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Abstract: The delayed control objects often meet in 
many different fields such as industry, transport, 

transportation, military... Normally, when designing 

the controller, if the object is the delayed first order 

inertia system which is approximated by two systems 

of the first order inertia, this often leads to the large 

error if the delayed time () is significantly large 
compared to its time constant (T). This paper 

presents a research comparing the accuracy of the 

solution when replacing a delayed object by Taylor 

approximation model and first-order Pade 

approximation model (Pade-1) so as to solve the 

optimal control problem for a distributed parameter 

system with delayed time. The system is applied to a 
specific one-sided heat-transfer system in a heating 

furnace to control temperature for a flat-slab 

following the most accurate burning standards. 
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I.  INTRODUCTION 

Theoretically, Taylor approximation and Pade 

approximation [1] have been studied for a long time 

and its mainly applycation is to find the solution of  

differential algebraic equations. Pade approximation 

can be offered the functional approximation having 

more advantages than Taylor expansion, especially 

with objects have large delayed time () compare to 
its time constant (T) [4].  

The paper gives two replacing methods for a 

delayed object by using Taylor approximation model 

and Pade-1 approximation model so as to solve the 

optimal control problem for a distributed parameter 

system with delayed time, typically for delayed 

objects with distributed parameter is heat transfer 

process.    

Algorithms and simulation results have shown that 

depending on the relationship between () and (T), 
which approximation form is best used. 

II. THE PROBLEM OF OPTIMAL 

CONTROL 

1. The object model 

As a typical distributed parameter system, the one-

sided heat conduction system is considered. The 

process of one-sided heating of the objects which 

have flat-slab shape in a furnace is described by the 

parabolic-type partial differential equation, as follows 

in [2], [3, [4], [5].               
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where q(x,t), the temperature distribution in the 

object, is the output needing to be controlled, 

depending on the spatial coordinate  x with 0  x  L 

and the time t with 0  t  tf,  a is the temperature-
conducting factor (m2/s), L is the thickness of object 

(m), tf is the allowed burning time (s) 

The initial and boundary conditions are given in 

[2],[3],[4],[5].                                                                                                                                                                   
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with  as the heat-transfer coefficient between the 

furnace space and the object (W/m2.0C),   as the heat-
conducting coefficient of material (W/m.0C), and v(t) 

as the temperature of the furnace respectively (0C).  

    The relationship between the provided voltage for 

the furnace u(t) and the temperature of the furnace v(t) 

is usually the first order inertia system with delayed-

time as in [2], [3, [4], [5].               
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   .                 (5) 

where T  is the time constant;  is the delayed  time;    
k is the static transfer coefficient; v(t) is the 

temperature of the furnace and u(t) is the provided 

voltage for the furnace (controlled function of the 

system).  

2. The objective function and the constrained 

conditions 

In this case, the problem is set out as follows: we 
have to determine a control function u(t) with            

(0  t  tf) so as to minimize the temperature 
difference between the distribution of desired 

temperature q*(x) and real temperature of the object 

q(x,tf) at time t =tf. It means at the end of the heating 

process to ensure temperature uniformity throughout 

the whole material: 
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The constrained conditions of the control function is:  

1 2(t)U u U                          (7) 

with U1,U2 are the under and upper limit of the 

supplied  voltage respectively (V).  

III. THE SOLUTION OF PROBLEM 

The process of finding the optimal solution 

includes 2 steps: 

- Step 1: Find the relationship between q(x,t) and the 

control signal u(t). Namely, we have to solve the 

equation of heat transfer (relationship between v(t) 

and q(x,t)) with boundary condition type-3 combined 

with ordinary differential equation with delayed time 

(relationship between u(t) and v(t)) 

- Step 2: Find the optimal control signal u*(t) by 

substituting q(x,t) found in the first step into the 

function (6), after that finding optimal solution u*(t).  

1. Find the relationship between q(x,t) and the 

control signal u(t) 

To solve the partial differential equation (1) with 
the initial and the boundary conditions (2), (3), (4), 

we apply the Laplace transformation method with the 

time parameter t. On applying the transform with 

respect to t, the partial differential equation is 

reduced to an ordinary differential equation of 

variable x. The general solution of the ordinary 

differential equation is fitted to the boundary 

conditions, and the final solution is obtained by the 

application of the inverse transformation.  

Transforming Laplace (1), we obtained: 
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where:  ( , ) ( , )Q x s q x tL  

After transforming the boundary conditions (3), (4), 
we have: 
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To solve this problem, [2] replaced delayed object in 

Eq. (5)  satisfy the condition T/  10 by the first 
order inertia system following Taylor approximation,        

[4], [5]  replaced delayed object in Eq. (5) satisfy the 

condition 6 ≤ T/ < 10 by Pade-1 approximation 
Transforming Laplace Eq. (5), we obtained:  

 Following Taylor, Eq. (5) becomes:    
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 Following Pade-1, Eq. (5) becomes:    
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where:  (s) ( )V v tL ;   ( ) ( )U s u tL        (13) 

The general solution of (8) is: 
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where: A(s); B(s) are the parameters need to be find. 

From boundary conditions (3), (4),  we calculated:  
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Substituting (15) and (16) into (14), and from (11), 

(12), after transforming, we have:  

 Function Q(x,s)  (following Taylor) 
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We have:  Q(x,s) = G(x,s) .U(s)                              (19) 

 Function Q(x,s)  (following Pade-1) 
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We also have:  Q(x,s) = G(x,s) .U(s)                    (22) 
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From (19) and (22), according to the convolution 

theorem, the inverse transformation of (19) and (22) 

is given by 

    q(x,t) = g(x,t)* u(t)                          (23) 

 

We can write 

0
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Therefore, if we know the function g(x,t), we will be 
able to calculate the temperature distribution q(x,t)  

from control function u(t). To find q(x,t) in (25), we 

need to find the function (26). Using the inverse 

Laplace transformation of function G(x,s) we have 

the following result: 

 Function g(x,t)  (following Taylor) 
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 with    0 1/ ;k T 1 1/ ;k   
 

 Function g(x,t)  (following Pade-1) 
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In Eq. (27) and Eq. (28): 

   is the heat-transfer factor (W/m2.0C) 

  is the heat-conducting factor of object (W/m.0C) 

 L is the thickness of object (m), 

 a is the temperature-conducting factor (m2/s) 

   is the delayed time of the furnace (s) 

 T is the time constant of the furnace (s) 

 k  is the static transfer coefficients of the 

furnace  
  i  is calculated from the formula:  

           /i i a L                     (29)   

     i  is the solution of the equation:  
            . /i i itg L B                    

(30)   
 Bi is the coefficient BIO of the material. 

Conclusions:  

We have solved a system of parabolic-type partial 

differential equation with boundary conditions of 

type-3 (the relationship between v(t) and q(x,t)) 

combined with the ordinary differential equation with 

time delay (the relationship between u(t) and v(t)).  

Thus, if we are not interested in the optimal 
problem, we can calculate the temperature field in the 

object when knowing the supplied voltage for the 

furnace (The problem knows the shell to find the 

cores), as follows: 

The relationship between the supplied voltage for 

the furnace u(t) and the temperature field distribution 

in the object q(x,t): 

0
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with tf  is the allowed burning time (s). 

2. Find the optimal control signal u
*
(t) by using 

numerical method 

To find the u*(t), we have to minimize the 

objective function (6), it means: 
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(33) 

with q*(x) is the desired temperature distribution; 
q(x,tf) is the real temperature distribution of the object 

at time t = tf. 

As calculated in [2], [3], [4], [5] the integral numerial 

method is used by applying Simson formula to the 

right-hand side of the objective function (33). The L, 

the thickness of the object, is divided into n equal 

lengths ( n is an even number). 
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Similarly, it is applied to the right-hand side of the 

equation (33). The period of time tf  is devided into m      

equal intervals that m is an even number, too. 

Thus, the optimal control problem is here to find u*
j 

in order to minimize the objective function:  
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i i
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The constrained conditions of the control function:  

1 2jU u U   (j =0,1,2…m )                   (35)   

       The performance index (34) is a quadratic 

function of the variables uj with constraints (35) are 
linear, the problem becomes a quadratic 

programming problem. This problem can be obtained 

by using numerical method after a finite number of 

iterations of computation.  

Although a solution of the quadratic programming 

problem is obtained after a finite number of  

iterations of computation, but its algorithm is more 

complicated than that of the simplex method for 

linear programming. If the performance index is 

taken as 

         
0

J *( ) ( , t )

L

fq x q x dx                   (36) 

instead of (32),  the linear programming technique 
can be used directly. On applying the same procedure 

as mentioned above, the approximate performance 

index corresponding to (34) is written as 

      *
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Hence, we can replace the solution of (34) with the 

constraint (35) by minimizing the problem (37) with 

the constraint (35). 

By using the simplex method in [2], [3], [4], [5] 

the optimal solution of (37) can be obtained by using 

numerical method after a finite number of iterations. 

 

 

IV. SOME SIMULATION RESULTS 

After building the algorithms and establishing the 

control programs, we have proceeded to run the 

simulation programs on a Diatomite sample in two 

cases Pade-1 approximation and Taylor 

approximation in order to test calculating programs. 

4.1. Case 1: when delayed objects satisfy the 

condition: T/   10  in [2], [4] 

 The physical parameters of the object 

  = 60 (w/m2. 0C);  = 0.2  (w/m. 0C) 
              a =3.6*e -7(m2/s); L= 0.04 (m) 

 The parameters of the furnace 

T = 1200 (s);  = 80 (s;)  k  = 0.3 

 The desired temperature distribution q* = 4000C 

  The period of heating time tf = 5400 (s) 

  Limit the temperature of furnace u(t) ≤ 6000C 

  Limit the temperature of flat-slab surface: 
                          q(0,t )≤ 500 0C 

 Limit under voltage: U1=125 (V) 

 Limit upper voltage: U2=205 (V) 

With these parameters, the coefficient Bi is calculated 

as follows: .L/ 60.0,04 / 0.2 12iB      

Thus, the flat-slab of Diatomite is a very thick object 

because the coefficient Bi is greater than 0.5.  

We have: / 1200 / 80 15 10T      

To calculate the optimal heating process, we choose   

n = 6 and m=36. After the simulation, we have 

results like in Figure 1 and Figure 2. 

 
 

Fig 1. The optimal heating process for a flat-slab of Diatomite with q
*
= 400

0
C  (e = 9.6096e-07 ) 

q* 
 

v(t) 

q(x,t) 

U*(t) 

q(x,t)  
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Fig 2. The optimal heating process for a flat-slab of Diatomite with q
*
= 400

0
C  (e = 8.7929e-09 ) 

 

4.2. Case 2: when delayed objects satisfy the condition: 6 ≤  T/ < 10  in [2], [4] 

In the simulation process, we also keep all the 

parameters as in the case 1 but only change the 

delayed time , in this case for  = 150 (s), so we have:  

/ 6 1200 /150 8 10T      . After the simulation, 

we also have results like in Figure 3 and Figure 4. 

 

 
 

Fig 3. The optimal heating process for a flat-slab of Diatomite with q
*
= 400

0
C  (e  0 ) 

v(t) 

q(x,t) 

U*(t) 

q(x,t) q* 

 
 

q* 
 

v(t) 

q(x,t) 

U*(t) 

q(x,t)  
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Fig 4. The optimal heating process for a flat-slab of Diatomite with q
*
= 400

0
C  (e = 1.5013e-07 ) 

 
V. COMPARISON OF TWO METHODS 

Figure 1 and Figure 2 show that both methods at the 
time t=tf =5400s the temperature distribution at layers 

q(x,tf) is approximately 4000C, when approximating 

according to Taylor, the error of objective function J 

as e = 8.7929e-09 and according to Pade-1 the error of 

objective function J as e = 9.6096e-07. So when the 

delayed object satisfies the condition T/  10, the 
Taylor approximation will have smaller deviation than 

the Pade-1 approximation. 

Figure 3 and Figure 4 also show that at the time       

t=tf=5400s the temperature distribution at layers      

q(x,tf) is also approximately 4000C, but when 

approximating according to Taylor, the error of 
objective function J as e = 1.5013e-07  and according 

to Pade-1 the error of objective function J as e  0. 
Thus, when the delayed object satisfies the condition  

6 ≤ T/  <10, the Pade-1 approximation will have  
smaller deviation than the Taylor approximation. 

VI. CONCLUSIONS 

The paper presented two replacing methods for a 

delayed object by using Taylor approximation and 

Pade-1 approximation in order to solve the optimal 

control problem for a distributed parameter system 

with delayed time. The system is applied to a specific 

one-sided heat-transfer system in a heating furnace to 

control temperature for a flat-slab following the most 

accurate burning standards. We have found an optimal 

voltage u*(t) so as to minimize the temperature 
difference between the distribution of desired 

temperature q*(x) and real temperature of the object 

q(x,tf) at time t =tf. It also means that at the end of the 

heating process to ensure temperature uniformity 

throughout the whole material. 

The simulation results have shown the correctness 

of the algorithms and the two methods have also 

shown that depending on the relationship between ()  
and (T), which approximation form is best used. 

Namely, when delayed object has () and (T) 

satisfying T/  10,  using Taylor approximation will 
have higher accuracy. If delayed object satisfies the 

condition 6 ≤ T/ < 10, using Pade-1 approximation 
will have higher accuracy. 

From the above conclusions, the problems of 
control object identification and controller design will 

be corrected accordingly. 
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