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Abstract - Sickle Cell Anemia (SCA) is a prevalent genetic blood disorder that disproportionately affects the health of the 

Nilgiri tribes. Early and accurate diagnosis is pivotal for effective management of the disease. This research proposes an 

innovative approach to Multimodal RBC Spot Extraction using Optimized Deep Stacking Network (MRSE-ODSN) Algorithm 

to classify SCA diagnosis within this community by harnessing the synergies of multimodal Red Blood Cell (RBC) image 

analysis. The MRSE-ODSN framework begins with acquiring diverse RBC images encompassing brightfield microscopy, 

phase-contrast imaging, and fluorescence microscopy. Each imaging modality captures distinctive aspects of RBC 

morphology and function. The sample data were collected from the NAWA-Nilgiri Adivasi Welfare Association in Nilgris, 

which contains data from 300 patients with 14 features related to SCA that were acquired. Rigorous preprocessing and 

augmentation techniques ensure data quality and resilience. A sophisticated architecture tailored for sequential feature 

extraction from multimodal RBC images. ODSN expertly integrates with CNN to classify sickle cell anemia efficiently within 

the Nilgiri tribes. The proposed model obtained 98.01 percent accuracy. By employing MRSE-ODSN, healthcare 

practitioners can potentially offer timely interventions, personalized treatments, and enhanced disease management 

strategies, thereby positively impacting the health and well-being of the Nilgiri tribes. 

 

Keywords - Sickle Cell Anemia, Classification, Red Blood Cell, Multimodal RBC Spot Extraction, Optimized Deep Stacking 

Network, Convolution Neural Network, Nilgiri tribes. 

1. Introduction 
Sickle cell anemia is a genetic blood disorder marked 

by the occurrence of defective hemoglobin, the protein that 

transports oxygen through the body. This inherited 

condition primarily affects Red Blood Cells (RBCs), 

causing them to assume a characteristic sickle or crescent 

shape [1]. These deformed RBCs are less flexible and have 

a reduced ability to flow smoothly through blood vessels, 

leading to various health complications [2]. A Genetic blood 

disorder that varies in occurrence among different 

populations, including indigenous communities [3]. Among 

these communities, the Nilgiri tribes stand out due to their 

unique genetic makeup and historical isolation. 

Understanding and addressing the prevalence of sickle cell 

anemia within the Nilgiri tribes is essential for providing 

targeted healthcare interventions and raising awareness 

about this hereditary condition [4]. 

 

The Nilgiri tribes residing in the Nilgiri Hills of India 

represent a distinctive population with their own cultural 

practices and genetic heritage. The prevalence of sickle cell 

anemia within this community is important because of its 

potential influence on the health of the tribe’s members [5]. 

There are several types of sickle cell anemia, each caused 

by specific genetic mutations [6, 7]. The foremost types of 

sickle cell anemia include: 

 

Hemoglobin SS Disease (HbSS): This is the most 

prevalent and dangerous form of sickle cell anaemia. It 

happens when a person inherits two copies of the 

hemoglobin S gene (HbS) - one from each parent. People 

with HbSS experience frequent and severe symptoms, 

including pain crises, anemia, and organ damage. 

 

Hemoglobin SC Disease (HbSC): Hemoglobin SC 

disease consequences from getting one HbS gene and one 

hemoglobin C gene (HbC) from each parent. It causes 

milder symptoms compared to HbSS but can still lead to 

anemia, pain, and organ complications. 

 

Hemoglobin Sβ-Thalassemia (HbSβ-Thalassemia): 

This type occurs when a person inherits one HbS gene and 

one β-thalassemia gene from their parents. β-thalassemia is 

a condition that affects the invention of beta-globin chains 

of hemoglobin. The severity of symptoms varies based on 

the specific type of β-thalassemia gene inherited. 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Hemoglobin SD Disease (HbSD): Hemoglobin SD 

disease is a less common type that occurs when an 

individual inherits one HbS gene and one hemoglobin D 

gene (HbD) from each parent. The symptoms are generally 

milder compared to HbSS or HbSC. 

Other Variants and Subtypes: There are additional less 

common variants and subtypes of sickle cell anemia 

resulting from different combinations of hemoglobin 

mutations, such as hemoglobin SE disease and hemoglobin 

SO-Arab disease. 

Genetic counseling and medical guidance are crucial 

for individuals and families affected by sickle cell anemia to 

understand their specific type and make informed decisions 

about their healthcare [8]. 

Understanding and addressing the prevalence of sickle 

cell anemia within the Nilgiri tribes is of utmost significance 

due to its potential effect on the health and happiness of 

these communities [9]. The unique genetic characteristics of 

the tribes, combined with challenges in healthcare access 

and cultural factors, necessitate innovative approaches for 

accurate diagnosis and classification.  

 

The key challenges are the varying severity of sickle 

cell anemia and the genetic diversity among different 

subgroups of Nilgiri tribes, which present challenges for 

accurate classification.  

 

Limited healthcare resources and remote geographical 

locations can hinder timely and accurate medical 

interventions [10]. Cultural beliefs and practices may 

influence individuals’ attitudes towards medical procedures 

and interventions. 

The primary objective of this study is to enhance the 

classification accuracy of sickle cell anemia in Nilgiri tribes 

through the integration of multimodal RBC spot extraction 

and an optimized deep stacking network algorithm. 

1.1. Expected Outcomes and Impact 

The novelty of this work lies in combining multiple 

imaging modalities (brightfield, phase-contrast, and 

fluorescence microscopy) with the Optimized Deep 

Stacking Network (MRSE-ODSN) for enhanced RBC 

feature extraction, which hasn’t been explored in previous 

SCA studies. Unlike single-modality approaches, our 

method achieves a 98.01% accuracy, outperforming 

traditional techniques in diagnosing SCA in the Nilgiri 

tribes. This study is expected to yield several impactful 

outcomes: 

1.1.1. Enhanced Accuracy 

Integrating multimodal data and an optimized deep 

stacking network is anticipated to improve accuracy in 

sickle cell anemia classification. 

1.1.2. Targeted Healthcare 

The enhanced classification accuracy can contribute to 

more targeted healthcare interventions for individuals 

affected by the disease. 

1.1.3. Cultural Empathy 

Integrating cultural values and sensitivities fosters 

better acceptance and participation in medical procedures 

within the Nilgiri tribes. 

1.1.4. Empowered Decision-Making 

Accurate classification and severity assessment enable 

informed medical decisions and genetic counseling. 

Through the innovative fusion of multimodal data and 

advanced machine learning techniques, this study endeavors 

to revolutionize the classification of sickle cell anemia in 

Nilgiri tribes, ultimately improving these communities’ 

health outcomes and quality of life. 

Sickle Cell Anemia (SCA) significantly impacts the 

Nilgiri tribes, but early diagnosis is hindered by limited 

resources and single-modality imaging. This research 

proposes a Multimodal RBC Spot Extraction using an 

Optimized Deep Stacking Network (MRSE-ODSN) 

Algorithm, combining diverse imaging techniques for 

precise SCA classification and improved disease 

management. 

2. Related Works 
This section presents various methods available from 

existing sources that are mainly helpful in identifying sickle 

cell disease. Various researchers have tried to identify sickle 

cell disease in the early stages. 

Medical professionals use machine learning algorithms 

to identify sickle cell abnormalities in patients in order to 

aid in the process of early identification of sickle cell 

anaemia. For the purpose of diagnosing sickle cell illness, 

the authors of this study [11] created a canny edge and 

double threshold method to identify overlapping red blood 

cells.  

SCD is one of a number of diseases that are difficult to 

diagnose and treat in many of the countries that are located 

in this region of the globe due to a lack of crucial diagnostic 

and therapeutic tools. As a consequence, there is an urgent 

need to develop methods that are both affordable and 

susceptible to control for the identification and diagnosis of 

SCD. This research [12] proposes innovative strategies for 

the diagnosis of SCD that make use of Plain Convolution 

Neural Networks. 

After the image has been subjected to the appropriate 

image analyzing technique for better improvements, the 

techniques are used and issued to morphological processing 

in order to lessen the noise in the image; it is then subjected 

to the classifier technique, which is a sort of ML in which 

an algorithm examines the area and perimeter of a cell to 

discover the different types of cells that need to be classified 

[13]. The image collected from the subjects is then applied 

to the classifier method.  

DNN analysis was used in this research [14] to provide 

a novel automated approach for counting pitted RBCs. The 

second step was to evaluate the stability of fixed RBCs for 

pitting RBC numbers throughout the course of time. An oil-



Maria Sheeba & K. Sarojini / IJECE, 12(2), 107-119, 2025 

109 

immersion objective was used to examine the cells after they 

had been fixed in paraformaldehyde, and microscopy 

images were captured.  

A single random phase encoding biosensor that is small, 

field portable, lensless, and present in this study [15] was 

provided for the purpose of automating the differentiation of 

healthy human red blood cells from those affected by sickle 

cell disease. A lensless method is used to identify diseases 

by having healthy and sickle cell disease-affected human 

donors’ entire blood samples on microscope slides. The 

healthy donors’ blood samples were not affected by sickle 

cell disease.  

This study [16] includes AI models evaluated on 

clinical data acquired by utilizing five distinct classifiers. 

These models were tested using data collected by the 

hospital. Analyzing the models with regard to the accuracy 

of kappa statistics and the classification time allowed for the 

selection of the classification strategy that proved to be the 

most effective.  

The findings of this research suggest the development 

of a model capable of accurately categorizing these images 

as either healthy RBC or SC images. Comparative analysis 

was performed on the results produced by five different 

Deep Learning models using two distinct optimizers. 

According to the findings of the research [17], transfer 

learning using the VGG16 model helped obtain features 

from images in order to do the classification. 

A potential and affordable measure for monitoring the 

clinical condition of sickle cell disease patients is the 

percentage of RBC that adopt a certain motion when 

exposed to low shear flow. The purpose of this research [18] 

was to propose a two-stage end-to-end machine learning 

pipeline capable of automatically classifying cell 

movements in films with a large class imbalance. The 

dataset and the scripts were made available to the public. 

This study [19] offered a unique and efficient deep-

learning strategy for identifying sickle cell anaemia. This 

approach was developed by the authors of this work. From 

the publicly available database, around nine hundred images 

of human RBC under a microscope are retrieved. Each of 

the images has been scaled down to the same dimensions. 

Additionally, the sickle cell trait may be identified with the 

use of a conventional InceptionV3 model by using the 

SoftMax layer.  

In this work [20], transfer learning of a pre-trained 

AlexNet model is presented for the categorization of illness 

versus trait instances. The suggested approach has the 

greatest classification accuracy possible, which is 95.5%. 

For the purpose of this study [21], de-identified patient 

data from 12 years’ worth of SCA patients were collected 

legitimately from the hospital and then tested in connection 

to SCA patients’ medical records. A text mining framework 

was used in this study to analyze and forecast the duration 

of stay of SCA patients using three different machine 

learning models. 

This article [22] provided a new image processing-

based technique that can be readily implemented into a 

smartphone together with low-cost imaging equipment. It 

has been determined that the distortion generated by 

haemoglobin may be mapped to the geometric features of 

the sickle form.  

Recent studies have explored deep learning models for 

automated SCA classification, but many rely on a single 

imaging modality, limiting their accuracy and robustness. 

Furthermore, multimodal imaging has been underexplored 

in SCA detection despite its potential to provide a more 

comprehensive understanding of RBC morphology. This 

research fills these gaps by combining multiple imaging 

techniques with an optimized deep learning architecture, 

improving classification performance and diagnostic 

accuracy. 

3. Proposed Model 
The overall architecture of classifying sickle cell 

anemia, as shown in Figure 1, can be divided into four main 

steps: The first step is to acquire an image of the blood cells. 

This can be done using a microscope. The next step is to 

preprocess the image to remove noise and improve the 

contrast. This can be done using techniques such as noise 

filtering and data augmentation. The third step is to extract 

features by Multimodal RBC Spot Extraction from the 

image that can be used to classify the blood cells. These 

features can be based on the blood cells’ shape, size, and 

texture. The final step is to classify the blood cells as either 

sickle cells or healthy cells. This can be done by using 

an optimized Deep Stacked CNN Model. 

3.1. Data Acquisition and Preprocessing 

The dataset utilized for assessment in this study is real-

time data. This dataset comprises information from 300 

patients with 14 SCA-related characteristics. The data set 

was divided into 60% for training and 40% for testing for 

performance analysis. This real-time data was gathered 

from the NAWA-Nilgiri Adivasi Welfare Association in the 

Nilgiris district. A total of 300 samples were obtained, 

including 187 female and 113 male samples. The patients’ 

ages range from 3 to 72. Acquire images of blood samples 

using different imaging modalities. Each modality might 

highlight different features of the red blood cells, such as 

size, shape, or presence of specific molecules. Apply 

preprocessing techniques to enhance the quality of the 

images and remove noise, as shown in Figure 2.  

Convert color images to grayscale to simplify the data 

while retaining important structural information. 

If Icolor is the original color image, H x W x C, where 

H is height, W is width, and C is the number of color 

channels (usually 3 for RGB images); then the grayscale 

image 𝐼𝑔𝑟𝑎𝑦 is obtained by averaging color channels: 

𝐼𝑔𝑟𝑎𝑦(𝑥, 𝑦) =  
1

𝐶
∑ 𝐼𝑐𝑜𝑙𝑜𝑟(𝑥, 𝑦, 𝑐)

𝐶

𝑐=1
        (1) 
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Fig. 1 Overall architecture of proposed work 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 Data acquisition and preprocessing 

For contrast stretching, if Iinput has pixel values in the 

range [0, 255], the enhanced image Ienhanced(x, y) can be 

obtained using: 

𝐼𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑(𝑥, 𝑦) =  
255

𝐼𝑚𝑎𝑥 ∙ 𝐼𝑚𝑖𝑛

 . 𝐼𝑖𝑛𝑝𝑢𝑡(𝑥, 𝑦) − 𝐼𝑚𝑖𝑛      (2) 

Gaussian noise reduction using a convolutional filter 

involves applying a Gaussian kernel to an image to reduce 

noise while preserving important features. The Gaussian 

kernel is a weighted matrix that assigns more weight to the 

central pixel and gradually reduces weight away from the 

center. This technique is effective for reducing random 

noise in an image. 

Generate a Gaussian kernel based on the desired filter size 

and standard deviation. The kernel should have odd 

dimensions to maintain a central pixel. 

Given a kernel size k x k and standard deviation 𝜎 , the 

Gaussian kernel G is calculated as follows: 

𝐺(𝑖, 𝑗) =  
1

2𝜋𝜎2
 ∙ 𝑒𝑥𝑝 (−

𝑖2 +  𝑗2

2𝜎2
)      (3) 

Where G(i, j) is the Gaussian kernel. 

Convolve the Gaussian kernel with the noisy image using a 

convolution operation. 

Given a noisy image 𝐼𝑛𝑜𝑖𝑠𝑦 and the Gaussian kernel G, the 

filtered image 𝐼𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑can be obtained using convolution: 

𝐼𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑥, 𝑦) =  ∑ ∑ 𝐼𝑛𝑜𝑖𝑠𝑦(𝑥 + 𝑖, 𝑦
𝑘

𝑗=−𝑘

𝑘

𝑖=−𝑘

+ 𝑗) , 𝐺(𝑖, 𝑗)                                             (4) 

3.1.1. Data Augmentation 

Data augmentation is the process of applying different 

changes to images in order to generate fresh training 

examples. Data augmentation is a method used in image 

processing that applies different changes to existing images. 

Data augmentation in the context of Red Blood Cell (RBC) 

images might assist in enhancing the resilience and 
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generalization of machine learning models by exposing 

them to a broader variety of variations that might occur in 

real-world scenarios.  

Flip the image horizontally or vertically to simulate 

different orientations of RBCs. 

1. Horizontal Flip:  

𝐼𝑓𝑙𝑖𝑝𝑝𝑒𝑑 (𝑥, 𝑦) = 𝐼(𝑥, 𝑖𝑚𝑎𝑔𝑒_𝑤𝑖𝑑𝑡ℎ − 𝑦 − 1) (5) 

 

2. Vertical Flip: 

 𝐼𝑓𝑙𝑖𝑝𝑝𝑒𝑑 (𝑥, 𝑦) = 𝐼(𝑥, 𝑖𝑚𝑎𝑔𝑒ℎ𝑒𝑖𝑔ℎ𝑡 − 𝑥 − 1, 𝑦)     (6) 

Rotate the image by a certain angle (e.g., 90 degrees, 

180 degrees) to simulate variations in cell orientation. 

𝐼𝑟𝑜𝑡𝑎𝑡𝑒𝑑(𝑥, 𝑦) = 𝐼(𝑟𝑜𝑡𝑎𝑡𝑒_𝑐𝑒𝑛𝑡𝑒𝑟(𝑥, 𝑦, 𝜃))            (7)  

Apply zoom-in or zoom-out transformations to mimic 

images captured at different magnifications. 

 Zoom-In: Horizontal Flip: 

 𝐼𝑧𝑜𝑜𝑚𝑒𝑑 (𝑥, 𝑦) = 𝐼 (
𝑥

𝑧𝑜𝑜𝑚_𝑓𝑎𝑐𝑡𝑜𝑟
,

𝑦

𝑧𝑜𝑜𝑚_𝑓𝑎𝑐𝑡𝑜𝑟
)         (8) 

 Zoom-out: 

𝐼𝑧𝑜𝑜𝑚𝑒𝑑 (𝑥, 𝑦) = 𝐼(𝑥 × 𝑧𝑜𝑜𝑚𝑓𝑎𝑐𝑡𝑜𝑟 , 𝑦 ×

𝑧𝑜𝑜𝑚_𝑓𝑎𝑐𝑡𝑜𝑟)      (9) 

Adjust the brightness and contrast of the image to simulate 

varying lighting conditions. 

 Brightness Adjustment: 

 𝐼𝑏𝑟𝑖𝑔ℎ𝑡 (𝑥, 𝑦) = 𝐼(𝑥, 𝑦) + 𝑏𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠𝑓𝑎𝑐𝑡𝑜𝑟  (10) 

 Contrast adjustment:  𝐼𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 (𝑥, 𝑦) =
𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑓𝑎𝑐𝑡𝑜𝑟 × (𝐼(𝑥, 𝑦) − 𝑚𝑒𝑎𝑛_𝑝𝑖𝑥𝑒𝑙_𝑣𝑎𝑙𝑢𝑒) +

𝑚𝑒𝑎𝑛_𝑝𝑖𝑥𝑒𝑙_𝑣𝑎𝑙𝑢𝑒                                               (11) 

Pseudocode for Data Augmentation Process 

procedure apply_data_augmentation(image: Image, 

augmentation_type: String, params: Dictionary) -> Image 

if augmentation_type == "horizontal_flip": 

augmented_image = flip_horizontally(image) 

else if augmentation_type == "vertical_flip": 

augmented_image = flip_vertically(image) 

    else if augmentation_type == "rotate": 

        angle = params["angle"] 

        augmented_image = rotate_image(image, angle) 

    // Add more cases for other augmentation types 

    return augmented_image 

end procedure 

Data augmentation is typically applied during the 

training phase of a deep learning model. Training the model 

on both the original and augmented images makes it more 

capable of recognizing patterns and features in a wider range 

of scenarios, leading to improved generalization of unseen 

data. 

3.2. Multimodal RBC Spot Extraction 

Multimodal RBC Spot Extraction is the process of 

extracting relevant features and information from different 

imaging modalities to analyze red blood cell (RBC) spots. In 

the context of medical research, especially in fields like 

haematology and diagnostics, multimodal RBC spot 

extraction involves utilizing various imaging techniques to 

capture different aspects of RBCs’ morphology, structure, 

and function. The term multimodal refers to multiple 

imaging modalities, such as brightfield microscopy, phase-

contrast imaging, fluorescence microscopy, or other 

specialized techniques. Each modality provides unique 

information about RBCs, such as cell shape, size, texture, 

and internal components. Integrating data from these 

modalities can enhance the accuracy of analyzing RBCs and 

diagnosing various blood-related disorders. 

Furthermore, since sickle cells are usually diverse in 

form and sometimes touch or overlap, employing a constant 

pixel size might make it impossible to gather all single RBC 

patches. We created a multimodal RBC spot extraction 

approach for our research to address the aforementioned 

issues. Multimodal RBC spot extraction refers to the process 

of extracting red blood cell spots from images acquired 

through multiple imaging modalities, such as brightfield 

microscopy, fluorescence microscopy, etc. The general steps 

involved in multimodal RBC spot extraction are shown in 

Figure 3.

 

 

 

 

 

 

 

Fig. 3 Multimodal RBC spot extraction 
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3.2.1. Segmentation 

Cell segmentation is performed to separate individual 

RBCs from the background and other cells. Different 

segmentation techniques might be used based on the 

characteristics of the images and the imaging modalities. 

3.2.2. RoI Extraction Using Entropy Estimation 

Extract relevant features from each segmented cell. 

These features might include size, shape, texture, intensity, 

and modal-specific features. Different modalities of RoI 

might yield different sets of features. Entropy estimation 

can be used to extract ROIs from RBCs by dividing the 

image into small blocks and then calculating the entropy of 

each block. Blocks with low entropy are more likely to 

contain RBCs. This information can then segment the 

image and extract the RBC spots. 

3.2.3. Modality Fusion 

Our research in multimodal cellular imaging focuses 

on integrating features from diverse imaging modalities to 

create a comprehensive representation of cells. Selecting 

fusion strategies and rigorously evaluating their 

performance aims to enhance understanding of cellular 

systems and advance biomedical research and healthcare 

practices. Fusion techniques could involve simple 

concatenation, weighted averaging, or more advanced 

techniques like feature-level fusion. 

3.2.4. Spot Extraction 

Determine the regions or locations on the cells 

corresponding to specific spots of interest. These spots 

could be related to certain molecules or markers. This step 

might involve using domain-specific knowledge to identify 

the spots based on the features extracted in the previous 

steps. 

The raw RBC images are preprocessed using the 

techniques mentioned earlier, and cell segmentation is 

performed to separate individual RBCs. Entropy estimation 

is used to identify regions of the image that are likely to 

contain RBCs. The calculation for entropy is given in eq 12. 

𝐸 =  − ∑ 𝑃𝑟𝑜𝑏𝑖𝑙𝑜𝑔𝑃𝑖

𝑔

ℎ=1

     (12) 

Where g is the value of grey-scale conversion, Probi is 

the possibility of occurrence for every intensity range, and 

the calculation may be performed by splitting the count of 

the ith histogram h(i, j) through the analysis of the pixel 

count in each image, as shown in Eq 13 below: 

𝑃𝑟𝑜𝑏𝑖 =
ℎ(𝑖, 𝑗)

𝑁2
       (13) 

There are some steps to extract ROI from RBCs using 

entropy estimation, which includes: 

1. Divide the image into small blocks, 2. Calculate the 

entropy of each block. 3. Identify the blocks with low 

entropy. 4. These blocks are likely to contain RBCs. 5. 

Extract the ROI from these blocks. 

The size of the blocks used for entropy calculation is 

an important parameter. If the blocks are too small, the 

entropy estimation may not be accurate. If the blocks are 

too large, the ROI extraction may not be accurate. RBCs are 

typically more homogeneous in terms of their intensity than 

the surrounding tissue, meaning they have lower entropy. 

This means that regions of the image with low entropy are 

more likely to contain RBCs. 

3.3. Deep Stacking Network Model 

A Deep Stacking Network Model” typically refers to a 

model that involves stacking multiple layers of neural 

networks or other machine learning models to create a more 

complex and powerful predictive system. This approach 

combines the concepts of deep learning and ensemble 

learning.  

3.3.1. Base Models 

These are individual models that make up the first layer 

of the network. They could be neural networks, decision 

trees, support vector machines, or machine learning models. 

3.3.2. Intermediate Layers 

These are additional layers of models that take the 

outputs of the base models as input features. They might 

involve transforming the features, combining them, or 

generating new features. 

3.3.3. Meta Model 

This is the final layer of the network that takes the 

outputs from the intermediate layers and produces the final 

prediction. It’s often a simple model like logistic regression, 

but it can also be a neural network or any other suitable 

classifier. 

The general process involves training each layer 

sequentially. The base models are trained independently on 

the input data. Then, the intermediate layers are trained on 

the outputs of the base models. Finally, The Meta model is 

trained using the intermediate layer outputs. The goal of this 

structure is to enable the network to learn hierarchical data 

representations. Each layer develops the ability to capture 

various degrees of abstraction and complexity. Combining 

the predictions yields the strengths of multiple layers, 

potentially leading to better overall performance compared 

to using just a single model. 

Let X be the input features matrix, and Y be the 

corresponding labels. 

Train individual base models. 𝑀1, 𝑀2, . . . . , 𝑀𝑘  using 

different algorithms on the same dataset X; 

𝑀1: 𝑓1 =  𝑀1(𝑋) 

                                 𝑀2: 𝑓2 =  𝑀2(𝑋)                          (14) 

𝑀𝑘: 𝑓𝑘 =  𝑀𝑘(𝑋) 

Concatenate the predictions from the base models to 

create a stacked features matrix F: 

𝐹 = [𝑓1, 𝑓2, . . . , 𝑓𝑘]       (15) 

(14) 
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Train an intermediate meta-model G (can be a neural 

network or any other suitable model) using the stacked 

features F and the true labels Y: 

𝐺: ℎ = 𝐺 (𝐹, 𝑌)     (16) 

If desired, train a final meta-model H on the 

intermediate meta-model’s predictions h and the original 

labels Y: 

𝐻 ∶  �̂� = 𝐻 (ℎ, 𝑌)    (17) 

 For a new input 𝑋𝑛𝑒𝑤 , pass it through the base models 

to get their predictions 𝑓1, 𝑓2, . . . , 𝑓𝑘 

 Stack these predictions to form 𝐹𝑛𝑒𝑤. 

 Pass  𝐹𝑛𝑒𝑤 through the intermediate meta-model G to 

get  ℎ𝑛𝑒𝑤. 

 Optionally, pass  ℎ𝑛𝑒𝑤 through the final meta-model H 

to get the final prediction �̂�𝑛𝑒𝑤. 

3.4. Optimized Deep Stacked CNN Model 

The optimized Deep Stacked CNN approach employs a 

multi-layered convolutional neural network architecture 

designed to learn intricate features and patterns within 

microscopic images of RBCs, as shown in Figure 4. Unlike 

traditional methods, which often require expert intervention, 

the Deep Stacked CNN automates the classification process, 

enabling quick and reliable diagnosis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Optimized deep stacked CNN model 

 

The architecture of the Deep Stacked CNN is 

meticulously designed to extract progressively abstract 

features from RBC images. The Adam optimizer is an 

adaptive optimization algorithm commonly used in training 

neural networks. It computes adaptive learning rates for 

each parameter, adjusting them based on the first and second 

moments of gradients. This adaptive nature enables faster 

convergence and better performance, making it widely 

utilized in deep learning tasks. By combining techniques 

like momentum and RMSProp, Adam offers efficient 

gradient descent. He is suitable for various neural network 

architectures, including convolutional neural networks like 

the Deep Stacked CNN used for analyzing microscopic 

images of RBCs. Stacking multiple convolutional and 

pooling layers enables the network to automatically learn 

relevant representations of the input data. Creating a 

mathematical representation of an optimized Deep Stacked 

CNN for classifying sickle cell anemia using RBC images 
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involves describing the model’s architecture, operations, 

and components. Let’s denote: 

X is the input RBC image data, Y is the corresponding 

label (normal or sickle cell anemia), N is the number of 

training examples, C is the number of classes (2 in this case: 

normal and sickle cell), H is the height of the input image, 

W as the width of the input image, D as the number of 

channels in the input image (e.g., 3 for RGB images). 

 

The architecture can be represented as a series of layers: 

A convolutional layer applies a set of learnable filters 

to the input image to extract features. 

 

Let 𝑊𝑖 represent the i-th filter, 𝑏𝑖 the bias term, and 𝜎 

the activation function (e.g., ReLU). 

 

𝑍𝑖 =  𝜎 (𝑊𝑖 ∗ 𝑋 +  𝑏𝑖)   (18) 

 

Pooling layers reduce computation by downsampling 

the spatial parameters of the feature maps and introducing 

translational invariance. 

 
Let P represent the pooling operation (e.g., max 

pooling) and s the stride. 

 

𝑃𝑖 = 𝑃(𝑍𝑖, 𝑠)     (19) 

The flattening layer converts the pooled feature maps 

into a 1D vector. 

 

𝐹 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛 (𝑃𝑖)     (20) 

 
Fully connected layers process the flattened feature 

vector. 

𝐴𝑖 =  𝜎 ( 𝑊𝑓𝑐𝑖
𝐹 +  𝑏𝑓𝑐𝑖

)      (21) 

The output layer produces the class probabilities using 

softmax activation. 

�̂� = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝐴𝑜𝑢𝑡𝑝𝑢𝑡)     (22) 

 

The cross-entropy loss measures the discrepancy 

between predicted probabilities and actual labels. 

𝐿𝑜𝑠𝑠 =  −
1

𝑁
∑ ∑ 𝑌𝑖𝑗 log(�̂�𝑖𝑗)

𝐶

𝑗=1

𝑁

𝑖=1
    (23) 

The model is optimized by updating the learnable 

parameters (weights and biases) to minimize the loss 

function using an optimization algorithm like gradient 

descent. 

Pseudocode for ODSN 

# Define hyperparameters 

learning_rate = 0.001 

batch_size = 32 

num_epochs = 50 

num_classes = 2 

# Build the Deep Stacked CNN architecture 

model = Sequential() 

model.add(Conv2D(filters=32, kernel_size=(3, 3), 

activation='relu', input_shape=(height, width, channels))) 

model.add(MaxPooling2D(pool_size=(2, 2))) 

model.add(Conv2D(filters=64, kernel_size=(3, 3), 

activation='relu')) 

model.add(MaxPooling2D(pool_size=(2, 2))) 

model.add(Conv2D(filters=128, kernel_size=(3, 3), 

activation='relu')) 

model.add(MaxPooling2D(pool_size=(2, 2))) 

model.add(Flatten()) 

model.add(Dense(128, activation='relu')) 

model.add(Dense(num_classes, activation='softmax')) 

model.compile(optimizer='adam', 

loss='categorical_crossentropy', metrics=['accuracy']) 

# Split dataset into training, validation, and test sets 

𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑌_𝑡𝑟𝑎𝑖𝑛, 𝑋_𝑣𝑎𝑙, 𝑌_𝑣𝑎𝑙, 𝑋_𝑡𝑒𝑠𝑡, 𝑌_𝑡𝑒𝑠𝑡 
=  𝑠𝑝𝑙𝑖𝑡_𝑑𝑎𝑡𝑎𝑠𝑒𝑡() 

𝑚𝑜𝑑𝑒𝑙. 𝑓𝑖𝑡(𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑌_𝑡𝑟𝑎𝑖𝑛, 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒
= 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒, 𝑒𝑝𝑜𝑐ℎ𝑠
= 𝑛𝑢𝑚_𝑒𝑝𝑜𝑐ℎ𝑠, 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛_𝑑𝑎𝑡𝑎
= (𝑋_𝑣𝑎𝑙, 𝑌_𝑣𝑎𝑙)) 

𝑡𝑒𝑠𝑡_𝑙𝑜𝑠𝑠, 𝑡𝑒𝑠𝑡_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 
=  𝑚𝑜𝑑𝑒𝑙. 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑋_𝑡𝑒𝑠𝑡, 𝑌_𝑡𝑒𝑠𝑡) 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 =  𝑚𝑜𝑑𝑒𝑙. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑋_𝑡𝑒𝑠𝑡) 

This pseudocode outlines creating a Deep Stacked 

CNN model, training it on RBC image data and visualizing 

the training history. 

 

4. Results and Discussions 
The suggested model was developed and tested using 

the PYTHON tool version 3.7.12. During the study, the 

participants used a PC equipped with 8 GB of RAM, an Intel 

Core i7-10700 processor operating at 4.8 GHz, and a 64-bit 

Windows 10-OS installation.  

 

4.1. Experimental Analysis 

Table 1 provides the step-by-step process with its 

outcomes of results using Multimodal RBC Spot Extraction 

using an Optimized Deep Stacking Network algorithm, and 

the final classification is shown in Figure 5.  

The given input RBC sample is classified as 

Thalassemia type of sickle cell anemia. 
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Table 1. Output for SCA using MRSE-ODSN 

Input Image 

 

Gray-scale Image Conversion 

 

Noise Coefficient Data 

 

Noise Filtering 

 

Image Enhancement 

 

Segmentation 
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RoI Extraction using Entropy 

Estimation 

 

Modality Fusion 

 

Multimodal Spot Extraction 

 
 

 
Fig. 5 Classification results of SCA 

4.2. Performance Metrics 

Performance metrics are essential for evaluating the 

effectiveness of assessing the quality of your sickle cell 

anemia classification model:  

1. Accuracy: Accuracy is intended to separate the number of 

successfully predicted cases by the total number of 

occurrences in the dataset. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
      (24) 

2. Precision: Out of all positive events predicted, precision 

is the percentage of correct predictions. The purpose is to 

determine whether optimistic predictions are accurate. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
      (25) 

3. Recall: The percentage of accurately predicted positive 

events out of all real positive instances is measured by 

recall. It emphasizes the capacity to record good events. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
     (26) 

4. F1-Score: The harmonic mean of accuracy and recall is 

the F1-score. It strikes a stability between accuracy and 

recall. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
      (27) 
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5. Specificity: The percentage of accurately predicted 

negative events out of all actual negative illustrations is 

measured by specificity. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

=  
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
            (28) 

Matthews Correlation Coefficient (MCC): The MCC 

considers true and false positives and negatives and 

provides a balanced performance metric. 

𝑀𝐶𝐶 =
(𝑇𝑃 × 𝑇𝑁) − (𝐹𝑃 × 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
(29) 

 
Table 2. Performance analysis comparison of proposed model 

Models Accuracy Precision Sensitivity Specificity PPV NPV MCC 

BFO-SVM 92.93 92.04 92.07 93.83 91.28 93.48 87.23 

PCA-DNN 92.16 92.45 93.36 94.96 93.55 94.86 92.16 

PSO-kNN 93.90 93.21 91.05 92.65 93.26 94.16 88.17 

LM-RF 95.58 95.32 94.76 94.16 94.78 94.85 92.02 

Proposed Model 98.01 97.89 97.56 98.04 97.76 97.15 94.54 

 

 
Fig. 6 Performance metrics comparison 

 
Fig. 7 Comparison of performance analysis
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Integrating multimodal data and deep learning models 

has shown the potential to achieve 98.01% accuracy in SCA 

classification, which is higher than other existing methods, 

as given in Table 2, Figures 6 and 7. This approach not only 

detects the presence or absence of SCA but also has the 

potential to identify specific subtypes or causes of SCA, 

which is crucial for tailored treatment strategies. 

5. Conclusion 
This research proposes an approach for improving 

sickle cell anemia classification within the Nilgiri tribes 

through the innovative integration of multimodal RBC spot 

extraction and an optimized deep stacking network 

algorithm. The primary objective was to improve the 

accuracy, efficiency, and cultural sensitivity of sickle cell 

anemia diagnosis within this indigenous community. A 

dataset was acquired for review from the NAWA-Nilgiri 

Adivasi Welfare Association in the Nilgiris area. The 

dataset comprised a collection of sickle cell anaemia test 

results from tribal people living in various locations of the 

Nilgiris region. This dataset comprises information from 

300 patients with 14 SCA-related characteristics. The 

utilization of multimodal data, including microscopic RBC 

images and clinical information, has led to a substantial 

improvement in the accuracy of sickle cell anemia 

classification. The optimized deep stacking network 

algorithm’s ability to effectively leverage the strengths of 

diverse modalities has contributed to more robust and 

reliable predictions. The results of the classification model 

demonstrate a significant improvement in accuracy of 

5.32% compared to traditional classification methods. 
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