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Abstract - This paper gives a solution of an optimal 

control problem for a distributed parameter system with 

delayed-time (DPSDT), governed by a heat-conduction 

equation, using the numerical method.     In which, the 

delayed object e-s is replaced by using second-order Padé 

approximation model (Padé-2). The system is also applied 

to a specific one-sided heat-conduction system in a heating 
furnace to control temperature for the objects which have 

flat-slab shape following the most accurate burning 

standards [2,6,9,10,11,12]. The aim of problem is also to 

find an optimal control signal (optimal voltage) so that the 

error between the distribution of real temperature of the 

object and the desired temperature is minimum after a 

given period of time tf [2,6,9,10,11,12].  

To verify the solution of the problem, the author have 

proceeded to run the simulation programs on a flat-slab of 

Carbon steel and a flat-slab of Diatomite.       

 
Keywords - Optimal control, Distributed parameter 

systems, Delay, Numerical method, Padé approximation 

I.  INTRODUCTION 

Theoretically, Padé approximation model has been 

studied for a long time and mainly applied in finding 
solutions of differential algebraic equations.  

Padé approximaton model can offer a function 

approximation having more advantages than Taylor 

approximation, especially with the objects having large 
time delay compared to its time constant [5], [9].   

The paper will continue to be developed in number of 

previous papers as in [9], [12]. In this paper, author will 

replace a delayed object e-s by using Padé-2 
approximation model in order to solve the problem of 

optimal control for a DPSDT, typically a controlled object 

is also described by heat transfer equation, which is one of 
the physical processes with distributed parameters.    

II. THE PROBLEM OF OPTIMAL CONTROL  

A. The object model 

As a typical distributed parameter system, the one-sided 

heat conduction system is considered. The process of one-

sided heating of the objects which have flat-slab shape in a 

furnace is described by the parabolic-type partial 

differential equation, as follows in [2,6,9,10,11,12]:               
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where q(x,t), the temperature distribution in the object, is 

the output needing to be controlled, depending on the 

spatial coordinate  x with 0  x  L and the time t with 0  t 

 tf,  a is the temperature-conducting factor (m2/s), L is the 

thickness of object (m), tf is the allowed burning time (s) 

The initial and boundary conditions are given in 

[2,6,9,10,11,12]:               
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with  as the heat-transfer coefficient between the furnace 

space and the object (W/m2.0C),   as the heat-conducting 

coefficient of material (W/m.0C), and v(t) as the temperature 

of the furnace respectively (0C).  

The temperature v(t) of the furnace is controlled by 

voltage u(t), the temperature distribution q(x,t) in the 
object is controlled by means of the fuel flow v(t), this 

temperature is controlled by voltage u(t). Therefore, the 

temperature distribution q(x,t) will depend on voltage u(t). 

    The relationship between the provided voltage for the 

furnace u(t) and the temperature of the furnace v(t) is 

ussually the first order inertia system with delayed-time as 
in [1,2,6,9,10,11,12]:               

                . ( ) ( ) ( )T v t v t k u t    .                 (5) 

where T  is the time constant,  is the time delay;    k is 

the static transfer coefficient; v(t) is the temperature of the 

furnace and u(t) is the provided voltage for the furnace 

(controlled function of the system). 

B. The objective function and the constrained conditions 

In this case, the problem is set out as follows: we have 

to determine a control function u(t) with            (0  t  tf) 

so as to minimize the temperature difference between the 
distribution of desired temperature q*(x) and real 
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temperature of the object q(x,tf) at time t =tf. It means at 

the end of the heating process to ensure temperature 
uniformity throughout the whole material: 

            
2

0

( ) *( ) ( , ) min

L

fJ u t q x q x t dx                      (6) 

The constrained conditions of the control function is: 

1 2(t)U u U                           (7) 

with U1,U2 are the lower and upper limit of the supply 

voltage respectively (V). This problem is called the most 

accurate burning problem.    

 

III. THE SOLUTION OF PROBLEM 
The process of finding the optimal solution includes 2 

steps: 

- Step 1: Find the relationship between q(x,t) and the 

control signal u(t). Namely, we have to solve the equation 

of heat transfer (relationship between v(t) and q(x,t)) with 
boundary condition type-3 combined with ordinary 

differential equation with time delay (relationship between 

u(t) and v(t)) 

- Step 2: Find the optimal control signal u*(t) by 

substituting q(x,t) found in the first step into the function 
(6), after that finding optimal solution u*(t).  

A. Find the relationship between q(x,t) and the control 

signal u(t) 

        To solve the partial differential equation (1) with the 

initial and the boundary conditions (2), (3), (4), we apply 

the Laplace transformation method with the time 

parameter t. On applying the transform with respect to t, 
the partial differential equation is reduced to an ordinary 

differential equation of variable x. The general solution of 

the ordinary differential equation is fitted to the boundary 

conditions, and the final solution is obtained by the 
application of the inverse transformation.  

Transforming Laplace (1), we obtained: 
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where:  ( , ) ( , )Q x s L q x t  

After transforming the boundary conditions (3), (4), we 

have: 
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From Eq. (5), assuming the delayed object satisfy the 

condition: 2 ≤ T/ < 6 in [5], [9]. To solve this problem, 

the first order inertia system with delayed time is replaced 

by second-order Padé appximation (Padé-2) Transforming 

Laplace (5), we obtained: 

              ( 1) ( ) . ( ).e sTs V s k U s                   (11) 

In which, the delayed object e-s is replaced by Padé-2. 
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(11) becomes: 
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where:  (s) ( )V v tL ;   ( ) ( )U s u tL        (14) 

The general solution of (1) is: 
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where: A(s); B(s) are the parameters need to be find. 
After transforming, we have the function: 
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(17) 

We have: Q(x,s) = G(x,s) .U(s)                               (18)    
From (18), according to the convolution theorem, the 

inverse transformation of (18) is given by 

q(x,t) = g(x,t)* u(t)                       (19) 

We can write 

0

( , ) ( , ). ( )

t

q x t g x u t d                  (20) 

or  
0
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where   1( , ) ( , )g x t G x sL              (22) 

Therefore, if we know the function g(x,t), we will be able 

to calculate the temperature distribution q(x,t)  from 

control function u(t). To find q(x,t) in (19), we need to find 

the function (22). Using the inverse Laplace 

transformation of function G(x,s) we have the following 

result: 
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where  i  is calculated from the formula:  
            /i i a L           (24) 

 i  is the solution of the equation:  
            . / itg L B                     (25) 

 Bi is the coefficient BIO of the material. 

   is the heat-transfer factor (W/m2.0C) 

  is the heat-conducting factor of object (W/m.0C) 

 L is the thickness of object (m), 

 a is the temperature-conducting factor (m2/s) 

  is the delayed time of the furnace (s) 

 T is the time constant of the furnace (s) 

 k  is the static transfer coefficients of the furnace  

Conclusions:  

We have also solved a system of parabolic-type partial 

differential equation with boundary conditions of type-3 

(the relationship between v(t) and q(x,t)) combined with 

the ordinary differential equation with time delay (the 

relationship between u(t) and v(t)).  

The relationship between the supplied voltage for the 

furnace u(t) and the temperature field distribution in the 
object q(x,t): 

0

( , ) ( , ) * ( ) ( , ). ( )

t

q x t g x t u t g x t u d      (26) 

with tf  is the allowed burning time (s). 

 

 

B. Find the optimal control signal u*(t) by using 

numerical method 

To find the u*(t), we have to minimize the objective 

function (6). 

It means: 

2
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where 
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and q*(x) is the desired temperature distribution;   q(x,tf) is 

the real temperature distribution of the object at time t = tf. 

As calculated in [2,6,9,10,11,12], in order to solve this 

problem, we also use  the integral numerial method.  

Thus, the optimal control problem is here to find u*
j in 

order to minimize the objective function:  
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where i are the weights assigned to the values of  

integrand at the points xi. The values of xi and the weights 

i  are known for each integration formula. 

If the Simpson’s composite formula is used, the values 

of  xi and i are given by in [2], [6],[10]. 
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 n is an even number 

Therefore, q(xi,tf) is calculated: 
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the values of j  and j are given by in [2],[10],[11]. 
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Substituting (30) and (31) into (29), we obtained: 
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The constrained conditions of the control function 

(Limit of the supplied voltage for the furnace) are 

described as follows:  

        1 2jU u U   (j = 0÷m )                         (33)        

The performance index (32) is a quadratic function of 

the variables uj with constraints (33) are linear, the 

problem becomes a quadratic programming problem. This 

problem can be obtained by using numerical method after 

a finite number of iterations of computation.  

Although a solution of the quadratic programming 
problem is obtained after a finite number of  iterations of 

computation, but its algorithm is more complicated than 

that of the simplex method for linear programming. If the 

performance index is taken as 
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instead of (32),  the linear programming technique can be 

used directly. On applying the same procedure as 

mentioned above, the approximate performance index 

corresponding to (32) is written as 
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The problem of minimizing (35) under the constraints 

(33) can be put into a linear programming form by using 

known techniques [2],[9],[10],[11].                    

Thus, we can replace the solution of (32) with the 

constraint (33) by minimizing the problem (35) with the 

constraint (33). 

By using the simplex method in [2],[4],[6],[9]… the 

optimal solution of (33), (35) can be obtained by using 

numerical method after a finite number of iterations. 

C. Calculate the temperature of the furnace v(t) and the 
temperature distribution in the object q(x,t) 

a)  Calculate the temperature of the furnace v(t) 

We know that v(t) and u(t) have the relation:                                               

         . ( ) ( ) . ( )T v t v t k tu                    (36) 

or 
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Based on improved Euler formula, we have: 
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where / ;fl t m  tf  is the allowed burning time (s);  

with m is the number of time intervals, T is the time 

constant of the furnace. 

After transforming, we get 
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T
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with  j = 0÷m 

So, when knowing u*(t) we can calculate v(t) from   Eq. 

(40). 

b) Calculate the temperature distribution in the object 
q(x,t) 

To calculate q(x,t) when knowing u*(t), we use the 

privious calculated results. Here also use the numerical 
method [2], [3], [4]... 

From Eq. (30), we have 
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t
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0i n  ; j = 0 ÷ m;  0 ft t  ; n is the number of 

layers of space, m is the number of time intervals, tf  is the 

allowed burning time (s);  
According to trapezoidal formula [3], [4].  After 
calculating, we obtained 
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( , ) . ( , ). ( )

j

i iq x t jl g x jl u
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  
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

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IV. CALCULATING PROGRAMS 

To calculate the optimal control signals as well as build 

real-time control programs, the author used a real control 
program thanks to Matlab software. 

To make calculating programs, assuming the system’s 
parameters are given, include: 

 Object’s physical parameters:  ;  ; a ; L 

 Parameters of the heating furnace: T;  ; k 

 Required temperature distribution: q* 

 Allowed burning time: tf 

 Limited conditions: U1  U2 

To solve the above optimal control problem, we set up the 
following calculating programs: 

 Make a program to solve the optimization problem 

(35), to do so, we must calculate the parameters ijc . The 

parameters ijc are determined from Eq. (31). 
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 Make a program to calculate the function ( , )g x t from 

Eq. (23), to calculate this function, we must calculate the 

values i and i . 

 Make a program to calculate the values i from  Eq. 

(25), after calculating the series of solutions i
 , next, we 

will calculate the valuesi  from Eq. (24). 

V. SOME SIMULATION RESULTS 

In order to test the calculating results, the author also 

have proceeded to run the simulation programs on two 

object samples as a flat-slab of Carbon steel at a set 
temperature of 10000C and a flat-slab of Diatomite at a set 
temperature of 4000C. 

A. The simulation for a flat-slab of Carbon steel 

  The physical parameters of the object 

 = 335 (w/m2. 0C);  = 56  (w/m. 0C)  

a=1.03*e -5(m2/s); L= 0.2 (m) 

 The parameters of the furnace 

T = 1200 (s);  = 210 (s); k  = 5 

 
 

 

 The desired temperature distribution q* = 10000C 

  The period of heating time tf = 6800 (s) 

  Limit the temperature of furnace u(t) ≤ 30000C 

  Limit the temperature of flat-slab surface: 
                          q(0,t )≤ 1050 0C 

 Limit under voltage: U1=150 (V) 

 Limit upper voltage: U2=65 (V) 

 

With these parameters, the coefficient Bi is calculated  

.L/ 335.0,2 / 56 1,2Bi      

Thus, the flat-slab of Carbon steel is a thick object because 

the coefficient Bi is greater than 0.5.  

To calculate the optimal heating process, we choose   n = 4 

and m=16.  

We have: 
1200

2 5,7 6
210

T


     

After the simulation, we have result like in Figure 1. 

 

 

 

        

       Fig. 1 The optimal heating process for a flat-slab of Carbon steel with q*=10000C 

 (e  0.010154) 

 

Remark 1 

In Figure. 1, simulation result shows that at the time t=tf 

=6800(s), the temperature distributions of the layers in a flat-

slab of Carbon steel q(x,tf) is approximately equal at a set 

temperature q*=10000C with the error of objective function J  

as e  0.010154. Therefore, the optimal solution has been 
testified.  

To calculate the optimal heating process, the author 
choose   n = 4 and m=16 

 

 

 

 

 

 

B. The simulation for a flat-slab of Diatomite 

  The physical parameters of the object 

 = 60 (w/m2. 0C);  = 0.2  (w/m. 0C)  

a = 3.6*e-7 (m2/s); L= 0.04 (m) 
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 The parameters of the furnace 

T = 1200 (s);  = 210 (s); k  = 0.3 

  The desired temperature distribution q* = 400 0C 

  The period of heating time tf = 5400 (s) 

  Limit the temperature of furnace u(t) ≤ 6500C 

  Limit the temperature of flat-slab surface  
q(0,t ) ≤ 500 0C 

 Limit under voltage: U1=220 (V) 

 Limit upper voltage: U2=150 (V) 

 

With these parameters, the coefficient Bi is calculated as 

follows: 

.L/ 60.0,04 / 0.2 12Bi      

Hence, the flat-slab of Diatomite is also a thick object 

because the coefficient Bi is greater than 0.5.       

To calculate the optimal heating process, the author  

chooses   n = 6 and m=36. After the simulation, we have 

result like in Figure 2. 

 

 
           Fig. 2 The optimal heating process for a flat-slab of Diatomite  with q*= 4000C 

(in case Padé-2 with e  0.00194) 

 

 
 

           Fig. 3 The optimal heating process for a flat-slab of Diatomite with q*=4000C 

(in case Padé-1 with e  0.1571) 
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Remark 2 

In Figure 2, simulation result shows that at the time t=tf 

=5400(s), the temperature distributions of the layers in a flat-

slab of Diatomite q(x,tf) is also approximately equal at a set 

temperature q*= 4000C with the error of objective function J  

as e  0.00194. So, the optimal solution has been testified.  

In Figure 3, in order to verify the conclusions in [5], [9], 

the author have also proceeded to run more the simulation 

program  on sample of Diatomite with parameters are the 
same as in Figure 2, but in case Padé-1. 

From Figure 3, we see that, the optimal solution has been 

testified, too. However, the error of objective function J  in 

case Padé-2 (e  0.00194) is smaller than in case Padé-1 (e  

0.1571).  

Although this deviation is very small, it does not mean 

much in actual heat transfer, but it is also mathematically 
correct. 

In Figures from Figure1 to Figure 3  

where U*(t) is the optimal control signal (optimal voltage) 

of the furnace; v(t) is the temperature of the furnace; q(x,t) is 

temperature distribution of the flat-slab, including the 

temperature of the two surfaces and the temperature of the 

inner layers of the flat-slab. q* is the desired temperature 
distribution  

VI. CONCLUSION 

The paper has continued to develope in some previous 

studies as in [2,5,6,9…]. In this paper, the author has 

proceeded to replace a delayed object e-s by using Padé-2 

approximation model in order to solve the problem of 

optimal control for a DPSDT, typically a controlled object 

is described by heat transfer equation, which is one of the 
physical processes with distributed parameters.   

Through calculating and simulating programs, the 
optimal solution of the problem has been verified 

Furthermore, through researches [5], [9], [12], it can be 

seen that depending on the ratio T/ , we can replace a 

delayed object e-s by a suitable approximation model, then 
the accuracy of the problem will be higher.   
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