A Better Design of Quadrature Oscillator using OTRAs

International Journal of Electronics and Communication Engineering
© 2021 by SSRG - IJECE Journal
Volume 8 Issue 7
Year of Publication : 2021
Authors : T. S. Rathore, U. P. Khot, Prasoon Vishwakarma
pdf
How to Cite?

T. S. Rathore, U. P. Khot, Prasoon Vishwakarma, "A Better Design of Quadrature Oscillator using OTRAs," SSRG International Journal of Electronics and Communication Engineering, vol. 8,  no. 7, pp. 11-13, 2021. Crossref, https://doi.org/10.14445/23488549/IJECE-V8I7P102

Abstract:

A better design of quadrature oscillators using OTRAs is suggested. The simulated results are in close agreement with the theoretical ones.

Keywords:

Barkhausen Criteria, Oscillator, OTRA, Quadrature Oscillator

References:

[1] T. S. Rathore, Minimal realization of RC voltage transfer function by unsymmetrical lattice networks, IEEE Trans. Circuits Syst., 22()(1975) 313-316.
[2] T. S. Rathore, Passive and active realizations of RC all-pass voltage transfer functions, InstEngrs(I), 54(ET-3)(1974) 128-130.
[3] T. S. Rathore and S. M. Dasgupta, A simple design for an all-pass filter, Int J Electron, 39()(1975) 93-96.
[4] T. S. Rathore, Digitally-controlled all-pass and notch filters, Inst Engrs(I), TE 31()(1985) 28-29.
[5] T. S. Rathore, A systematic current and voltage transfer function realizations with a single active element, IOSR Journal of Electrical and Electronics Engineering, p-ISSN: 2320-3331, 14(6)(2019) 79-89.
[6] A. Fabre, O. Saaid, and K. Bartgekeny, On frequency limitation of the circuits based on second generation current conveyors, Analog Integrated Circuits and Signal Processing, 7()(1995)113-129.
[7] M. Higashimura and Y. Fukui, Realization of current-mode all-pass networks using a current conveyor, 37()(1990) 660-661.
[8] Y. Liu, H. L. Lin, and C. T., High output impedance current-mode first-order all-pass networks with four grounded components and two CCIIs, Int. J. of Electron., 93()(2006) 613-621.
[9] Horng, Jiun-Wel, Hou, Chun-Li, Hsu, Chih-Hou, Yang, Dun-Yih, Hp, Min-Jie., Low input and high output impedance current-mode first-order all-pass filter employing grounded passive components, Int. J. Circuits and Syst., 3()(2012) 176-179.
[10] M. A. Ibrahim, S. Minaei, and H. Kuntman, A 22.5 MHz biquad using differential voltage current conveyor and grounded passive elements, Int. J. Electronics and Communications, 59()(2005) 311-318.
[11] M. A. Khan, and S. Maheshwari, A simple first-order all-pass section using a single CCII, Int. J. Electron., 87()(2000) 303-306.
[12] M. A. Khan, P. Beg, and M. T. Ahmed, First-order current mode filters and multiphase sinusoidal oscillators using CMOS MOCCIIs, 32()(2007) 119-126.
[13] S. Maheshwari, and I. A. Khan, Novel first-order all-pass sections using a single CCIII, Int. J. Electron., 88()(2001) 773-778.
[14] S. Maheshwari, High input impedance VM-APs with grounded passive elements, IET Circuits, Devices Syst, 1(1)(2007) 72-78.
[15] Jitendra Mohan, Single active element based current-mode all-pass filter, Int. J. Computer Applications (0975–8887), 82(1)(2013) 23-27.
[16] J. Mohan, and S. Maheshwari, Two active elements based all-pass section suited for current-mode cascading, World Academy of Science, Engineering and Technology, Int. J. Electrical Engg., 7()(2013) 1217-1221.
[17] Tejmal S. Rathore and Uday P. Khot, Current conveyor equivalent circuits, Int. J. Engineering and Technology (IJET), 4(1)(2012) 1-7.
[18] T. S. Rathore, and S. M. Dasgupta, Current conveyor realization of transfer functions, Proc IEE, 122()(1975) 1119-1120.
[19] T. S. Rathore, Minimal realizations of first-order all-pass functions, Inst Engrs(I), TE 29()(1983) 124-125.
[20] A. M. Soliman, New current-mode filters using current conveyors, Int. J. Electron. and Comm., AEU, 51()(1997) 275-278.
[21] A. M. Soliman, Realization of an all-pass transfer function using second-generation current conveyor, IEEE Proc. 68()(1980) 1035.
[22] S. Kilinc, and U. Cam, Operational trans-conductance amplifier based first-order all-pass filter with an application, in Proc IEEE Int Midwest Symp, Circuits Syst., Hiroshima, Japan, (2004) 65-68.
[23] C. Cakir, U. Cam, and O. Cicekoglu, Novel all-pass filter configuration employing single OTRA, IEEE Trans Circuits Syst. II, Analog and Digital Signal Processing, 52()(2005) 122-125.
[24] T. S. Rathore, and U. P. Khot, Single OTRA realization of transfer functions, Inst. Engrs. (India), J. ET, 89()(2008) 33-38.
[25] K. N. Salama, and A. M. Soliman, CMOS operational transconductance amplifier for analog signal processing applications, Microelectronic. J., 30()(1999) 235-245.
[26] M. Higashimura, Current-mode all-pass filter using FTFN with the grounded capacitor, Electron Lett., 27()(1991) 1182-1183.
[27] S. I. Liu and J. L. Lee, Insensitive current/voltage filters using FTFNs. Electron. Lett., 32()(1996) 1079–1080.
[28] S. I. Liu, and C. Hwang, Realization of current-mode filters using single FTFN, Int. J. Electron., 82()(1997) 499–502.
[29] M. T. Abuelmaátti, Cascadable current mode filters using single FTFN, Electron. Lett., 32()(1996) 1457-1458.
[30] T. S. Rathore, and U. P. Khot, Single FTFN realization of current transfer functions, IETE J Research, 51(3)(2005) 193-199.
[31] S. Kilinc, and U. Cam, Current mode first-order all-pass filter employing single current operational amplifier, Analog Integrated Circuits, and Signal Processing, 41()(2004) 47-53.
[32] S. Maheshwari, and I. A. Khan, Novel first-order all-pass filter employing single current operational amplifier, Analog Integrated Circuits and Signal Processing, 41()(2004) 47-53.
[33] S. Minaei, and M. A. Ibrahim, General configuration for realizing current-mode first-order all-pass filter using DVCC, Int. J. Electron., 92()(2005) 347-356.
[34] Tejmal S. Rathore, Realizations of voltage transfer functions using DVCCs, Circuits, and Systems, 9()(2018) 141-147.
[35] A. U. Keskin, and D. Biolek, Current mode quadrature oscillator using a current differencing transconductance amplifier (CDTA), IEE Proc. Circuits devises Syst., 153()(2006) 214-218.
[36] T. S. Rathore, Realizations of current transfer functions using the current differencing trans-conductance amplifier, Circuits, Systems, and Signal Processing, DOI 10.1007/s00034-019-01036-x
[37] A. Toker, S. Ozoguz, O. Cicekoglu, and C. Acar, Current mode all-pass filter using a current differencing buffered amplifier and a new high-Q band-pass filter configuration, IEEE Trans Circ and Syst. II: Analog and Digital Signal Processing, 47())(2000) 949-954.
[38] Acar and S. Ozoguz, A new versatile building block: current differencing buffered amplifier suitable for analog signal-processing filters, Microelectron. J., 30(2) (1999) 157-160