problems, such as network management, self-

organization, self-healing, and optimizations in our physical 

layer [10, 11]. Deep Learning (DL), a special category of ML, 

has given the best performance in the domain of speech 

processing and computational vision. This paper explores 

another subset of machine learning: Neural network (NN) for 

beamforming applications. As mentioned earlier, the 

mmWave channels are dynamic and suffer from huge path 

loss; hence, a technical challenge is beam alignment from the 

base station to the user equipment to get the initial access. 

During initial access, the UE establishes a physical 

connection with the base station, which must be completed 

before any data transmission begins.   

Using large antenna arrays at mmWave requires an 

extensive search over all beams presented in [12]. In [13], 

authors have presented a categorized beam search where the 

base station starts scanning a wider beam and then iteratively 

comes down to a narrower beam. Such a method decreases 

latency compared with extensive search but provides the 

worst coverage to the users on the cell boundary. Another 

study in [14, 15] presents that the base station steers the beam 

towards UE when UE locations are known, and such an 

approach will be susceptible to the errors caused by scattering 

objects present between the base station and UE. The study 

on the application of ML to the beam training problem is 

carried out in the literature. In [16], authors have shown that 

the CNN technique solves a non-convex problem with the 

analog beamformer as the final optimization aim. Another 

self-defined network layer guarantees the result meets the 

constant frequency condition. The increasing demand for 

high-speed wireless communication has driven research into 

efficiency beamforming techniques. 

The conventional approach to beam scanning and 

searching includes iterative algorithms and gradient-based 

methods that make computations expensive. This leads to 

complexity as the number of antennas grows in large MIMO 

systems. Compared with the neural network-based approach, 

where the bulk of computation is moved offline during the 

training phase, once the neural network is trained, the task of 

beam searching is much faster and more efficient even in the 

interference and for the fast fading channel conditions. 

Additionally, training neural networks for the large dataset 

can help learn more non-linear mappings from channel 

conditions to beamforming vectors, capturing the range of 

practical channel impairments. Also once the network is 

designed, the same network architecture can be fine-tuned for 

the new conditions like different SNR levels, antenna array 

sizes, new channel conditions and user mobility patterns.      

This paper explores the potential of neural networks in 

beam searching and beam selection tasks, which reduces the 

overhead of the network. The neural network will be trained 

with UE locations, and the output will be the optimal beam 

pair index, which will reduce the overhead in searching the 

beam in the selected beam pair index instead of exhaustive 

search over all the beam pairs. Neural Network Hybrid 

Beamforming (NHBF) optimizes the performance of Hybrid 

Beamforming (HBF) for a MIMO system to enhance spectral 

efficiency, considering the transmitter’s power limitation and 

the typical continuous modulus restriction of phase shifters. 

In the context of wireless communication, Spectral 

Efficiency (SE) refers to the efficient use of available 

bandwidth to maximize data transmission rates. The 

performance of the model is evaluated by computing 

parameters like spectral efficiency, energy efficiency, total 

power consumption and Bit Error Rate (BER) for the 

different values of signal-to-noise ratio.  

The rest of the paper is organized as follows. Related 

work in the form of a literature survey is presented in section 

2. The methodology and design of neural networks are 

presented in section 3. Performance parameters of model 

evaluation are described in section 4, the result and 

discussion are presented in section 5, followed by conclusion 

and future work in section 6.  

2. Literature Survey 
In massive Multiple-Input Multiple-Output systems, 

HBF is a crucial technique for minimizing hardware and 

computational expenses. However, its effectiveness depends 

on various factors, including Channel State Information 

(CSI), bandwidth, and complexity. Understanding the trade-

offs between these factors is essential to achieve optimal 

performance, as they directly impact the system’s ability to 

meet its objectives. By considering these factors, researchers 

can identify research gaps, develop innovative solutions, and 

advance the state-of-the-art in HBF for massive MIMO 

systems, ultimately enhancing network capacity and 

performance [17].  

The enormous number of base station transmitters at 

mmWave frequencies makes CSI problematic. Effective 

channel estimates may be produced via step-length reduction. 

[18]. Compared to traditional beamforming approaches 

employing faculty CSI and hardware constraints, a deep 

learning-based neural network for mmWave MIMO system 

may improve beamforming designs and boost spectrum 

efficiency [19]. Considering the amount of BS antenna 

components, scheduling many UEs concurrently maximises 

spectral efficiency in MIMO systems. Downlink (DL) and 

Uplink (UL) may have equal spectral effectiveness, enabling 

cooperative connection efficiency without real-time user 

entity location [20].  

MIMO-NOMA systems have been the subject of 

extensive research due to their ability to greatly increase the 

number of supportable users, improving the system sum 
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capacity [21]. The HBF large-scale MIMO system offers a 

favourable trade-off between system performance and 

hardware complexity, making it a potential communication 

technology [22]. To calculate frequency band gain, sent 

information properties, noise, and received signal were used. 

In [23], the authors evaluated downlink Rayleigh propagation 

network completeness.  

The simulation illustrates that the idea works better and 

suggests a new channel estimate method to improve 5G 

MIMO efficiency. The wavelength estimation method for 

large MIMO mmWave technology is used in [24]. The study 

recommended super-resolution-based channel prediction 

using a hybrid present code structure.  

Incremental mesh upgrade includes azimuth and 

elevation angles for off-grid settings. Simple weighted 

average values and data combining inaccuracy for channel 

prediction were new purpose challenges. The proposed 

research has good spectrum effectiveness, AoD/AoD, 

prediction reliability, and NMSE.  

Incorporating restricted data into channel predictions 

decreased overhead [25]. This study assessed downstream 

channels using pilot signals. Downstream frequencies are 

mostly computed from response data. Smoothing standard 

reduction solved joint sparsity. Testing showed the suggested 

work had better accuracy and pilot costs. Researchers used 

neural networks to forecast mmWave MIMO channels [26].  

Using a uniform planar antenna array, a blind multiuser 

identification technique creates strong MIMO systems. As a 

sparse matrix with non-zero coefficients forming clusters, 

researchers model the channel in the angular domain. By 

integrating the MRF model into the bilinear framework, 

authors have constructed a robust messaging system.
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3. Research Methodology  
3.1. Data Preparation  

To estimate Channel State Information (CSI) in a sparse 

transmission MIMO scenario, a comprehensive data 

preparation process is undertaken. Beamforming parameters 

and channel matrices are collected and organised into 

separate databases for testing, training, and validation.  

 

The databases are structured to include beamforming 

parameters resulting from categories and channel matrices as 

input parameters, enabling the development and evaluation 

of accurate CSI estimation. Through this process the power 

of machine learning is harnessed to improve beamforming 

and overall system performance in sparse transmission 

MIMO systems. Figure 1 shows the methodology used.  

 

3.2. Designing Neural Network Architecture   

3.2.1. Input Layer 

The input layer receives the 64 X 64 channel matrix, 

which represents the complex interactions between transmits 

and receives antennas. This later serves as the foundation for 

the neural network, providing the raw data that will be 

processed and refined in subsequent layers.  

 

3.2.2. Hidden Layer 

The two hidden layers are where the neural network’s 

complexity and learning capabilities shine. The first hidden 

layer consists of 128 neurons with ReLU activation, 

extracting initial features from the channel matrix.  

 

The second hidden layer has 256 neurons with Tanh 

activation, refining feature extracting and learning nonlinear 

relationships between inputs and outputs.  

 

3.2.3. Output Layer 

The output layer produces the 64 X 64 beamforming 

weights, which combine signals from individual antennas and 

form the beams. This layer takes the refined features and 

learned relationships from the hidden layers and generates the 

final output, enabling accurate beamforming decisions that 

enhance system performance. The network designed in 

MATLAB is shown in Figure 2.  

 

3.3. Network Training  

The Mean Squared Error (MSE) loss function measures 

the average squared difference between predicted and actual 

beam formation data. This loss function is used to quantify 

the error between the neural network’s predictions and actual 

beamforming weights.  

 

𝐿𝑜𝑠𝑠 =
1

𝑁
∑ (𝐴𝑐𝑡𝑢𝑎𝑙𝑖 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖)2𝑁

𝑖=1           (1) 

 

Where N is the total number of data points, 𝐴𝑐𝑡𝑢𝑎𝑙𝑖is 

actual beamforming weights for data point i and 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖  

is predicted beamforming weights for data point i, Loss is 

Mean Squared Error (MSE).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Design of neural network  
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3.3.1. Optimization Algorithm 

The Levenberg-Marquardt (LM) algorithm is a popular 

optimization technique used in neural network training. It is 

a variant of the Gauss-Newton method, which combines the 

benefits of gradient descent and Newton’s method. LM is 

particularly effective for nonlinear least squares problems, 

making it suitable for neural network optimization.  

 

The optimization iteration technique collection focuses 

on solving complex least-square problems. A prediction error 

or loss function is developed in neural network development, 

and the LM approach reduces variation between real and 

projected nonlinear function outcomes. 

 

Algorithm 1: The Iterative LM Algorithm 

Input: Model parameters (θ), Damping factor (λ) 

Output: updating ‘θ’ 

1: Initialize: θ and λ; 

2: Compute: Jacobian matrix (J) of the loss function w.r.t 

‘θ’; 

3: Compute: Gradient of the loss (g)  w.r.t ‘θ’ ; 

4: Compute: Hessian matrix (H) w.r.t ‘θ’; 

5: Update: ‘θ’ using LM update rule; 

6: 𝑖 ← 𝑖 + 1; 
7: repeat 

8: until all data points are covered; 

9: update final value of ‘θ’  

 

The Levenberg-Marquardt (LM) method calculates the 

Jacobian matrix for each iteration, which can be 

computationally expensive when dealing with complex 

functions or large dimensions.  

 

To reduce the computational cost, [] proposed a modified 

LM method that reuses the evaluated Jacobian to compute 

both an exact LM step and an approximate LM step at each 

iteration.  

 

This approach was further extended to a multi-step LM 

method, where the 𝑘𝑡ℎ iteration, one exact LM step and 𝑝 −
1 approximate LM steps are computed, reducing the number 

of Jacobian evaluations and linear algebra operations.  

 

3.3.2. Training Process 

The channel matrix is input to the neural network, and 

network weights are adjusted during training to minimize the 

discrepancy between predicted and actual beamforming 

weights. The network is trained using a dataset of labelled 

examples, where each example consists of a channel matrix 

and corresponding beamforming weights. After training, the 

network’s performance is validated using a separate dataset 

to ensure it generalizes well to unseen data and avoids 

overfitting. By iteratively updating the network weights and 

validating its performance, the neural network learns to 

accurately predict beamforming weights from channel 

matrices, enabling efficient beamforming in the system. This 

process enables the network to adapt to varying channel 

conditions and optimize beamforming for improved system 

performance.  

 

3.4. Neural Network Hybrid Beamforming (NHBF)  

Neural network hybrid beamforming uses analog and 

digital beamforming to improve performance. The neural 

network minimizes the system’s loss function, which is 

usually linked to signal quality, interference, and noise.  

 

As shown in Figure 3, the traditional hybrid 

beamforming system can be modified into a neural network-

based hybrid beamforming system. Single-user MIMO 

system with 𝑁𝑠 data stream followed by 𝑁𝑡
𝑟𝑓radio frequency 

(RF) chains going through 𝑁𝑡 antennas on the transmitting 

side. On the receiving side, the there 𝑁𝑟 antennas followed by 

𝑁𝑟
𝑟𝑓 RF chains.  

 

Digital beamformer (𝐹𝑏𝑏) consists of the hardware 

architecture of 𝑁𝑡
𝑟𝑓 × 𝑁𝑠, followed by 𝑁𝑡 × 𝑁𝑡

𝑟𝑓analog 

beamformer (𝐹𝑟𝑓). To recover the transmitted symbol vector, 

the receiver employs an analog combiner (𝑊𝑟𝑓) and a digital 

combiner (𝑊𝑏𝑏). A neural network with trainable parameters 

𝜃 = {𝑊, 𝑏} is used to define digital beamformer function.  

 

𝑋𝑏𝑏 = 𝑓𝜃(𝑠) = 𝜎(𝑊 ∙ 𝑠 + 𝑏)                      (2) 

 

For a traditional digital beamformer, the signal 

processing is a matrix-vector multiplication as 𝑋𝑏𝑏 = 𝐹𝑏𝑏𝑠, 

where both 𝑋𝑏𝑏 and 𝑠 represent the magnitude and phase of 

the signal.  

 

The digital beamformer output is Xbb ∈ℝ
𝑁𝑡

𝑟𝑓
×1

, where 𝜎 

is the activation function, which is the hyperbolic tangent 

function𝜎(𝑥) = tanh (𝑥). The weight and bias of the neural 

network is denoted as W and b. With several neural network 

layers, the NN-based digital beamformer function is  

 

𝑋𝑏𝑏 = 𝑓𝜃(… . 𝑓𝜃(𝑓𝜃(𝑠)))                        (3) 

 

Further additive channel noise is added to the NHBF 

system’s channel layer.  

 

𝑦 = 𝐻𝑋𝑏𝑏 + 𝑛                                     (4) 

 

𝑦 = (𝑃𝑝𝑜𝑤(𝑔𝑤(𝑓𝜃(𝑠))) 𝐻 + 𝑛                     (5) 

 

Where 𝑦 is the received signal at the receiver end, 𝑃𝑝𝑜𝑤is 

the power of the signal transmitted with non-linear effects of 

the amplifier,  𝑔𝑤 are complex weights applied to the signal 

to steer the beam in a specific direction, 𝐻 is the channel 

matrix, which represents complex interactions between the 

transmit and receive antennas, 𝑛 is the noise vector, which 

represents the random noise added to the signal.  
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(a) Traditional Hybrid Beamforming (HBF) 

 
(b) Neural Network Hybrid Beamforming (NHBF) 

 

Fig. 3 Illustration of hybrid beamforming (a) Traditional Hybrid Beamforming (HBF) and (b) Neural Network Hybrid Beamforming (NHBF) 

 

Algorithm 2: Neural Network Hybrid Beamforming 

(NHBF) 

Input: Transmitter signal (X), channel state information 

(CSI), Beamforming weights (W) 

Output: Predicted signal (Y) 

1: NN_Output: NN (X, CSI), predict beamforming 

weights using the neural network; 

2: W_Hybrid: combine (W, NN_Output), combine 

traditional and neural network weights; 

3: Y: beamform (X,W_Hybrid), beamforming using 

hybrid weights; 

4:  Output: Y 

 

4. Model Evaluation 
A test dataset is a separate collection of data used to 

evaluate the performance of a trained machine learning mode, 

typically consisting of 20-30% of the total data. This dataset 

assesses the model’s accuracy and testing on unseen data.  

To evaluate the beamforming model’s performance, 

metrics such as Mean Squared Error (MSE) and Signal Noise 

Ratio (SNR) are used.  

By maximizing SNR and minimizing MSE, the model 

can produce accurate beamforming weights, ensuring reliable 

and high-quality signal transmission.   
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4.1. Mean Squared Error (MSE)  

Mean Squared Error is the mean squared deviation 

between the reality (desired) signal and the normal (received) 

signal.  

𝑀𝑆𝐸 = 𝐸[(𝑦 − 𝑦̂)]                             (6) 

Where MSE is a mean squared error, E is the expected 

value, y is the actual value, 𝑦̂ is the predicted value output of 

the model or estimator.  

4.2. Spectral Efficiency (SE)  

Spectral efficiency measures the amount of data delivered 

across a network with a given bandwidth without affecting 

service. It is also known as channel capacity, transmission 

efficiency, or bandwidth efficiency. It is expressed in bps/Hz.  

𝑆𝐸 =  
𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝑏𝑖𝑡𝑟𝑎𝑡𝑒

𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
                              (7) 

4.3. Energy Efficiency (EE)  

Implementing machine learning and neural networks 

optimizes the beam search to selected beam pair indices 

instead of an exhaustive search of all beam pair indices. 

Hence, it focuses signal energy in the desired directions while 

minimizing interference and maintaining link quality. It is 

defined as the number of bits sent per power consumption 

unit. It’s expressed in bits/joules.  

5. Results and Discussion 
This section presents the performance evaluation of the 

proposed Neural Network Hybrid Beamforming (NHBF) and 

its results. We use conventional Hyperparameter settings for 

individual user systems in NHBF modelling.  

The simulation network design is based on mathematical 

principles, with accidental Laplacian allocation determining 

arrival and departure locations and standardized sampling 

determining collection angles from[0,2𝜋] as described in 

[12]. We assume systematic coordination and channel 

estimations.  

The number of data channels and RF signal chains are 

equal. We set the connection size and hyperparameters 

according to Table 1. The time and complexity of back-

propagation in the neural network depend on the number of 

neurons in each layer, epochs (N), and training samples (M).  

Figure 4 demonstrates the validation of a machine 

learning model’s performance on unseen data, ensuring its 

ability to generalize well. The validation curve shows the 

model’s performance metrics, such as accuracy and MSE, 

over time. A comparison between training and validation 

performance reveals any potential overfitting. Figure 2 

provides a comprehensive evaluation of the model’s 

strengths and weaknesses, allowing for informed decisions to 

improve its performance.  

Table 1. Setting of hyperparameters  

Configuration Values 

Number of base station Tx 

antennas 
16 

Number of mobile station 

Rx antennas 
16 

Antenna configuration Uniform rectangular array 

Antenna spacing 0.5λ 

Position of UE 
Azimuth angle: [-180 180] 

Elevation angle: [-90 90] 

Position of BS [0 0] 

Maximum range of MS 1 km 

Carrier frequency (GHz) 28 

Modulation scheme 16-QAM 

Channel sampling rate 100 × 106 samples/sec 

Channel type MIMO, sparse propagation 

Noise figure (dB) 5-10 

Number of rays for 

partitioning 𝐹𝑟𝑓 , 𝐹𝑏𝑏 

500 

 

 

 

 

 

 

 

 

 
Fig. 4 Validation of performance  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 The training states for gradient, MSE and validation 
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Figure 5 illustrates the interplay between gradient, MSE 

and validation during model training. As the gradient 

decreases, indicating improved parameter optimization, the 

MSE also decreases, which reflects reduced error between 

predicted and actual values. The validation curve tracks the 

model’s performance on unseen data, ensuring good 

generalization. The closely related gradient and MSE curves 

demonstrate improved performance of the model, and 

validation curves confirm its ability to generalize well to new 

unseen data.  

 
Fig. 6 Error histogram with 20 bins   

   Figure 6 presents an error histogram with 20 bins, 

providing a visual representation of the distribution of errors 

in the regression model. The histogram reveals a skewed 

distribution, indicating that the errors are not normally 

distributed. Most errors are concentrated in the central bins, 

with fewer errors in the outer bins. However, there are 

noticeable peaks in the higher error bins, suggesting the 

presence of outliers or anomalies in the data. This histogram 

offers valuable insights into the model’s performance, 

highlighting areas that require improvement to achieve more 

accurate predictions.  

Figure 7 compares the recommended and present 

regression bin training stages. It presents the comparative 

analysis of the recommended and present regression bin 

training stages, revealing a notable discrepancy in 

performance. The recommended approach, depicted by the 

solid line, exhibits a steady and consistent increase in 

accuracy as the training stage progresses, whereas the present 

approach, represented by the dashed line, displays a more 

erratic and variable performance. This divergence suggests 

that the current training process can be optimized to achieve 

better accuracy and model performance by adopting the 

recommended approach. By doing so, the training process 

can be refined to yield more consistent and reliable results, 

leading to improved overall performance.  

 
Fig. 7 Regression validation 

 

5.1. Performance Comparison of 16 X 16 MIMO (SNR 

Range -20 to 10)  

Parameters are set as per Table 1, and simulations are 

done in MATLAB by designing a neural network for hybrid 

beamforming (NHBF) with 16 transmitting antennas and 16 

receiving antennas. The performance of various parameters 

such as spectral efficiency, BER, energy efficiency and total 

power consumption is plotted for the positive and negative 

values of SNR, and results are compared with hybrid 

beamforming (HBF) shown in the figure below.  

 

 

 

 

 

 

 

 

Fig. 8 Spectral efficiency vs SNR for 16 X 16 MIMO system 
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provides a spectral efficiency of 2.27 bps/Hz, and NHBF 

provides a higher value of 4.35 bps/Hz, which is further 

improved to 10.46 bps/Hz for SNR =10 compared to NBF, 

which has a maximum value of 8.12.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 BER vs SNR for 16 X 16 MIMO system (SNR range -20 to 10) 

As seen in Figure 9, a similar variation in the bit error 

rate is seen for the negative values of SNR as that of spectral 

efficiency. However, BER is 1.04 × 10−6 for SNR of 5dB, 

and a further lower value of BER is obtained at SNR of 10 

dB as 3.66 × 10−46 for NHBF compared to HBF. 

 
Fig. 10 SNR vs Total power consumption for 16 X 16 MIMO system 

 

The curve of total power consumption is plotted for the 

different values of SNR, which are shown in Figure 10. From 

the figure, it can be seen that when the value of SNR is 0, 

power consumption for NHBF is high, 0.049 watts, compared 

to HBF, which is 0.046 watts. However, when the SNR value 

increases further, the power consumption of the proposed 

NHBF method reduces to 5.28 × 10−8 compared to 0.005 of 

HBF. It shows the improvement in total power consumption 

of our proposed method, NHBF. 

 
Fig. 11 SNR vs Energy efficiency for 16 X 16 MIMO system 

 

Figure 11 shows the energy efficiency curve vs. SNR for 

the 16 × 16 MIMO system. There is a significant 

improvement in the energy efficiency of NHBF compared 

with HBF at the lower positive value of SNR of 5dB.  

 

Further, the value of energy efficiency is 1.78 × 10−5 

bps/J for the proposed NHBF model, which is higher than 

HBF at an SNR of 10.  

 

5.2. Performance Comparison of 16 X 16 MIMO (SNR 

Range 0 to 30) 

 
Fig. 12 Spectral efficiency vs SNR for 16 X 16 MIMO system 

 

Figure 12 shows the spectral efficiency curve for the 

positive range of SNR from 0 to 30 dB. It has been observed 

that the value of spectral efficiency is higher for NHBF 

compared to HBF for all the values of SNR. The maximum 

value is obtained for NHBF of 35.17 bps/Hz compared with 

32.83 bps/Hz of HBF.  
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Fig. 13 BER vs SNR for 16 X 16 MIMO system (SNR range 0 to 30) 

 

Figure 13 shows the plot of BER for the positive values 

of SNR. It is observed that the proposed NHBF model has 

less BER than the HBF model.  

 

Figure 14 shows the total power consumption for positive 

values of SNR of the NHBF model compared with the HBF 

model. It is observed that for positive values of SNR, there is 

no difference in power consumption between the HBF and 

NHBF models. However, a difference is observed for 

negative values of SNR, and when SNR is 0 dB, 0.046 watts 

is consumed by the HBF model, which is higher compared 

with 0.035 watts of the NHBF model.  
 

 
Fig. 14 Total power consumption vs SNR for 16 X 16 MIMO system 

 

Figure 15 above shows the plot of energy efficiency. It is 

observed that the value of energy efficiency is nearly the 

same for the HBF and NHBF models. However, a significant 

difference is observed in the value of energy efficiency       

5.19 X 10-6 bps/J for NHBF, which is higher compared to 

HBF of 1.28 X 10-6 bps/J for the same SNR.  

 
Fig. 15 SNR vs Energy efficiency for 16 X 16 MIMO system 

 

6. Conclusion 
Millimeter wave frequency bands for next-generation 

wireless networks have several advantages, such as increased 

data rate, spectral efficiency, etc. However, the challenge is 

to acquire channel state information in a dynamic channel at 

these frequencies. Beamforming is one of the techniques by 

which an accurate beam can be aligned in the required 

direction where the user is present. The use of neural network 

based hybrid beamforming is presented in this paper for beam 

searching and beam alignment. The designed model is 

evaluated on different performance parameters and compared 

with the traditional hybrid beamforming method. The 

simulations are done for 16 transmitters and 16 receiver 

antenna systems operating at a frequency of 28 GHz. The 

neural network is designed in MATLAB, and different 

performance metrics are calculated and presented in this 

paper. Such a neural network-based hybrid beamforming 

method will find applications in high frequencies and short 

wavelength mmWave bands for precise beamforming. 

Another application could be multiuser MIMO systems 

where users simultaneously attempt to transmit data, and 

neural networks can help dynamically adjust the 

beamforming weight and allot optimal signal power to each 

user based on their location, channel conditions and mobility 

scenarios, thus improving overall system capacity. The 

authors conclude that neural Network-Based Hybrid 

Beamforming (NHBF) is an excellent solution for achieving 

reliable wireless links and diverse scenarios for the MIMO 

systems. Specifically, NHBF yields a high spectra efficiency 

of 35.17bps/Hz compared with Hybrid Beamforming (HBF), 

which has 32.83bps/Hz at 20 dB SNR. Furthermore, NHBF 

achieves a minimum bit error rate of 6.2 × 10-6 at 15 dB SNR. 

Additionally, a high energy efficiency gain of 5.19 X 10-6 

bps/J is obtained. These remarkable metrics underscore the 

system’s ability to optimize wireless communication 

performance in the sparse propagation environment, making 

it an attractive solution for various applications, including 5G 
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and beyond, IoT, and mission-critical communications and 

paving the way for future wireless networks that are faster, 

more reliable, and more energy-efficient. Future research 

directions include exploring the system’s application in 

emerging wireless technologies like Terahertz (THz) 

communications and massive MIMO. Investigating advanced 

neural network architectures to enhance performance and 

adaptability is also crucial. Additionally, examining 

scalability and robustness in complex environments and 

integration with other wireless technologies is necessary.  
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