Implementation of Machine Vision of Robotic Spacecrafts for Reducing Storage Memory and Increase of PSNR of Image

International Journal of Electronics and Communication Engineering
© 2014 by SSRG - IJECE Journal
Volume 1 Issue 8
Year of Publication : 2014
Authors : Manas Aror and Poonam Pathak
pdf
How to Cite?

Manas Aror and Poonam Pathak, "Implementation of Machine Vision of Robotic Spacecrafts for Reducing Storage Memory and Increase of PSNR of Image," SSRG International Journal of Electronics and Communication Engineering, vol. 1,  no. 8, pp. 29-34, 2014. Crossref, https://doi.org/10.14445/23488549/IJECE-V1I8P110

Abstract:

Machine Vision is a technology by which a machine visualizes by using imaging devices and further human beings visualizes distant object through images captured by a machine. This paper focuses on the implementation of machine vision using MATLAB and design code to replicate the operation of a particular robotic spacecraft.

Keywords:

Data. Image, Machine Vision, Pixel, PSNR.

References:

Journals
[1] Graves, Mark & Bruce G. Batchelor (2003). Machine Vision for the Inspection of Natural Products. Springer. p. 5.ISBN 978-1-85233-525-0. Retrieved 2010-11-02.
[2] Holton, W. Conard (October 2010). "By Any Other Name". Vision Systems Design 15 (10). ISSN 1089-3709. Retrieved 2013-03-05.
[3] Barghout, Lauren, and Jacob Sheynin. "Real-world scene perception and perceptual organization: Lessons from Computer Vision." Journal of Vision 13.9 (2013): 709-709
[4] Huynh-Thu, Q.; Ghanbari, M. "Scope of validity of PSNR in image/video quality assessment". Electronics Letters 44 (13): 800,2008  Proceedings Papers
[5] Steger, Carsten, Markus Ulrich, and Christian Wiedemann (2008). Machine Vision Algorithms and Applications. Weinheim:Wiley-VCH. p. 1. ISBN 978-3-527-40734-7. Retrieved 2010-11-05 
[6] Relf, Christopher G. (2004). Image Acquisition and Processing with LabVIEW 1. CRC Press. ISBN 978-0-8493-1480-3. Retrieved 2010-11-02
[7] Reinhard Klette (2014). Concise Computer Vision. Springer. ISBN 978-1-4471-6320-6.
[8] Linda G. Shapiro and George C. Stockman (2001). Computer Vision. Prentice Hall. ISBN 0-13-030796-3
[9] Tim Morris (2004). Computer Vision and Image Processing. Palgrave Macmillan. ISBN 0-333-99451-5. 
[10] Bernd Jähne and Horst Haußecker (2000). Computer Vision and Applications, A Guide for Students and Practitioners. Academic Press. ISBN 0-13-085198-1.
[11] Milan Sonka, Vaclav Hlavac and Roger Boyle (2008). Image Processing, Analysis, and Machine Vision. Thomson. ISBN 0-495-08252-X.
[12] David A. Forsyth and Jean Ponce (2003). Computer Vision, A Modern Approach. Prentice Hall. ISBN 0-13-085198-1.
[13] Dana H. Ballard and Christopher M. Brown (1982). Computer Vision. Prentice Hall. ISBN 0-13-165316-4. Website Links
[14] http://en.wikipedia.org/wiki/Machine_vision
[15] https://computingllnl.gov/vis/gputechnology.shtml 
[16] http://bionews-tx.com/news/2013/03/27/baylor-college-of-medicine-and-rice-university-genomics-researcher-delivers-keynote-address-at-nvidia-gpu-technology-conference/ 
[17] http://mars.nasa.gov/mer/home/index.html
[18] http://web.mit.edu/xiphmont/Public/theora/demo7.html