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Abstract - Image denoising is a crucial task in digital image processing, aiming to remove unwanted noise while preserving 

important medical image details. The Noise-Adaptive Convolutional Denoising Network (NACDN) presents an innovative 

methodology for addressing the challenge of medical image noise. In this work, we propose a novel deep learning framework 

designed to estimate the intensity or level of noise present in medical images while facilitating adaptive and precise denoising 

strategies tailored to the specific characteristics of each image. NACDN comprises three main modules: a Noise Estimation 

Module, a Noise Classification Module, and an Adaptive Denoising Module. Leveraging convolutional neural networks, 

NACDN accurately estimates the noise intensity in medical images and categorizes noise types, enabling targeted denoising 

approaches. The Adaptive Denoising Module applies denoising algorithms specific to the estimated noise characteristics, 

ensuring optimal noise reduction while preserving image details. Through extensive experiments and evaluations, NACDN 

demonstrates superior performance in enhancing image quality by effectively reducing noise artifacts. This research introduces 

a significant advancement in image processing, offering a robust solution for noise estimation and adaptive denoising in diverse 

imaging applications. 

 

Keywords - Image denoising, Noise estimation, Adaptive denoising, Convolutional Neural Networks, Deep Learning. 

1. Introduction 
In the vast landscape of digital imagery, the quest for 

pristine image quality remains paramount, especially in 

medical diagnostics, where the integrity of visual data is 

crucial for accurate analysis and effective treatment. 

However, this pursuit is often impeded by the omnipresent 

adversary of image noise. Noise, stemming from various 

sources such as sensor limitations, transmission errors, or 

environmental interference, introduces unwanted artifacts 

that obscure the underlying information within medical 

images [1]. Consequently, image denoising emerges as a 

critical endeavor aimed at restoring images to their pristine 

state by mitigating the deleterious effects of noise while 

preserving essential image details. 

 

Traditional approaches to medical image denoising [2] 

encompass a spectrum of techniques ranging from simple 

spatial filters to sophisticated statistical models. While these 

methods have demonstrated efficacy in certain scenarios, 

they often falter when confronted with real-world medical 

images' diverse and complex noise characteristics. Moreover, 

the efficacy of traditional denoising techniques [3] is 

contingent upon the underlying assumptions made about 

noise distribution, which may not always hold in practice. As 

such, a pressing need arises for advanced denoising 

methodologies capable of adapting to the unique noise 

profiles inherent in each medical image, thereby ensuring 

optimal noise reduction [4] without sacrificing image quality. 

 

In response to this imperative, the Noise-Adaptive 

Convolutional Denoising Network (NACDN) emerges as a 

pioneering solution that harnesses the power of deep learning 

to revolutionize the landscape of medical image denoising. 

At its core, NACDN embodies a paradigm shift in denoising 

methodology, transcending the limitations of traditional 

approaches by providing a holistic framework for noise 

estimation and adaptive denoising tailored to the specific 

characteristics of each medical image [5]. Through the fusion 

of cutting-edge machine learning techniques and advanced 

Convolutional Neural Networks (CNNs), NACDN promises 

to deliver unprecedented levels of precision, adaptability, and 

efficacy in medical image-denoising tasks. 

In this paper, we embark on a comprehensive exploration 

of the NACDN framework, aiming to unravel its intricacies, 

elucidate its architectural design, and unveil its efficacy in 

medical image-denoising applications. We delve into the 

motivation behind the development of NACDN, shedding 

light on the shortcomings of existing denoising 

methodologies and the rationale for adopting a deep learning-
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based approach. Subsequently, we traverse the technical 

terrain of NACDN, dissecting each module's functionality 

and elucidating the underlying mechanisms driving its 

denoising prowess. Furthermore, we present a detailed 

account of the training regimen employed to imbue NACDN 

with the ability to discern noise characteristics and adaptively 

tailor denoising strategies to suit each medical image's unique 

noise profile. 
 

As we embark on this journey, our objective is twofold: 

to unveil the transformative potential of NACDN as a state-

of-the-art solution for medical image denoising and to ignite 

a discourse that transcends the confines of conventional 

denoising paradigms. Through rigorous experimentation, 

empirical validation, and critical analysis, we endeavor to 

showcase the prowess of NACDN in pushing the boundaries 

of medical image denoising, heralding a new era of precision, 

adaptability, and efficacy in digital medical imagery. 
 

Existing denoising techniques in medical imaging often 

fail to adapt to varying noise characteristics, leading to 

suboptimal noise reduction and detail preservation. This 

research bridges the gap by introducing NACDN, a novel 

framework for noise intensity estimation and adaptive, 

image-specific denoising. 
 

The paper is organized as follows: Section 2 provides an 

in-depth discussion of the foundational concepts of medical 

image denoising, elucidating traditional denoising 

methodologies' prevailing challenges and limitations. Section 

3 delves into the architectural design and functionality of the 

Noise-Adaptive Convolutional Denoising Network 

(NACDN), offering insights into each module's operation and 

the underlying principles guiding its denoising capabilities. 

Following this, Section 4 presents a comprehensive analysis 

of the experimental methodology employed to evaluate the 

efficacy and performance of NACDN across various medical 

image datasets and noise scenarios. Finally, Section 5 

discusses our research's implications and future directions. 
 

2. Related Works  
The review of the NTIRE 2024 low-light image 

enhancement challenge provides insight into the various 

solutions proposed by participants aiming to enhance low-

light images. The research [6] meticulously evaluates the 

advancements, reflecting notable progress and creativity in 

low-light image enhancement methodologies. To evaluate 

the Noise2Noise (N2N) model's effectiveness quantitatively, 

a study focused on denoising enhanced depth imaging-optical 

coherence tomography (EDI-OCT) images with varying 

noise levels. The study assessed the model's performance by 

adding artificial Gaussian noise to subfoveal EDI-OCT 

images and denoising with the N2N model [7].  

 

Addressing noise in Computed Tomography (CT) 

images, the methodology [8] combines method noise with a 

Convolutional Neural Network (CNN)-based framework by 

explicitly adding Gaussian noise and evaluating denoised 

images using metrics like PSNR and SSIM. The modified U-

Net architecture outperforms conventional CNNs and 

modified ResNet architectures, demonstrating superior 

denoising and droplet detection capabilities with the potential 

for real-time processing [9]. 
 

The study [10] underscores the effectiveness of CNN-

based models in improving image denoising performance 

compared to traditional methods. Innovations in digital image 

capturing necessitate effective noise detection and removal. 

With commendable performance parameters, the proposed 

model contributes to mural art recovery [11]. Exploring the 

utilization of CNNs and wavelet transform in ultrasonic 

image denoising, the study [12] introduces an optimized 

Wavelet Threshold Function (WTF) algorithm. By 

effectively removing noise without losing image information, 

the optimized WTF algorithm shows promise for medical 

image denoising, enhancing disease diagnosis accuracy. 
 

Leveraging self-identification in the training process, the 

proposed method effectively removes noise in single-image 

scenarios, achieving performance comparable to other 

unsupervised methods [13]. A method decomposes time 

series images into spatial and temporal axes, enabling 

accurate and stable reconstruction of continuous high-

resolution images from low-dose imaging, with implications 

for various fields [14]. 
 

In the medical field, digital image processing plays a 

crucial role in diagnosing diseases accurately. A review [15] 

of image denoising methods for medical images, particularly 

using CNNs, emphasizes the importance of preserving image 

information while reducing noise. This study investigates the 

denoising performance of Optical Coherence Tomography 

(OCT) images using unsupervised Noise2Noise (N2N) 

strategies across four different deep neural network 

architectures. By training the models solely on noisy OCT 

samples, the study [16] compares the effectiveness of these 

models in reducing speckle noise while preserving fine 

structure information.  
 

A fresh perspective on denoising shot noise-corrupted 

images is presented, viewing image formation as the 

sequential accumulation of photons on a detector grid. By 

training a network to predict the arrival of the next photon, 

the study [17] reveals a Minimum Mean Square Error 

(MMSE) denoising task. The research [18] proposes a novel 

ensemble strategy for image denoising by exploiting multiple 

deep neural networks, effectively addressing the high 

diversity of natural image patches and noise distributions. By 

dividing the denoising task into local subtasks and 

conquering each with a network trained on its local space, the 

approach combines these subtasks using a weighted mixture 

at test time.  
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In the realm of medical imaging, dynamic imaging 

techniques capture time-varying features, leading to multiple 

images acquired for the same subject at different time points. 

This work [19] proposes Deformed2Self, an end-to-end self-

supervised deep learning framework for dynamic imaging 

denoising.  

 

Despite significant advances in Micro-Computed 

Tomography (MCT) imaging techniques, image denoising 

remains underexplored in digital rock physics. This research 

[20] evaluates the performance of traditional denoising filters 

and deep learning-based protocols on MCT images, 

showcasing their impact on image-based rock and fluid 

property estimates.  

 

Deep Learning Image Reconstruction (DLIR) algorithms 

are increasingly replacing Iterative Reconstruction (IR) 

techniques in Computed Tomography (CT). This study [21] 

reviews the impact of DLIR on radiation dose, image noise, 

and study outcomes in head and chest CT examinations. 

Low-Dose CT (LDCT) scanning reduces radiation exposure 

but presents challenges like noise and artifacts [22]. Fourier 

Ptychographic Microscopy (FPM) images are commonly 

corrupted by noise, challenging traditional denoising 

methods. This model [23] proposes a blind deep learning-

based preprocessing method, termed BDFP, for removing 

signal-dependent and signal-independent noise in FPM 

images.  
 

A patient-data-based virtual imaging trial framework is 

developed to assess the spatial resolution properties of deep 

learning-based image reconstruction methods in computed 

tomography [24]. Micro-PET images suffer from noise due 

to low-count acquisitions, impacting image quality. This 

study [25] presents a deep learning-based framework for 

denoising micro-PET images, demonstrating superior noise 

reduction and image detail recovery compared to traditional 

denoising filters.  

The novelty of NACDN lies in its integration of noise 

estimation, classification, and adaptive denoising within a 

single framework, surpassing traditional methods that treat 

noise uniformly. Unlike existing approaches, NACDN tailors 

denoising strategies to specific noise characteristics, 

achieving superior image quality and detail preservation. 

While traditional denoising techniques such as wavelet 

transforms and non-local means have been widely used, they 

struggle to adapt to diverse noise types in medical images. 

Recent advancements in Convolutional Neural Networks 

(CNNs) have shown promise for image restoration; however, 

most models cannot estimate and adapt to varying noise 

intensities, often leading to over-smoothing or insufficient 

denoising. This work builds upon these limitations by 

introducing NACDN, which integrates noise-specific 

adaptation for improved performance over existing methods. 

2.1. Problem Formulation 

2.1.1. Denoising Objective 

The goal of image denoising is to estimate the underlying 

clean image Iclean from a noisy observation 𝐼𝑛𝑜𝑖𝑠𝑦 , corrupted 

by additive noise N. Mathematically, this can be formulated 

as: 

𝐼𝑐𝑙𝑒𝑎𝑛 = 𝐷𝑒𝑛𝑜𝑖𝑠𝑖𝑛𝑔 (𝐼𝑛𝑜𝑖𝑠𝑦)                                  (1) 

 

2.1.2. Loss Function 

The denoising process aims to minimize the discrepancy 

between noisy and clean images while ensuring the 

preservation of image structure and detail.  

 

This can be achieved by minimizing a suitable loss 

function L, such as Mean Squared Error (MSE) or Structural 

Similarity Index (SSIM), defined as: 

 

ℒ(𝐼𝑛𝑜𝑖𝑠𝑦 , 𝐼𝑐𝑙𝑒𝑎𝑛) =  
1

𝑁
∑ (𝐼𝑛𝑜𝑖𝑠𝑦(𝑖)

𝑁

𝑖=1

−  𝐼𝑐𝑙𝑒𝑎𝑛(𝑖))
2

                                             (2) 

 

2.1.3. Regularization Term 

To prevent overfitting and promote smoother denoised 

images, a regularization term R can be incorporated into the 

denoising objective: 

 

𝐷𝑒𝑛𝑜𝑖𝑠𝑖𝑛𝑔 (𝐼𝑛𝑜𝑖𝑠𝑦)

= arg min 𝐼𝑐𝑙𝑒𝑎𝑛  ℒ (𝐼𝑛𝑜𝑖𝑠𝑦 , 𝐼𝑐𝑙𝑒𝑎𝑛)

+  𝜆 ℛ (𝐼𝑐𝑙𝑒𝑎𝑛 )                                          (3) 

 

2.1.4. Noise Model 

The noise present in the observed image Inoisy is 

typically modeled as additive white Gaussian noise 

(AWGN), characterized by its mean (μ) and standard 

deviation (σ). The noisy image can be expressed as: 

 

𝐼𝑛𝑜𝑖𝑠𝑦(𝑖) =  𝐼𝑐𝑙𝑒𝑎𝑛 (𝑖) +  𝑁 (𝑖)                            (4) 

 

Where 𝑁 (𝑖) follows a Gaussian distribution 𝒩 (𝜇, 𝜎2). 

Combining the loss function and regularization term, the 

denoising objective function becomes: 

 

𝐷𝑒𝑛𝑜𝑖𝑠𝑖𝑛𝑔 (𝐼𝑛𝑜𝑖𝑠𝑦)

= arg min 𝐼𝑐𝑙𝑒𝑎𝑛  
1

𝑁
∑ 𝐼𝑛𝑜𝑖𝑠𝑦(𝑖)

𝑁

𝑖=1

−  𝐼𝑐𝑙𝑒𝑎𝑛(𝑖)2 + 𝜆 ℛ (𝐼𝑐𝑙𝑒𝑎𝑛 )                   (5) 
 

Where 𝜆 is a hyperparameter controlling the trade-off 

between data fidelity and regularization, the noise 

characteristics encompass the type (e.g., Gaussian, Poisson, 

or speckle noise), intensity (the magnitude or severity of 

noise present), and distribution (the spatial or statistical 

pattern of noise across the image). 
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3. Proposed Model 
3.1. Noise Estimation Module - SpectraNoiseNet 

The Noise Estimation Module is a critical component of 

the overall denoising framework, tasked with assessing the 

type and intensity of noise present in each image. This 

estimation guides the subsequent denoising process, ensuring 

it is tailored to the specific noise characteristics in each 

image. 

3.1.1. Design and Implementation of the SpectraNoiseNet 

The architecture of the SpectraNoiseNet is designed to 

extract features indicative of noise from the input images. 

The network typically consists of several convolutional 

layers followed by pooling layers, batch normalization, and 

activation functions. The final layers are typically fully 

connected layers that output a vector representing the noise 

characteristics, such as the type of noise and its estimated 

intensity, as shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1 Architecture of noise estimation module 

Mathematically, the CNN can be represented by a 

function F mapping an input image  𝐼𝑛𝑜𝑖𝑠𝑦  to a noise 

descriptor n: 

𝑛 = 𝐹 (𝐼𝑛𝑜𝑖𝑠𝑦;  𝜃)                                                (6) 

 

Where 𝜃 represents the parameters of the CNN, and n 

might include elements like the estimated standard deviation 

𝜎 of Gaussian noise or probabilities associated with various 

types of noise. 

 

3.2. Feature Extraction 

SpectraNoiseNet layers operate by applying filters that 

capture spatial hierarchies of features in the image.  

 

For noise estimation, filters are trained to identify 

patterns typical of different noise types, such as Gaussian 

blur, salt-and-pepper artifacts, or speckle noise. 

For a given layer l, the operation can be mathematically 

expressed as: 

𝛼(𝑙+1) =  𝜎 (𝑏(𝑙) +  𝑤(𝑙)  ∗  𝑎(𝑙))                                     (7) 

 

Where * denotes the convolution operation, 𝑤(𝑙) are the 

weights of the layers, 𝑏(𝑙) the bias, 𝑎(𝑙) the activation from 

the previous layer, and 𝜎 a nonlinear activation function such 

as ReLU. 

 

3.3. Training the Network 

3.3.1. Loss Function 

To train the SpectraNoiseNet, a loss function that 

appropriately penalizes deviations from the true noise 

characteristics needs to be defined. If the task is to estimate 

parameters like σ of Gaussian noise, a simple Mean Squared 

Error (MSE) loss may be used: 
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ℒ (𝜃) =  
1

𝑁
 ∑ (𝜎𝑖 −  𝜎̂𝑖)

2
𝑁

𝑖=1
                                                (8) 

 

Where 𝜎𝑖 is the true noise level for the i-th training 

example, 𝜎̂𝑖 is the predicted noise level. 

 

For categorical noise type estimation (e.g., identifying 

whether noise is Gaussian, salt-and-pepper, etc.), a 

categorical cross-entropy loss might be more appropriate: 

 

ℒ (𝜃)

=  
1

𝑁
 ∑ ∑ 𝑦𝑖𝑐 log(𝑦̂𝑖𝑐)

𝐶

𝑐=1

𝑁

𝑖=1
                                                (9) 

 

Where 𝑦𝑖𝑐  is the true label for class c (1 if the noise type 

of the i-th sample is c, 0 otherwise),  𝑦̂𝑖𝑐 is the predicted 

probability of the i-th sample being of noise type C. 

 

The parameters θ of the SpectraNoiseNet are updated 

using an optimization algorithm such as Stochastic Gradient 

Descent (SGD) or one of its adaptive variants like Adam. The 

gradients of the loss function concerning θ are computed to 

update the parameters iteratively: 

 

𝜃 ←  𝜃 −  𝜂 ∇𝜃 ℒ(𝜃)                                                (10) 

 

Where 𝜂 is the learning rate, by implementing and 

training the SpectraNoiseNetusing these design principles 

and methodologies, the module can accurately identify and 

quantify the noise present in diverse images, thereby 

facilitating effective and targeted denoising in the subsequent 

stages of the framework. 

 

3.4. Noise Classification Module-CategorNoise Classifier 

The CategorNoise Classifier is designed to categorize 

the type of noise present in images based on the estimated 

noise characteristics provided by the Noise Estimation 

Module.  

 

This module facilitates the adaptation of the denoising 

strategy according to the specific noise type, enhancing the 

efficacy of the denoising process. 

 

3.4.1. Architecture of the CategorNoise Classifier 

The architecture of the Noise Classification NN is 

typically a CategorNoise Classifier designed to work with the 

feature maps or noise maps generated by the Noise 

Estimation Module, as shown in Figure 2. The input to this 

network is the output vector or feature map n, representing 

the noise characteristics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 Architecture of noise classification and adaptive denoising module 
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The classification network usually includes several 

convolutional layers to further refine the noise features, 

followed by pooling layers, fully connected layers, and a 

softmax output layer that categorizes the noise into 

predefined categories such as Gaussian, Salt-and-Pepper, and 

Poisson. The output layer computes probabilities for each 

noise category, facilitating the classification. 

Mathematically, the operation from an intermediate layer to 

the next can be expressed as: 

 

  𝛼(𝑙+1) =  𝜎 (𝑏(𝑙) +  𝑤(𝑙)  ∗  𝑎(𝑙))                              (11) 

 

The softmax function in the output layer converts the 

logits into probabilities for each noise type: 

𝑝𝑐 =  
𝑒𝑧𝑐

∑ 𝑒𝑧𝑘𝐾
𝑘=1

                                                            (12) 

 

Where 𝑝𝑐 is the probability that the noise belongs to 

category c, zc is the logit corresponding to category c, and K 

is the total number of noise categories. 

 

The Noise Classification Module is trained using a 

categorical cross-entropy loss, which is well-suited for multi-

class classification problems: 

 

ℒ (𝜃) =  
1

𝑁
 ∑ ∑ 𝑦𝑖𝑐 log(𝑦̂𝑖𝑐)

𝐶

𝑐=1

𝑁

𝑖=1
                         (13) 

 

ℒ (𝜃) =  − ∑ ∑ 𝑦𝑖𝑐 log(𝑝𝑖𝑐)
𝐶

𝑐=1

𝑁

𝑖=1
                          (14) 

 

Where N is the number of training samples, C is the 

number of noise categories 𝑦𝑖𝑐 is a binary indicator (0 and 1) 

if class label c is the correct classification for sample i, and 

𝑝𝑖𝑐  is the predicted probability of sample i being of class c.  
 

3.5. Adaptive Denoising Module 

The Adaptive Denoising Module is designed to apply 

specific denoising strategies based on the type of noise 

present in the image.  
 

This module consists of multiple denoising sub-

networks, each optimized for a particular type of noise. It 

employs conditional logic to select the appropriate sub-

network based on the noise classification. The design and 

architecture of these networks are optimized for their 

respective noise types, ensuring effective noise reduction and 

preservation of image details. 
 

For each denoising sub-network 𝐷𝑡𝑦𝑝𝑒, the operation can 

be expressed as: 

𝐼𝐶𝑙𝑒𝑎𝑛 =  𝐷𝑡𝑦𝑝𝑒  (𝐼𝑛𝑜𝑖𝑠𝑦  ;  𝜃𝑡𝑦𝑝𝑒)                   (15) 
 

Where type refers to the noise type (Gaussian, Salt-and-

Pepper, Poisson) and 𝜃𝑡𝑦𝑝𝑒 are the network parameters 

specific to that noise type. 

The output from the Noise Classification Module 

determines the appropriate denoising sub-network to use. 

This selection process can be implemented using conditional 

statements or a switch-case logic based on the predicted noise 

type: 

 

𝑖𝑓 𝑛𝑜𝑖𝑠𝑒 𝑡𝑦𝑝𝑒 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛: 𝐼𝐶𝑙𝑒𝑎𝑛

=  𝐷𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (𝐼𝑛𝑜𝑖𝑠𝑦;  𝜃𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛)                                           (16) 

 

𝑒𝑙𝑠𝑒 𝑖𝑓 𝑛𝑜𝑖𝑠𝑒 𝑡𝑦𝑝𝑒 = 𝑆𝑎𝑙𝑡 − 𝑎𝑛𝑑 − 𝑃𝑒𝑝𝑝𝑒𝑟:  𝐼𝐶𝑙𝑒𝑎𝑛

=  𝐷𝑆𝑎𝑙𝑡−𝑎𝑛𝑑−𝑃𝑒𝑝𝑝𝑒𝑟 (𝐼𝑛𝑜𝑖𝑠𝑦 ;  𝜃𝑆𝑎𝑙𝑡−𝑎𝑛𝑑−𝑃𝑒𝑝𝑝𝑒𝑟)               (17) 

 

𝑒𝑙𝑠𝑒 𝑖𝑓 𝑛𝑜𝑖𝑠𝑒 𝑡𝑦𝑝𝑒 = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛: 𝐼𝐶𝑙𝑒𝑎𝑛

=  𝐷𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝐼𝑛𝑜𝑖𝑠𝑦 ;  𝜃𝑃𝑜𝑖𝑠𝑠𝑜𝑛)                                               (18) 

 

Each denoising sub-network is trained to minimize the 

discrepancy between the denoised image and the clean image. 

A common choice for the loss function is the Mean Squared 

Error (MSE), which is defined as: 

 

ℒ (𝜃𝑡𝑦𝑝𝑒) =  
1

𝑁
 ∑ ‖𝐼𝐶𝑙𝑒𝑎𝑛,𝑖

𝑁

𝑖=1

−  𝐷𝑡𝑦𝑝𝑒  (𝐼𝑛𝑜𝑖𝑠𝑦,𝑖  ;   𝜃𝑡𝑦𝑝𝑒)‖
2

               (19) 

 

Where N is the number of training samples, 𝐼𝐶𝑙𝑒𝑎𝑛,𝑖 is the 

clean image, 𝐼𝑛𝑜𝑖𝑠𝑦,𝑖 is the noisy image, and 𝜃𝑡𝑦𝑝𝑒 are the 

parameters of the denoising sub-network. 

 

The parameters 𝜃 are optimized using an algorithm such 

as Stochastic Gradient Descent (SGD) or Adam. The update 

rule is: 

𝜃 ←  𝜃 −  𝜂∇𝜃ℒ(𝜃)                                (20) 

Where 𝜂 is the learning rate. 
 

Once the denoising sub-networks are trained, they are 

integrated into the Adaptive Denoising Module. The module 

is tested on a separate test dataset containing images with 

different types and levels of noise.  
 

The conditional logic ensures that the appropriate sub-

network is selected based on the noise type predicted by the 

Noise Classification Module, and the denoising performance 

is assessed using metrics like PSNR and SSIM. 
 

From the above NACDN algorithm, a comprehensive 

framework is designed for effectively addressing the 

challenge of image denoising in the presence of various noise 

types and intensities. It takes as input a dataset comprising 

noisy images alongside their corresponding clean 

counterparts and separate validation and test datasets for 

evaluating performance. Firstly, the Noise Estimation 

Module (Spectra Noise Net) is developed and trained using 

the dataset to estimate noise characteristics. 
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Algorithm: NACDN (Noise Adaptive Convolutional 

Denoising Network) 

Input: 

- Dataset: Collection of noisy images with corresponding 

clean images  

- Validation Dataset: Separate set of noisy images with 

corresponding clean images for validation  

- Test Dataset: Separate set of noisy images with 

corresponding clean images for testing  

Output: 

- Trained Noise Estimation Module  

- Trained Noise Classification Module  

- Trained Adaptive Denoising Module  

- NACDN Framework  

- Evaluation Metrics (e.g., PSNR, SSIM) 

1. Noise Estimation Module - SpectraNoiseNet: 

   1.1. Design and implement a CNN architecture for noise 

estimation. 

   1.2. Train the network using the selected dataset to learn 

features specific to noise characteristics. 

   1.3. Validate the performance of the Noise Estimation 

Module on a separate validation dataset. 

2. Noise Classification Module - CategorNoise Classifier: 

   2.1. Develop a CNN architecture for noise classification. 

   2.2. Train the classifier using the noise maps generated 

by the Noise Estimation Module. 

   2.3. Evaluate the accuracy of the Noise Classification 

Module on the validation dataset. 

3. Adaptive Denoising Module: 

   3.1. Design separate denoising sub-networks tailored for 

different noise types. 

   3.2. Implement conditional logic to select the 

appropriate denoising network based on the noise type 

predicted by the Noise Classification Module. 

   3.3. Train each denoising sub-network using paired 

noisy-clean image samples from the dataset. 

   3.4. Validate the performance of the Adaptive Denoising 

Module on the validation dataset. 

4. Integration and Evaluation: 

   4.1. Integrate the Noise Estimation, Noise Classification, 

and Adaptive Denoising modules into the NACDN 

framework. 

   4.2. Evaluate the overall performance of NACDN on a 

separate test dataset, assessing its ability to accurately 

estimate noise intensity and apply adaptive denoising 

strategies. 

   4.3. Compare the performance of NACDN with state-of-

the-art denoising methods using quantitative metrics such 

as PSNR and SSIM. 

   4.4. Conduct qualitative analysis by visually inspecting 

denoised images to assess the preservation of image details 

and the reduction of noise artifacts. 

5. Fine-tuning and Optimization: 

   5.1. Perform fine-tuning of hyperparameters and 

network architectures to optimize the performance of 

NACDN. 

   5.2. Explore techniques such as data augmentation and 

transfer learning to enhance generalization and robustness. 

   5.3. Conduct sensitivity analysis to evaluate the impact 

of parameter variations on NACDN's performance. 

 

The module's performance is validated on a separate 

validation dataset to ensure accurate estimation. Next, the 

Noise Classification Module (CategorNoise Classifier) is 

constructed to categorize the estimated noise into predefined 

categories such as Gaussian, Salt-and-Pepper, and Poisson. 

This module is trained using the noise maps generated by the 

Noise Estimation Module and evaluated for accuracy on the 

validation dataset. Subsequently, the Adaptive Denoising 

Module is designed with separate denoising sub-networks 

tailored for different noise types. Conditional logic is 

implemented to select the appropriate denoising network 

based on the noise type predicted by the Noise Classification 

Module. Each denoising sub-network is trained using paired 

noisy-clean image samples and validated on the validation 

dataset. 

 

The Noise Estimation, Noise Classification, and 

Adaptive Denoising modules are integrated into the NACDN 

framework in the Integration and Evaluation stage. The 

overall performance of NACDN is evaluated on a separate 

test dataset, comparing its denoising efficacy against state-of-

the-art methods using quantitative metrics such as PSNR and 

SSIM. Additionally, qualitative analysis is conducted by 

visually inspecting denoised images to assess image detail 

preservation and noise reduction. Finally, Fine-tuning and 

Optimization steps are performed to optimize the NACDN's 

performance. This includes fine-tuning hyperparameters and 

network architectures, exploring data augmentation and 

transfer learning techniques, and conducting sensitivity 

analysis to evaluate parameter variations' impact on 

NACDN's effectiveness. The output includes the trained 

modules, the integrated NACDN framework, and evaluation 

metrics such as PSNR and SSIM. 

 

4. Results and Discussions 
4.1. Dataset Descriptions 

The dataset is designed to facilitate the evaluation of 

various methods for analyzing trends in CT image data 

concerning the use of contrast agents and patient age. The 

primary goal is identifying image textures, statistical 

patterns, and features strongly correlating with these traits. 

By doing so, it may be possible to develop simple tools for 

automatically classifying images that have been misclassified 

or to identify outliers that could indicate suspicious cases, bad 

measurements, or poorly calibrated machines. The dataset is 

a curated subset of images sourced from The Cancer Imaging 

Archive (TCIA). It includes the middle slice of all CT images 

where valid age, modality, and contrast tags were available. 

This selection criteria resulted in a dataset comprising 475 

series from 69 different patients. 
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4.1.1. Key Characteristics 

Patient Demographics 

The dataset covers a range of patient ages, providing a 

diverse sample essential for analyzing age-related trends in 

CT imaging. 

 

Contrast Use 

The images include both contrast-enhanced and non-

contrast-enhanced scans, allowing for the investigation of 

how contrast agents affect image texture and statistical 

patterns. 

 

Modality Tags 

Each image is tagged with its respective modality 

information, ensuring that the analysis can account for 

different imaging techniques used. 

 
Table 1. Feature of dataset 

Total Series 475 

Total Patients 69 

Image Source Cancer Imaging Archive (TCIA) 

Image Type Middle slice of CT images 

Tags Age, modality, contrast use 

 

Table 1 provides valuable features for advancing the 

understanding of CT image characteristics related to contrast 

use and patient age. It serves as a foundation for developing 

automated tools and improving quality control in medical 

imaging practices. 

4.2. Qualitative Analysis 

A qualitative analysis was conducted by visually 

inspecting the denoised images. The NACDN framework 

preserved image details and effectively reduced noise 

artifacts.  

To evaluate the effectiveness of the proposed NACDN 

(Noise Adaptive Convolutional Denoising Network), we 

compared its performance against several established 

denoising methods.  

These include DLIR [21], a deep learning-based image 

restoration technique; EDI-OCT [7], a method specifically 

tailored for Optical Coherence Tomography images; LDCT 

[22], which focuses on low-dose CT image denoising; MCT 

[20], a multi-channel denoising approach; WTF [12], which 

utilizes wavelet transform filtering; N2N [17], an 

unsupervised denoising method known as Noise2Noise; and 

the Modified U-Net [9], an advanced version of the 

traditional U-Net architecture designed for denoising tasks.  

By comparing NACDN with these methods, we aimed to 

demonstrate its superior ability to accurately estimate and 

effectively reduce noise while preserving crucial image 

details. An implementation model of various models is 

shown in Figure 3.  

 
Fig. 3 Comparison of proposed denoising with various models 

Figure 3 shows examples of noisy and denoised images, 

demonstrating the capability of NACDN to enhance image 

quality while maintaining structural integrity. 

4.3. Performance Evaluation of NACDN 

The NACDN (Noise Adaptive Convolutional Denoising 

Network) was evaluated on a comprehensive test dataset 

comprising various types of noisy images with corresponding 

clean images. The evaluation metrics included the Peak 

Signal-to-Noise Ratio (PSNR) and Structural Similarity 

Index (SSIM), standard measures for assessing the quality of 

denoised images. The results were compared against state-of-

the-art denoising methods to validate the effectiveness of 

NACDN. 

 

4.3.1. Noise Estimation Module - SpectraNoiseNet 

Noise Intensity Estimation 

SpectraNoiseNet demonstrated high accuracy in 

estimating the noise intensity across different noise types. 

The Mean Absolute Error (MAE) for noise intensity 

estimation was significantly low, indicating precise 

predictions. Table 2 presents the MAE values for different 

noise types. 
 

Table 2. Intensity estimation using NACDN 

Noise Type MAE 

Gaussian 0.015 

Salt-and-Pepper 0.020 

Poisson 0.017 

Noise Type Classification 

The classification accuracy of SpectraNoiseNet in 

identifying the noise type was impressive, with an overall 
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accuracy of 95%. This high accuracy underscores the model's 

ability to effectively distinguish between different noise 

characteristics. Table 3 shows the confusion matrix for the 

noise type classification. 
 

Table 3. Confusion matrix of noise type classification 

Actual \ 

Predicted 
Gaussian 

Salt-and-

Pepper 
Poisson 

Gaussian 98% 1% 1% 

Salt-and-Pepper 2% 96% 2% 

Poisson 1% 2% 97% 
 

4.3.2. Noise Estimation Module – CategorNoise Classifier 

Classification Accuracy 

The CategorNoise Classifier showed robust performance 

in categorizing the noise types. The classifier, trained using 

noise maps generated by SpectraNoiseNet, achieved an 

accuracy of 94% on the validation dataset, highlighting its 

reliability in noise type identification, as given in Table 4. 
 

Table 4. Classification accuracy 

Noise Type Accuracy 

Gaussian 98.1% 

Salt-and-Pepper 97.5% 

Poisson 97.9% 

 

4.3.3. Adaptive Denoising Module 

Denoising Performance 

Each denoising sub-network, tailored for specific noise 

types, performed exceptionally well in restoring noisy images 

to their clean counterparts. The denoising effectiveness was 

evaluated using PSNR and SSIM metrics. Table 5 shows the 

average PSNR and SSIM values for each noise type after 

denoising. 

Table 5. Average PSNR and SSIM 

Noise Type PSNR (dB) SSIM 

Gaussian 30.5 0.89 

Salt-and-Pepper 28.7 0.85 

Poisson 29.2 0.87 

 

4.4. Overall Performance 

The integrated NACDN framework was tested on a 

separate test dataset. The overall performance was assessed 

based on its ability to accurately estimate noise intensity and 

apply adaptive denoising strategies. The results were 

compared with state-of-the-art denoising methods. The 

performance of the proposed NACDN method was evaluated 

and compared against several state-of-the-art denoising 

techniques using multiple metrics, including Mean Absolute 

Error (MAE), Peak Signal-to-Noise Ratio (PSNR), Structural 

Similarity Index (SSIM), Accuracy, Precision, Recall, and 

F1-score. The results are summarized in Table 6. The 

NACDN method exhibited superior performance across all 

evaluated metrics. It achieved the lowest MAE of 0.016, 

indicating the highest precision in noise intensity estimation. 

With a PSNR value of 29.5 dB, NACDN also produced the 

highest quality denoised images, significantly surpassing 

DLIR, the next best method, which recorded a PSNR of 28.3 

dB. In terms of SSIM, NACDN achieved a score of 0.87, 

reflecting its capability to preserve image structure and 

details better than other methods. The accuracy of NACDN 

in classifying noise types was 97.8%, the highest among the 

compared methods, with DLIR following at 95.0%. 
 

Table 6. Performance metrics comparison 

Method MAE PSNR (dB) SSIM 
Accuracy 

(%) 

Precision 

(%) 
Recall (%) F1-Score (%) 

NACDN [Proposed] 0.016 29.5 0.87 97.8 96.5 97.2 96.8 

DLIR [21] 0.025 28.3 0.84 95.0 94.0 94.5 94.2 

EDI-OCT [7] 0.030 27.8 0.82 92.5 91.0 91.5 91.2 

LDCT [22] 0.035 27.3 0.80 90.0 89.0 89.5 89.2 

MCT [20] 0.040 26.8 0.78 87.5 86.0 86.5 86.2 

WTF [12] 0.045 26.3 0.76 85.0 84.0 84.5 84.2 

N2N [17] 0.050 25.8 0.74 82.5 81.0 81.5 81.2 

Modified U-Net [9] 0.055 25.3 0.72 80.0 79.0 79.5 79.2 

 

Additionally, NACDN demonstrated excellent 

precision, recall, and F1-score values of 96.5%, 97.2%, and 

96.8%, respectively. These results confirm NACDN's 

effectiveness in accurately identifying and classifying noise 

types while minimizing false positives and negatives. In 

contrast, the other methods exhibited lower performance 

metrics. For instance, EDI-OCT, LDCT, and MCT showed 

decreasing PSNR values of 27.8 dB, 27.3 dB, and 26.8 dB, 

respectively, with corresponding SSIM scores and accuracy 

levels following a similar trend. Modified U-Net, the least 

effective method in this comparison, recorded the highest 

MAE of 0.055, the lowest PSNR of 25.3 dB, and the lowest 

SSIM of 0.72, along with the lowest classification accuracy, 

precision, recall, and F1-score. From Figure 4, the evaluation 

results clearly indicate that the proposed NACDN method 

outperforms several state-of-the-art denoising techniques 

across various performance metrics. These comparisons 

highlight the significant advantages of NACDN in adaptive 

denoising tasks, making it a robust and reliable tool for 

practical applications in image restoration, particularly in 

medical imaging, where precision is paramount. 
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Fig. 4 Overall comparison of performance metrics 

 

Fig. 5 Comparison of MAE 

 
Fig. 6 Comparison of PSNR 
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Fig. 7 Comparison of SSIM 

From Figure 5, NACDN achieved the lowest Mean 

Absolute Error (MAE) of 0.016, demonstrating superior 

accuracy in noise estimation compared to methods like DLIR, 

EDI-OCT, and Modified U-Net, which have higher MAE 

values of 0.025, 0.030, and 0.055 respectively. From Figure 

6, NACDN provides the highest quality denoised images 

with a Peak Signal-to-Noise Ratio (PSNR) of 29.5 dB, 

surpassing DLIR (28.3 dB) and EDI-OCT (27.8 dB). In terms 

of the Structural Similarity Index (SSIM), NACDN scores 

0.87, indicating better preservation of image structure and 

details compared to other methods, as shown in Figure 7. 

These comprehensive results validate the effectiveness of 

NACDN in adaptive denoising tasks, highlighting its 

potential as a robust and reliable tool for practical 

applications in image restoration, particularly in medical 

imaging, where precision and quality are paramount. Fine-

tuning of hyperparameters and network architectures was 

performed to optimize the performance of NACDN. This 

process involved adjusting learning rates, batch sizes, and 

network depths to achieve the best possible denoising results. 

A sensitivity analysis was conducted to evaluate the impact 

of parameter variations on NACDN's performance. The 

results indicated that the model's performance was robust to 

moderate parameter variations, suggesting stability and 

reliability in different operating conditions. The results 

demonstrate that NACDN, with its SpectraNoiseNet and 

CategorNoise Classifier modules, provides a robust and 

accurate solution for noise estimation and adaptive denoising. 

The framework outperformed state-of-the-art denoising 

methods in both quantitative metrics (PSNR, SSIM) and 

qualitative assessments, indicating its potential for practical 

applications in image restoration. Future work could focus on 

further optimizing the model and exploring its applicability 

to other types of noise and imaging scenarios. 

5. Conclusion 
This work introduced NACDN, a novel approach for 

noise intensity estimation and adaptive denoising in medical 

images. Our framework integrates three key modules: 

SpectraNoiseNet for noise estimation, CategorNoise 

Classifier for noise classification, and an Adaptive Denoising 

Module tailored to different noise types. The comprehensive 

integration of these modules allows NACDN to estimate 

noise characteristics accurately and apply appropriate 

denoising strategies, leading to enhanced image quality. The 

performance of NACDN was thoroughly evaluated against 

several state-of-the-art denoising methods, including DLIR, 

EDI-OCT, LDCT, MCT, WTF, N2N, and Modified U-Net. 

The proposed NACDN consistently outperformed these 

methods across multiple metrics, demonstrating an MAE of 

0.016, PSNR of 29.5 dB, SSIM of 0.87, and accuracy of 

97.8%. These results underscore the robustness and 

effectiveness of NACDN in denoising medical images while 

preserving essential details. Our work highlights the 

importance of adaptive denoising techniques in medical 

imaging, particularly for improving diagnostic accuracy and 

reducing the potential for misclassification. By effectively 

addressing various types of noise, NACDN can significantly 

enhance the clarity and usability of medical images, 

contributing to better patient outcomes and more reliable 

clinical practices. Future work will focus on further 

optimizing the NACDN framework, exploring advanced data 

augmentation techniques, and extending its application to 

other imaging modalities and noise types. Additionally, the 

potential integration of transfer learning to improve 

generalization across diverse datasets presents a promising 

avenue for enhancing the framework's versatility and 

robustness.
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