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Abstract - Ensuring resilient and reliable operations requires addressing new Cloud security risks brought out by the integration 

of Electric Vehicles (EVs) into the ever-changing smart grids. Regarding energy distribution, vehicle operations, and public 

safety, the importance of a secure infrastructure in this context is essential, a single attack might cause major disruptions. 

However, designing effective Intrusion Detection Systems (IDS) is made more difficult by the dynamic and distributed nature of 

smart grids and the increasing complexity of cyberattacks. Within smart grids and smart cities, there is a multi-stage system 

called the Multitiered Intrusion Detection Framework utilising the Machine Learning Approach (MIDF-MLA) that aims to detect 

and mitigate attacks targeting EVs. To overcome these challenges, this paper proposes the MIF-MLA, using a strong, nonlinear 

machine learning model that can adapt to new threats by improving detection accuracy and decreasing false positives. The multi-

stage architecture of MIDF-MLA is designed to address a wide range of attack vectors, including not limited to Distributed 

Denial-of-Service (DDoS) attacks, spoofing, and data manipulation during execution, ensuring robust system-wide Cloud 

security The proposed architecture has several potential uses, such as real-time monitoring of electric vehicle communication 

networks, anomaly detection in grid operations, and the creation of proactive defensive systems for critical infrastructure, such 

as power distribution nodes and charging stations, within interconnected smart communities. Validation of the efficacy of MIDF-

MLA is accomplished through the utilisation of extensive simulation analysis. This investigation shows that MIDF-MLA can 

boost Cloud security, optimise resource allocation, and keep the system intact under several assault scenarios. This framework 

lays the platform for future advancements in electric vehicle protection within the broader context of smart grids. 

 

Keywords - Intrusion Detection, Nonlinear, Machine Learning, Cloud security, Electric, Vehicles, Smart Grids, DDoS. 

 

1. Introduction  
Authoritative or rule-based approaches are frequently 

utilised in implementing intrusion detection solutions for 

EVs in smart grids [1]. These systems can identify common 

dangers by comparing incoming data with a database of attack 

signatures or other predefined criteria, and then dangers can 

be identified [2]. Cyberattacks are still flexible, a major 

problem, particularly for smart grids with their massive and 

ever-changing distributed denial-of-service attack surface [3]. 

Because signatures do not always correlate with one another, 

information cloud security systems that rely on signatures are 

unable to recognise novel threats [4]. Although rule-based 

systems are flexible, they are quite setup-intensive and prone 

to false positives. When rule-based systems deviate from 

patterns, even harmless behaviours could be mistaken for 

hazardous ones [5]. The distributed and decentralised nature 

of smart grids makes it more challenging to use standard 

procedures compared to less dynamic and more centralised 

systems [6]. EV and smart grid components produce vast 

quantities of data, which overwhelms these systems and 
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delays detection and response [7]. Adopting adaptive learning 

is uncommon in traditional systems, even if it is valuable in 

environments where denial-of-service attack vectors 

constantly appear [8]. In the absence of these measures, vital 

infrastructure may continue to be exposed, and the use of 

Advanced Persistent Threats (APTs) and other similar 

techniques by attackers to evade detection is becoming 

increasingly common [9]. When more powerful, adaptable, 

and scalable options are required, the shortcomings of 

conventional smart grid electric vehicle Cloud security 

become apparent [10]. 

A MIDF that makes use of robust nonlinear machine 

learning has been placed together to ensure the safety of 

EVs that are linked to the smart grid [11]. Dynamic and 

complex cyberattacks are challenging to foresee and detect; 

despite their benefits, nonlinear machine learning systems 

need a lot of high-quality training data to discriminate safe and 

dangerous behaviours [12]. Smart grids make data collection 

and organisation difficult; when considering EV 

communication protocols, grid topologies, and device and 

component heterogeneity, this becomes apparent [13]. 

Addressing nonlinear machine learning algorithm processing 

needs is another difficulty. These models may not be suited 

for real-time applications that demand rapid detection and 

response due to memory and processing constraints [14]. 

Advanced detecting systems are difficult to integrate into EV 

and smart grid network architecture due to interoperability and 

compatibility difficulties. The system is susceptible to dangers 

posed by both false positives and false negatives; an excessive 

number of the former can disrupt operations and reduce 

confidence in the computer system [15]. Because smart grids 

are decentralised and dynamic, the intrusion detection system 

must adapt to changing network conditions and entry sites. 

MIDF's smart grid applications need more research due to 

these constraints. A MIDF and robust nonlinear machine 

learning are two of several ways to secure smart grid-

connected EVs. Advanced data augmentation methods 

improve training data sets, making models more accurate and 

resilient. Distributed computing and edge processing reduces 

real-time detection and reaction computer employment. 

Model performance is preserved via adaptive learning 

approaches through model upgrades depending on denial-of-

service attack patterns. When traditional approaches are 

combined with machine learning, detection accuracy is 

improved, and the number of false positives is reduced. 

1.1. Problem Definition 

Detecting and combating sophisticated cyberattacks 

makes designing MIDFs that apply strong nonlinear machine 

learning to protect smart grid-connected EVs challenging. 

Smart grids are dynamic and scattered, real-time detection 

requires computational power, high-quality training data is 

needed, and detection accuracy and false positive and false 

negative rates must be balanced. The architecture is 

additionally required to be extensible and adaptable, and it can 

deal with evolving threats and work in tandem with smart grid 

and electric vehicle systems. 

1.2. Objectives 

OSmart grid EV cyberattacks like DDoS, spoofing, and 

data manipulation can be better detected with the help of a 

robust nonlinear machine learning model implemented in 

MIDF-MLA. Reducing the frequency of false positives via 

optimal optimization of the framework would enable efficient 

and reliable identification of true threats without stopping 

smart grid operations. Establishing a multi-stage architecture 

is essential for providing comprehensive, real-time monitoring 

and proactive protection measures for critical infrastructure 

inside interconnected smart communities. The results of the 

literature review are presented in Section 2. The second 

investigation, Enhancing Cloud Security in Electric Vehicles 

within Smart Grids, will be based on these results. The subject 

area is thoroughly examined in Section 3, which focuses on 

MIDF-MLA. The analysis that follows the presentation of the 

findings is located in Section 4 of this report. Section 5 

includes the report's executive summary as well as its final 

recommendations. 

2. Related Work  
New cyberCloud security threats arise from these 

advances. Intrusion detection and system resilience methods 

using Machine Learning (ML) and Deep Learning (DL) 

models have been developed to address these threats. The 

suggested technique by Khan, I. A. et al. [16] makes use of a 

Multi-Stage Intrusion Detection Framework (M-SIDF) in 

conjunction with a deep learning-based bidirectional LSTM 

architecture for real-time intrusion detection in Intelligent 

Transportation Systems. The method achieves an accuracy of 

98.88% on the UNSWNB-15 dataset and 99.11% on the 

automobile hacking dataset. Along with providing a summary 

of cyber risks and defence solutions, Rao, P. U. et al. [17] 

examine Machine Learning (ML) and Deep Learning (DL) 

techniques for improving smart grid cyberCloud security. 

Additionally, they demonstrate the efficacy of ML methods by 

means of an application study. 

The TSKFS&MADRL technique is presented by 

Sepehrzad, R. et al. [18] as a means of analysing and 

improving the resilience of EVCS against cyberfires. In 

comparison to other technologies, it detects Foreign Direct 

Investment (FDI) 40% faster and achieves 7.33% reduced 

operation expenses. AlHaddad U et al. [19] propose a Hybrid 

Deep-Learning technique (H-DLA) using convolutional 

neural networks and recurrent gated units to detect attacks, 

including Distributed Denial of Service (DDoS), on smart grid 

communication. This approach achieves an accuracy of the 

system as high as 99.86%, yet real-time monitoring is not a 

challenge. Zibaeirad, A. et al. [20] discuss the applications of 

smart grid technology, address the issues of smart grid secrecy 

and examine the types of threats, strategies of use of the threats 



T.A. Mohanaprakash et al. / IJECE, 12(2), 152-165, 2025 

154 

and the counter strategies centers on machine learning and 

blockchain. The paper resolves the problems encountered in 

the research and suggests further development of directions 

such as machine Learning Adversarial and Learning Models 

(LLMs). Bhadani U. et al. [21] suggested combining complex 

physical and cyber networks into a smart grid raises technical 

challenges. Due to its size, the future smart grid would need a 

more complex information and communication infrastructure 

than current electrical systems. With cutting-edge monitoring, 

regulating, and communication technology, smart grids 

provide a steady power supply, boost generator and distributor 

efficiency, and offer consumers options. An efficient, stable, 

and adaptable smart grid enhances electric power grid 

efficiency. This power system will be updated for safety, 

efficiency, environmental effects, and customer network 

management. The smart grid will be clarified in this survey.  

Yang P.  et al. [22] provided electric vehicles' rising in-

car and inter-car connectivity may strain infrastructure. This 

essay will focus on electric vehicle cyberattacks and protect 

them from hackers by offering a secure and trustworthy 

intelligent framework. This study proposes a blockchain-

based smart cloud computing and fuzzy machine learning 

strategy for cyber Cloud security analysis based on electric 

vehicle technology. This instance uses the smart grid 

integrated cloud computing model to monitor and transmit 

electric car data and the Fuzzy Adversarial Q-Stochastic 

model (FAQS) to assess unsafe activities. Data is encrypted 

and decrypted depending on role-based access control rules 

and the people who have access rights. Various cyber Cloud 

security data sets are tested for Cloud security rate, RMSE, 

quality of service, scalability, and energy efficiency. Gupta N 

et al. [23] provided that transportation is rapidly switching 

from fossil fuels to renewables. The new mobility idea 

comprises cars that store renewable energy and enable 

ecologically sustainable transportation. Cloud security risks 

rise as e-mobility infrastructure becomes more complex. Grids 

are important, crucial infrastructures that cyber attackers 

target. Technically, EVs and smart grids must communicate 

data. Smart grids must solve four major challenges to ensure 

eMobile charging Cloud security and privacy. Blockchain's 

trust-building technology can help the smart grid manage 

demand response and trade electricity efficiently and reliably.  

Khalaf M et al. [24] focused on smart grid Cyber-Physical 

Cloud Security (CPS). ADNs are neglected in survey articles, 

which concentrate on smart grid transmission risks and 

problems. ADNs are being deployed rapidly, and cyber risks 

to power grids and critical infrastructures are rising. Thus, we 

decided to examine and survey the current CPS research for 

ADNs. The paper gives the first timely assessment of ADN 

CPS research on important operations and components. The 

cyber-physical components of each essential 

operation/component are examined. The problems and needs 

of communication protocols and standards are also discussed. 

ADN devices and sensors, including PMUs, smart meters, 

advanced metering infrastructure, and protective relays, are 

explored in depth for cyberCloud security. ADN application 

drivers and enablers such as microgrids, EVs, IoT, and smart 

homes are also studied. Industry-specific solutions are 

emphasized.  

Aoudia M et al. [25] recommended that modern solutions 

must be put in place to prevent needless energy waste as the 

number of EVs is expected to expand along with the 3Ds—

decarbonization, decentralization, and digitalization. EV 

charging frameworks in networks powered by renewable 

energy resources have been the subject of much research. 

Also, using blockchain technology to guarantee trading 

systems Cloud security and transparency have been getting a 

lot of attention lately. The intricacy of the problem has 

prevented several researchers from exploring how to put their 

answers into practice. Consequently, the purpose of this paper 

is to conduct an in-depth analysis of the current practical 

implementation and features of electric car charging systems 

that include blockchain technology. The MIDF-MLA 

detection and elimination of a large number of threats in the 

cyberspace of smart grids is the most efficient and least 

cumbersome compared to all other alternate techniques. 

3. Proposed Methodology   
The purpose of this paper is to enhance the Cloud security 

of smart grids with the introduction of EVs. The very nature 

of smart grids! The diversity of the networks and the 

particularism of mash networks that makes them non-flat and 

susceptible to more complex attacks influence their bolt-and-

nut reliability and dependability enormously. MIDF-MLA 

employs a very accurate machine learning algorithm that 

employs the use of the growing set of features to adapt to new 

and growing threats, thereby increasing the proportion of 

correctly identified threats while decreasing that of false 

alarms. MIDF-MLA delivers end-to-end coverage and 

monitoring in real-time on EV communication network and 

grid operation, enhancing the Cloud security of the system 

through a multi-tiered domain. The improvement of the 

comprehensive framework is thoroughly examined and 

validated with the help of simulation analysis that highlights 

the efficiency of the framework in resource allocation, system 

protection, and communication Cloud security during denial-

of-service attack situations. 

3.1. Methodology of the Research 

The MIDF-MLA was developed because of the study's 

efforts to build a strong IDS specifically for smart grids' EVs. 

Cyberattacks, including DDoS, spoofing, and data 

manipulation, are all part of the framework's multi-stage 

design. To guarantee effective threat identification and 

mitigation throughout different phases of the framework, the 

design uses a nonlinear machine learning model that aims to 

improve detection accuracy while decreasing false positives. 
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4. Contributions 
4.1. Contribution 1: Framework Development for Multistage 

Intrusion Detection 

A progressive intrusion detection specialist applied in the 

context of Smart grids with a focus on Electric Vehicles. This 

methodology makes the system more robust by systematizing 

and limiting the cyber threats at multiple entry points in the 

network and smart grid operational ecology. The methodology 

achieves total protection from any emerging cyber threats by 

eliminating any possible vulnerability throughout the whole 

operational process. The application of a multi-stage 

procedure makes it possible to design a Cloud security 

mechanism that has multiple layers. This mechanism aims to 

defend against deep threats and guarantee the operability of 

the energy distribution and the integral work of the vehicles 

within the smart grid. 

𝐸𝑣𝑛−1 −  𝑚𝑛𝑦 +  𝑊𝑞𝑟 =  
3

1 − 𝑢
∗  𝜕(𝑦 − 𝑘),

𝑦 ≡ 𝑆, 𝑢 + 1 < 0                           (1) 

The system state 
3

1−𝑢
 from the previous stage 𝑊𝑞𝑟 is 

represented by Equation (1) 𝐸𝑣𝑛−1; the model's dynamic 

parameter is indicated by 𝑚𝑛𝑦, and outside forces 𝜕(𝑦 − 𝑘) 

or weights are reflected by 𝑦 ≡ 𝑆, 𝑢 + 1.  

 
Fig. 1 Structure of intrusion detection framework utilising machine learning approach 

 

Figure 1 shows the structure of the MIDF-MLA to 

improve the Cloud security of EVs interconnected with smart 

grids. The first stage involves the primary function of the data 

collection module, which is to collect data from several 

sources, such as smart grid sensors, electric vehicle sensors, 

and network traffic concurrently. The processing of data 

involves the tasks of cleaning, standardizing, and extracting 

characteristics. Both the multistage analysis module and the 

Nonlinear machine learning module operate simultaneously 

with the preprocessed data. Although the nonlinear machine 

learning module improves the system's capacity to detect 

anomalies, the multistage analysis approach is responsible for 

identifying and classifying several stages of possible threats. 

The Intrusion Detection Module combines algorithmic 

techniques for threat analysis and attack pattern recognition to 

detect possible intrusions. The Decision-making module 

determines suitable measures, such as raising alarms, 

minimizing intrusions, or securing the system after discovery. 

These operations are sent via a user interface and displayed on 

an alert dashboard, leading to an improvement of system 

Cloud security through the Cloud security enhancing 

procedure. 
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𝑓(𝑦, 0) =  𝑍𝑜(𝑦 − 1), 𝑦 ≡ 𝑍(𝑓(𝑚𝑘𝑛−1 ∗ 𝑞))    (2) 

Equation (2), in which the constant 𝑓(𝑦, 0) and the 

parameter 𝑍𝑜 affect (𝑦 − 1). This indicates a recursive 

dependence as 𝑦 is decided by another function of variables 𝑍, 

such as 𝑓(𝑚𝑘𝑛−1 ∗ 𝑞).  

𝑑𝑓(𝑛 − 1) =  
2𝑤

(4∀) ∗ (5𝑛−1!)
∗  𝐹𝑑(𝑘−1𝑝) +  𝑄𝑤(𝑝−1)   (3) 

The detection function 𝑑𝑓 is modeled by Equation (3), 

which depends complexly on variables such as weights 𝑛 − 1, 

a factorial function, and values 
2𝑤

(4∀)∗(5𝑛−1!)
.  

 

It illustrates how the suggested MIDF-MLA approach 

exactly modifies its detection capabilities 𝐹𝑑(𝑘−1𝑝) via 

complex calculations 𝑄𝑤(𝑝−1)    involving many elements.  

 
Fig. 2 EV charging-dispatch and vehicle-to-grid technologies 

Figure 2 provides a high-level perspective of the smart 

grid infrastructure. It emphasizes the connection between the 

needs of the industrial and urban areas and the integration of 

various energy sources. Commercial, residential, and 

industrial load centers are connected to the electrical 

infrastructure by a grid network managed by communication 

systems. The electric motor in an EV gets its power from the 

battery pack through traction drivers, AC/DC converters, and 

DC/DC converters. Regenerative braking is possible because 

of the bidirectional and unidirectional energy flow. The figure 

shows the role of GPS and onboard meters in facilitating 

efficient data transmission between the grid and EVs. It 

highlights the importance of both wired and wireless 

communication. The system's integration of smart 

communication and renewable energy sources improves the 

grid's reliability, efficiency, and Cloud security [27], in 

addition to fulfilling the primary objective of a strong and 

secure smart grid design. 

𝑚𝑘(𝑈𝑘𝑝−1) =  𝐵𝑘𝑝 (𝑦(𝑀𝑟(𝑦−𝑡𝑝))) + (𝑍𝑒𝑟(𝑝−𝑘𝑡) ∗  𝑌𝑘−1)      (4) 

The Equation (4) wherein the functions 𝑚𝑘(𝑈𝑘𝑝−1), 𝐵𝑘𝑝, 

and 𝑍𝑒𝑟(𝑝−𝑘𝑡)determine 𝑌𝑘−1. This demonstrates the use of 

intricate, nonlinear mathematical 𝑦(𝑀𝑟(𝑦−𝑡𝑝)) models to 

capture dependencies and interactions in the data, which is 

consistent with the suggested MIDF-MLA approach.  
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𝑌𝑘(𝑡−1) =  𝐵𝑗𝑘[𝑓𝑔𝑛−1 + 𝑌(𝑥𝑣(𝑐𝑡 − 𝑝𝑘))] −  𝑍𝑝(𝑦−𝑥)   (5) 

With the help of historical values 𝑌𝑘(𝑡−1), a recursive 

function 𝐵𝑗𝑘 , and a correction factor 𝑓𝑔𝑛−1, Equation (5) 

depicts the dynamic development of (𝑥𝑣(𝑐𝑡 − 𝑝𝑘)).  

This illustrates the adaptive nature of the MIDF-MLA, 

which uses complex interconnections 𝑌 and historical data 

𝑍𝑝(𝑦−𝑥) to improve intrusion detection and strengthen system 

resilience against changing cyber threats. 

4.2. Contribution 2: Integration of Nonlinear Machine 

Learning Techniques 

MIDF-MLA with nonlinear machine learning techniques. 

The solutions are developed to handle cyberattacks that are 

complex and constantly evolving. The robust, non-linear 

model increases intrusion detection accuracy by learning from 

new threats and producing fewer false positives. The ability to 

adapt is essential to keep the smart grid secure and reliable as 

it improves. By integrating these strategies, the MIDF-MLA 

is able to effectively address evolving threat patterns, hence 

establishing a proactive defensive mechanism inside the smart 

grid system. 

𝐵𝑘𝑝𝑡 =  
𝑀[𝑥𝑦 − 𝑝𝑘]

𝐸𝑟𝑣𝑘−1
+ (𝑦𝑗𝑘 − 𝑃(𝑘) ∗  𝑍2𝑄𝑛(1 − 𝑝))  (6) 

Several nonlinear terms, including 𝐵𝑘𝑝𝑡equation 

variables 𝑦𝑗𝑘 − 𝑃(𝑘), 𝑍2𝑄𝑛 are involved. This illustrates 

how the MIDF-MLA models system behavior (1 − 𝑝) and 

improves detection techniques by using complex 

mathematical connections.  

 
Fig. 3 Smart charging and discharging using multitiered intrusion detection 
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Figure 3 illustrates a smart grid infrastructure that 

incorporates EVs in parking spaces, with an emphasis on 

providing safe energy distribution and management using a 

Multitiered Intrusion Detection system. The EVs inside 

the parking areas are connected to the high-voltage grid via an 

intelligent controller for the Aggregator. This controller 

effectively controls and improves the energy transfer between 

the grid and residential loads. Multitiered Intrusion Detection 

ensures the Cloud security of communication between the 

grid, EVs, and residential loads, while Machine Learning 

significantly improves the system's capacity to react to 

unexpected threats. The residential load represents the 

consumer segment of the power system, which is responsible 

for the distribution of energy. The parking areas and the grid 

engage in bidirectional communication, which is carefully 

monitored to detect any cloud security breaches, ensuring 

accurate and powerful operations. The integrity and efficiency 

of the energy distribution network are heavily dependent on 

the continuous monitoring and anomaly detection of the whole 

system in this developing smart grid environment. 

𝐸𝑠𝑗−𝑘 = {𝑣 ≡ 𝐵: (𝑗, 𝑘) + 𝐸𝑘−1(𝑘 − 1)}        (7) 

Equation (7) characterizes a set in which the connection 

between variables 𝐸𝑠𝑗−𝑘 and 𝑣 ≡ 𝐵 defines 𝐸𝑘−1. The 

complex used emphasized the multifactor (𝑘 − 1) based on 

the convey sets (𝑗, 𝑘) depending on the MIDF-MLA 

consistent techniques with representation.  

𝑀(𝑦 − 𝑧) = 𝐸(𝑛𝑚) − 𝑁(𝑌) = [𝑀𝑘=1 +  𝐵𝑛𝑝 − 𝑅𝑓(𝑛 − 1)]  (8) 

The connection shown by Equation (8) is one in which 

𝑀(𝑦 − 𝑧) it is a function of many variables, and distinct 

impacts are captured by the terms 𝐸(𝑛𝑚), 𝑁(𝑌), and the sum 

of 𝑀𝑘=1, 𝐵𝑛𝑝, and 𝑅𝑓(𝑛 − 1).  

 
Fig. 4 Typical EVCS cyber-physical layer schematic 

 

Figure 4 shows the smart grid layout, with the many parts 

that safeguard the electric vehicle charging system and 

manage electricity efficiently. The operation's principal 

control units that monitor charging are the charge monitors 

and controllers. Power conversion and stabilisation operations 

are performed by the AC/DC Converter and Power Factor 

Corrector (PFC), while the DC/DC Converter efficiently 

controls the power distribution within the vehicle. The 

Auxiliary Power Supply (AC/DC Converter) offers additional 

energy assistance to ensure the system's reliability. Voltage 

and current monitors control the current and voltage that flows 

through the system to protect a system from power surges and 

interruptions.  

While AC power relays maintain the connections to 

power circuits, remote interfaces communicate with other 

systems. The internal Interface enables communication 

between internal components. The charging process 

terminated after the connector creates a secure physical link 

between the electric vehicle and the charging station. 
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𝐴𝑢 ∗  𝑀𝑧−1 =  
1

2
∗  𝑏𝑘𝑝(𝑠𝑞(𝑤−1) ∗  𝑀𝑧−1) + (𝑄𝑤𝑧−2)  (9) 

The exponential term is set to be linked 𝑀𝑧−1 with the 

functions 𝐴𝑢 based on itself based on the given Equation (9). 

The relationship 
1

2
∗  𝑏𝑘𝑝 is set to define with the feedback 

, 𝑠𝑞(𝑤−1) based on the MIDF-MLA depending on the danger 

levels 𝑀𝑧−1 set with the dynamic adaptation 𝑄𝑤𝑧−2, and the 

system-enabled state.  

𝑣𝑏(𝑘 − 1) =  𝑀2𝑌(𝑣 − 𝑘𝑝) +  𝐹𝑣−1(𝑧𝑦(𝑝 − 1))  (10) 

Equation (10), has an extra term involving 𝑀2𝑌(𝑣 − 𝑘𝑝), 

where 𝐹𝑣−1 is determined by the product of 𝑧𝑦 and 𝑝 − 1. The 

cyber threats are sets based on the relational recursive values 

based on the factors that are non-linear based on the utilization 

𝑣𝑏 and illustration. The equation is set with the functionalities 

based on the MIDF-MLA based on the techniques (𝑘 − 1).  

4.3. Contribution 3: Comprehensive Simulation Validation 

Contribution 3 validates the MIDF-MLA framework 

using simulations while evaluating it in detail. To determine 

how well the framework strengthens Cloud security improves 

resource allocation, and preserves system integrity, the 

validation process includes substantial testing across multiple 

attacks (DDoS) scenarios.  

The simulations show that MIDF-MLA has the capacity 

to effectively identify and address potential dangers in real 

time, consequently ensuring the stability and durability of 

smart grid operations.  

The validation demonstrates the framework's practical 

usability for real-time monitoring and anomaly detection in 

electric vehicle communication networks, illustrating its 

potential for extensive implementation in smart grid scenarios. 

𝐹(𝑦, 𝑧) =  𝑀1(𝑦𝑧) −  𝑀𝑧(𝑥 − 𝑝𝑘) + 𝐸0(𝑧, 𝑦𝑝)   (11) 

The function 𝐹(𝑦, 𝑧) is described by the equation, which 

𝐸0 adds a component and (𝑦𝑧) indicates distinct terms 

involving 𝑧, 𝑦𝑝, and other variables. The accuracy analysis 𝑀𝑧 

and the detection rate 𝑀1 is based on the approach depending 

on the MIDF-MLA based on the behavior over a complex 

system based on the interactions with the emphasized 

integration.

 
Fig. 5 Process of MIDF-MLA 
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Figure 5 illustrates the MIDF-MLA to improve 

cyberCloud security in EVs in smart grids. The process begins 

with the data collection layer, which collects data from both 

grid operations monitoring and EV communication networks. 

The data is processed in the preprocessing layer, which 

includes data normalization, cleaning, and feature extraction 

to help prepare it for analysis.  

The multi-stage detection layer consists of two 

stages: anomaly detection, which utilizes nonlinear machine 

learning models for monitoring in real-time, and attack 

classification, which utilizes an attack type classifier and 

threat level assessment to detect and identify DDoS attacks. 

Response layer acquires control of alert generation, automated 

response mechanisms, and resource allocation optimization to 

efficiently handle the identified threats. The Feedback loop 

ensures constant system improvement via model update 

mechanisms and modifications to preserve system-wide 

Cloud security. Finally, the simulation and validation layer 

uses a simulation analysis module and performance metrics to 

confirm and improve the performance of the framework, 

therefore ensuring its adaptability and dependability in real-

world scenarios. 

𝑍1(𝑦 − 𝑧) =  
1

4𝑝
(||𝑌𝑝−1 +  𝑧𝑞(𝑛𝑘)|| − 𝑒1)  (12) 

Equation (12) illustrates the absolute variation between 

terms involving 𝑍1(𝑦 − 𝑧), and a constant 𝑌𝑝−1, scaled by 

𝑧𝑞(𝑛𝑘), affects 𝑒1. The system latency analysis is set with 

procedures dealing with the technique modified 
1

4𝑝
 with the 

MIDF-MLA based on the modified threshold detection, where 

the user activity is set to be determined by the activity of a 

system. 

𝑀𝑥(𝑦𝑧) =  𝜕𝛽(𝑣 − 𝑚𝑛𝑏−1) + ||𝑦𝑠−1 + 𝑧𝑘𝑝||    (13) 

The formula connects 𝑀𝑥 to the absolute value of the sum 

𝜕𝛽 and 𝑣, as well as the partial derivative 𝑦𝑠−1 of a function 

involving 𝑧𝑘𝑝. The robustness analysis is determined with the 

parameter detection (𝑦𝑧)  with the improved based on the 

relationships are defined with the intricates 𝑚𝑛𝑏−1 based on 

the absolute values and the deviations.  

𝑔𝑘
1−𝑝

=  ∀ ||𝑅𝑓−1 ∗  𝑌𝑞𝑤|| − 𝑒𝑓 + (𝑦𝑞−1, 𝑧𝑝𝑛−1)  (14) 

With the constant 𝑒𝑓and extra terms involving 𝑔𝑘
1−𝑝

 and 

∀, the equation expresses 𝑅𝑓−1 as a function of the absolute 

value of 𝑒𝑓. The scalability analysis of the system is based on 

the technique based on the MIDF-MLA based on the 

consistency 𝑦𝑞−1 depending on the account of the system 

configuration 𝑧𝑝𝑛−1 based on the risk.  

𝑃𝑘𝑛−1 =  𝑏0 + ||𝑧𝑣𝑐 − 𝑁𝑝(𝑞 − 𝑤) + (𝑉𝑏 − 𝐴𝑐𝑝)  (15) 

The formula is composed of the absolute value of a 

complicated expression including 𝑃𝑘𝑛−1, and 𝑏0, as well as a 

constant 𝑧𝑣𝑐. This illustrates how the MIDF-MLA approach 

models 𝑁𝑝(𝑞 − 𝑤) and modifies detection thresholds 𝑉𝑏 −
𝐴𝑐𝑝 using similar computations on resource efficiency 

analysis.  

The proposed method improves the level of cyberCloud 

security in smart grids, specifically by including EVs. It uses 

a powerful, non-linear machine learning algorithm to adapt to 

new and evolving cyber threats, resulting in improved 

accuracy in detecting such threats and minimizing false 

positives. The multi-stage design of MIDF-MLA provides 

extensive Cloud security coverage for both EV networks and 

grid operations. After being thoroughly tested in simulations, 

MIDF-MLA efficiently improves the allocation of resources, 

preserves the integrity of the system, and strengthens Cloud 

security. As a result, it is well-suited for monitoring and 

detecting anomalies in real-time in smart grid scenarios. 

Research Procedures: The investigation was carried out 

according to a predetermined protocol that included many 

essential steps. A simulation environment was set up to mimic 

EV activities inside smart grids, including cyberattack 

scenarios after the MIDF-MLA framework was built. We 

were able to gauge the framework's efficacy by analyzing data 

from these simulations, which included both typical 

operations and assault scenarios. Using this data, the MIDF-

MLA's integrated machine learning model was trained and 

evaluated throughout the framework's phases to see how well 

it performed. 

5. Results and Discussion 
Within smart grids, the MIDF-MLA is intended to 

improve the safety of EVs; for the purpose of this research, the 

performance of MIDF-MLA is evaluated across a number of 

different aspects, such as detection rate, system latency, 

resilience, scalability, and resource efficiency. Through the 

incorporation of nonlinear machine learning techniques, the 

MIDF-MLA system intends to provide full protection against 

sophisticated cyberattacks while simultaneously preserving 

the integrity of the system and optimising the utilisation of 

resources.  

Analyzing Data: To assess how well the MIDF-MLA 

worked, data analysis was carried out using a sequential 

approach. Preprocessing, which included cleaning and 

normalizing the raw simulation data, was done to guarantee 

that the machine-learning model was fed high-quality input. 

The performance indicators used to evaluate the model's 

ability to identify different attack types with few false 

positives. Through simulation research, we tested the 

framework's capacity to keep the system intact and optimize 

the allocation of resources in the face of assault scenarios. To 

further demonstrate MIDF-MLA's benefits in detection 
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accuracy, reaction speed, and system resilience, the findings 

were further compared with pre-existing IDS models.  

Dataset description: The multi-dimensional CIC EV 

charger assault dataset 2024 (CICEVSE2024) is useful for 

cyberCloud security research on EV charging stations. EVSE 

power usage, network traffic, and host activities under benign 

and attack scenarios are included [26]. Reconnaissance, DoS, 

Backdoor, and Cryptojacking are discussed. Statistics and 

machine learning for behavioral profiling and anomaly 

identification are possible with the dataset. Attack kinds, 

system states (Idle, Charging), and interfaces (OCPP, 

ISO15118) are labeled in the dataset. 

Table 1. Environmental and simulation parameters 

Parameter Description 

Simulation Environment 
MATLAB/Simulink, Python with Scikit-learn, TensorFlow, and Keras for model training and 

evaluation 

Dataset 
EVSE Dataset 2024 from the Canadian Institute for CyberCloud security, containing Electric 

Vehicle Supply Equipment (EVSE) communication data within smart grids 

Dataset Size 
Approximately 100,000 data points with features such as charging session details, vehicle 

identification, network traffic, and operational status 

Feature Selection 

Method 
Recursive Feature Elimination (RFE) with cross-validation 

Training/Test Split 80% training, 20% testing 

Attack Scenarios 

- Denial of Service (DoS) 

- Man-in-the-Middle (MitM) 

- Spoofing attacks 

- False data injection 

Intrusion Detection 

Methods 

- Signature-based detection 

- Anomaly-based detection using clustering (e.g., K-means, DBSCAN) 

- Hybrid detection approach 

Model Training Supervised learning with labeled attack scenarios and normal operation data 

Simulation Duration 
24 hours of simulated time with different phases of grid load, vehicle charging/discharging, and 

communication patterns 

Hardware Specifications 

- CPU: Intel Core i7 or higher 

- GPU: NVIDIA GTX 1080 Ti or higher for deep learning model acceleration 

- RAM: 32 GB 

Software Libraries 

- Scikit-learn 

- TensorFlow 

- Keras 

- NumPy 

- Pandas 

- Matplotlib 

Hyperparameters 

- SVM (C=1.0, Gamma=0.1) 

- Random Forest (n_estimators=100) 

- Neural Networks (LSTM units=128, batch size=64, epochs=50) 

Noise and Disturbance 

Handling 
Gaussian noise addition to simulating sensor inaccuracies and communication disturbances 

Communication 

Protocols 

Controller Area Network (CAN) protocol, Modbus, TCP/IP for vehicle-to-grid (V2G) 

communication 

Cloud security Measures 

- Encryption (AES-256 for data in transit) 

- Key Management for secure communication 

- Blockchain for logging and integrity verification 

https://www.unb.ca/cic/datasets/evse-dataset-2024.html
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Fig. 6 Detection rate and accuracy analysis 

 

In Figure 6, the MIDF's ability to protect EVs in smart 

grids relies on its detection rate and accuracy, which are 

increased by its nonlinear machine learning technique. MIDF-

MLA's essential nonlinear machine learning model detects 

simple to complex attack vectors. Using simulations to train 

the framework could increase its detection rate and catch more 

hostile acts than earlier methods. Despite efforts, intrusion 

detection systems may produce false positives and negatives. 

MIDF-MLA limits false alerts; therefore, significant threats 

may be defended against, the system remains intact, and 

resources are optimally implemented. For complete coverage, 

the multi-stage architecture uses several levels of analysis 

adapted to individual attackers co; consequently, detection 

accuracy has improved, producing 96.7%. Due to its high 

detection rate and precision, MIDF-MLA is a great solution 

for EV safety in the complex smart grid ecosystem and 

protects the system against several cyberattacks. 

 
Fig. 7 System latency analysis 

Assessing the MIDF using a strong nonlinear machine 

learning algorithm to protect EVs in smart grids requires 

considering system latency. In the above Figure 7, this 

definition of latency refers to the time between detecting a 

threat and reacting. The computing needs of nonlinear 

machine learning algorithms may cause latency in MIDF-

MLA's multi-stage design despite its initial goal of full Cloud 

security through multi-layer data analysis. Detecting complex 

assault patterns requires a lot of computing resources. When 

confronted with massive amounts of real-time data from 

electric vehicles and smart grid networks, this becomes 

apparent. Latency is reduced by distributed computing and 

edge processing, and this approach lets several nodes near the 

data source compute. Reducing data transmission and 

processing time speeds up danger detection and response. 

Finally, MIDF-MLA's adaptive learning methods are adapted 

to the biggest threats. With this, any Cloud security violation 

will be addressed instantly. For smart grid reliability and 

integrity, MIDF-MLA prioritises quick Cloud security 

measures, producing 95.9%. Even though complicated 

frameworks like this have system slowness. 

 
Fig. 8 Robustness analysis 

Figure 8 shows that MIDF needs to be examined using 

robust nonlinear machine learning to defend smart grid EVs; 

this test evaluates the framework's resilience to attacks and 

network issues. MIDF-MLA tackles complex and dynamic 

threats with nonlinear machine learning. Large-scale 

resilience tests simulate DDoS, spoofing, data manipulation, 

and other cyberattacks.  

The multi-stage architecture of MIDF-MLA adds several 

detection layers to address specific network Cloud security 

issues to increase robustness. The multi-tier design helps the 

following steps identify and respond to dangers even if a step 

is compromised. Adaptable learning makes the framework 

robust against new threats, producing 98.2%. MIDF-MLA 

protects electric vehicles in smart grid situations despite smart 

grids' dynamic and distributed nature and DDoS attacks. 
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Fig. 9 Scalability analysis 

 

Scalability investigation using an effective nonlinear 

machine learning technique determines if the MIDF can 

satisfy EV smart grid development needs. Because smart grid 

and EV components generate complex data, scalability is 

essential. In Figure 9, MIDF-MLA scales well by spreading 

computing across layers and nodes due to its multi-stage 

design. As the network grows and more data is processed, this 

method keeps everything working smoothly. Due to 

distributed computing and edge processing, MIDF-MLA's 

nonlinear machine learning model can dynamically allocate 

resources to changing data loads and network topologies. This 

distributed method decreases latency and ensures consistency 

in all operational settings while improving the system's ability 

to manage large-scale deployments, and adaptive learning lets 

MIDF-MLA expand. Detection algorithms are upgraded and 

improved to tackle new threats. MIDF-MLA's scalability 

makes it perfect for electric vehicles and smart grids, 

producing 96.9%. As a result of this action, one can ensure 

that the network will continue to expand while maintaining a 

high level of integrity and effectiveness. 

 
Fig. 10 Resource efficiency analysis 

The MIDF resource efficiency is examined by utilising 

robust nonlinear machine learning. The present research 

examines operational and computational resource utilisation 

to protect smart grid-connected EVs. In the above Figure 10, 

through the integration of many processes, MIDF-MLA 

optimises resource utilisation. The multi-stage architecture 

allows processing workloads to be distributed over multiple 

levels, reducing component pressure and optimising 

computational resources. Nonlinear machine learning 

algorithms are computationally efficient with data purification 

and dimensionality reduction. Distributed computing and edge 

processing increase resource efficiency while this optimiser 

balances processing requirements and accuracy. By evaluating 

data at the source, MIDF-MLA reduces central data transfer 

and processing and adapts resource allocation to changing 

network conditions and real-time danger detection via 

adaptive learning. System performance, operational expenses, 

and energy savings are improved by this dynamic technique 

by 98.1%. MIDF-MLA secures EV smart grids while 

optimising resource utilisation with these resource-efficient 

technologies, making the network sustainable and scalable. 

The evaluation of MIDF-MLA reveals that it is highly 

effective in protecting electric vehicles within smart grids. In 

general, MIDF-MLA emerges as a system that is both 

dependable and effective for protecting electric vehicles in 

smart grid contexts. 

6. Conclusion  
To improve the safety of EVs connected to smart grids, 

we presented the MIDF-MLA in this paper. Multiple 

cyberattack vectors, including DDoS, spoofing, and data 

manipulation, are successfully addressed by the proposed 

framework's multi-stage design and strong nonlinear machine 

learning model. Results from our comprehensive simulation 

study show that MIDF-MLA optimizes resource allocation, 

keeps the system intact, and greatly increases detection 

accuracy across a range of assault scenarios. The findings 

support the idea that MIDF-MLA may improve the safety of 

vital infrastructure in linked smart communities, which will 

lead to smart grid operations that are more robust. The 

architecture guarantees the quick detection and mitigation of 

real threats without affecting key services by decreasing false 

positives. There are a number of promising new directions for 

future study and development. To begin, the IDS's flexibility 

and accuracy might be further improved with the use of more 

sophisticated machine learning methods like deep learning 

and reinforcement learning. Investigating these methods 

might lead to a more robust system for identifying ever-

changing cyber dangers. A more all-encompassing Cloud 

security solution for the ecosystem might be achieved by 

extending the framework's coverage to include additional 

smart grid components like Distributed Energy Resources 

(DERs) and IoT devices. To further confirm the framework's 

efficacy under actual situations, future studies might also 

concentrate on implementing and testing it in live smart grid 

scenarios.  Finally, adding self-learning capabilities to MIDF-
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MLA might make the system resilient in the long run by 

automatically adjusting to new threats as smart grids and EV 

networks change. Contributing to the creation of autonomous, 

intelligent Cloud security systems for future smart 

infrastructures, this process will include continual learning 

from fresh data and real-time feedback. 
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