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Abstract - The goal of this research is to create a dependable algorithm that checks the identification and categorisation of 

the first cardiac sound (S1) and the second cardiac sound (S2) of a phonocardiogram (PCG) signal in the presence of 

extracardiac sounds. The algorithm uses intrinsic time scale decomposition (ITD) integrated with Shannon energy (SE) to 

analyse cardiac sounds' existence and identification from the processed data. The algorithm's performance has been 

assessed with accuracy and computational time. This cardiac sound classification technique is used in medical diagnosis 

systems to investigate pathological heart states further. The proposed method can enhance the reliable identification of S1 

and S2 cardiac sounds with the detection accuracy of 95.2%  and 90.5% for S1 & S2, respectively. 

 

Keywords - First cardiac sound, Second cardiac sound, Phonocardiogram, Intrinsic time scale decomposition, Shannon 
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1. Introduction 
According to the world health organisation, due to 

inapposite diagnostic services, an estimated 17.9 million 

deaths are caused by cardiovascular diseases [1]. The 

proper functioning of the heart generates the cardinal 

cardiac sounds S1 and S2 by the closure of the 

atrioventricular valve and semi-lunar valve, respectively 

[2]. These cardiac sounds can be auscultated and recorded 

with the help of a digital stethoscope [3]. Many cardiac 

abnormalities comprising valvular cardiac diseases, 

congestive cardiac failure and anatomical cardiac effects 

can be diagnosed with phonocardiography [4]. In the year 

1819, French physician Rene Leanne invented the 

stethoscope [5]. The conventional stethoscope is an 

acoustic device that incorporates a diaphragm, and a 

hallow bell used to auscultate cardiac sounds. In a digital 

stethoscope, the cardiac sounds can be diagnosed with the 

diaphragm, which is further uprooted to another diaphragm 

inside the microphone; it leads to the conversion of 

acoustic sounds to electrical signals [6]. The cardiac sound 

components S1 and S2 and unusual sounds like murmurs, 

clicks, and snaps are recorded with the help of 

phonocardiography [7]. In a healthy cardiac cycle, the two 

major components are the S1 and S2 cardiac sounds if 

their association with other sounds indicates abnormalities 

in the heart [8, 9]. The first cardiac sound, S1(lub), has a 

dull and prolonged characteristic with a longer duration 

(0.1 to 0.15s) and low pitch sound of frequency ranges 

from 10 to 200Hz. This cardiac sound can be auscultated at 

the arrival of the systolic phase [10]. The amplitude of the 

first cardiac sound, S1, has a significant positive 

correlation [11]. The second cardiac sound, S2(dub), has a 

short and sharp characteristic with a shorter duration of 

0.08 to 0.12 seconds and a high pitch sound with a 

frequency range of  20-250Hz. This cardiac sound can be 

asculated between the end of systolic and the arrival of 

diastolic phases [10]. The time duration from S2-S1 is 

longer compared to the duration from S1-S2 [29]. The 

third cardiac sound, S3, occurs just after the second cardiac 

sound (S2). The S3 sound has a soft and thudding quality 

of characteristics with a very low-frequency range from 

25-70Hz, and its duration is 140-220ms. The fourth cardiac 

sound (S4) appears just ahead of S1 due to the ventricular 

expansion; vibrations are produced, which results in 

another abnormal cardiac sound [6]. This S4 cardiac sound 

has weak and rumbling characteristics with a frequency 

range  of 15-70 Hz (lower than  S3), and  its  duration is 

slightly before S1[10]. Traditional auscultation devices 

failed to distinguish S3 and S4 cardiac sounds [6], [10]-

[12],[14]. Murmurs can occur due to an abnormal increase 

in blood flow through the cardiac structure, creating noise 

through damaged valves [15]. 

http://www.internationaljournalssrg.org/
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2. Literature Review  
Normal cardiac sound segmentation involves two 

approaches, namely direct and indirect approaches. The 

direct method is based on ECG signal morphology as a 

reference in detecting the boundaries of cardiac sounds, 

whereas the indirect approach doesn't.  

However, the study of Gharehbaghi [16] shows that 

direct heart sound segmentation requires extra hardware to 

provide an ECG signal. The segmentation is complex if the 

T-wave is too weak, thereby detecting the peaks and 

intervals localising S1 and S2 sounds. Mehak [17] have 

presented Shannon energy-based segmentation to classify 

the S1 and S2 cardiac sounds. Another work introduced by 

Ruman He [18] uses wavelet decomposition followed by 

Shannon energy computations for identifying the S1 and 

S2 components had given moderate accuracy. Noemi G 

and Marco K [19] have introduced a method that uses 

ECG signals as a reference to achieve good accuracy in 

classifying normal cardiac sounds. A performance study 

was carried out by Choi S [20] on these methods and 

presented that the Shannon energy method performed 

better than the Hilbert envelope method under noisy 

conditions. Moukadem A [13] has developed a robust 

segmentation method based on the S transform. 
 

However, the S transform has failed to detect the 

boundaries for weak components as it suffers from low 

energy concentration in the time domain. A minimum 

complexity is observed in Emperical mode decomposition 

(EMD), which decomposed the given PCG signal into 

certain functions known as Intrinsic mode functions 

(IMFs) [22]. Another popular method, Hilbert vibration 

decomposition (HVD), introduced by Feldman, makes a 

signal to decompose iteratively. At a given iteration, a 

slowly varying component appears as a residue with lower 

energy concentration levels [23]. The crucial step in 

decomposition is identifying the limits for low pass action 

to produce slow varying components. Other methods in 

analysing the cardiac sounds include the Short-time 

Fourier transform (STFT), presented by P.S.Vikhe et al. 

[24] and calculated the transition time and frequency 

contents of S1 and S2. Finding the solutions to the above 

two issues can reinforce the accuracy of the detection of 

cardiac sounds. This work presents a novel approach 

mentioned at the higher side in detecting S1 and S2 based 

on ITD [25], which does not consider ECG signals as a 

reference. Shannon energy is calculated further on the 

decomposed components to localise the cardiac sounds S1 

and S2.  
 

The upcoming sections of this paper are organised as 

follows. Section 3 gives a brief outline of the proposed 

system and its workflow. Section 4 discusses the methods. 

Section 5 provides the results, and localisation rules for S1 

and S2 identification are continued in section 6. 

Conclusions are given in section 7. 
 

3. System Overview 
     A speculative approach to detecting first and second 

cardiac sounds is introduced, followed by a key procedure  

  
Fig. 1 Proposed WorkFlow 

 

described in Fig.1. Firstly, the input PCG signal is filtered 

to make it noise-free. Then the ITD method is applied to 

decompose into l number of components. The reliable 

number of components depends on the correlation factor 

(ρ). Firstly, the input PCG signal is filtered to make it 

noise-free, and then the ITD method is applied to 

decompose it into l number of components. 

 

The reliable number of components depends on the 

correlation factor (ρ). This work l = 5 provides a 

comparative result for further processing. A proper 

component selection is made on which Shannon energy is 

computed, followed by thresholding. Finally, the exact 

locations of S1 and S2 sounds are determined by the 

criteria described in section 5. 

 

4. Proposed Method 
4.1. Intrinsic Time Scale Decomposition 

The primary purpose of the intrinsic time scale 

decomposition technique is to decompose a signal into a 

sum of proper rotation components and a baseline signal 

(monotonic trend) with a well-defined frequency and 

amplitude. The baseline signal (Lt) and proper rotation 

residuals (Ht) are low and high-frequency component 

signals. The input signal Ut can be decomposed as the sum 

of the baseline and proper rotational signal. 

 

Ut =  ℒUt  + (1 − ℒ)Ut = Lt + Ht                           (1) 
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If Ut be a real-valued causal signal, and the local 

extrema of Ut can be denoted with τi where i=1, 2, 3... In 

case Ut is constant for a particular interval, it contains 

local extrema as its right endpoint of the interval due to 

adjacent signal fluctuations. We can define the baseline 

extracting operator' ℒ' on the interval  (τi , τi+1]  between 

two successive extremes. α is the gain control constant and 

 Li+1 is the node of the baseline signal, which is calculated 

from (2).  

 

Li+1 =  α [Ui + (
τi+1 − τi

τi+2 − τi
) (Ui+2 − Ui)]                              

+ (1 − α)Ui+1                                          (2) 

 

ℒ𝑈𝑡 = 𝐿𝑡 = 𝐿𝑖+1 + [
(𝐿𝑖+1−𝐿𝑖)(𝑈𝑡−𝑈𝑖)

(𝑈𝑖+1−𝑈𝑖)
] , 𝑡 ∈ (𝜏𝑖 , 𝜏𝑖+1)       (3)  

Where baseline signal (Ut) and proper rotation 

residual (Ht) have been defined on [0,  τi ] and Ut is 

defined for t € [0, τi+2]. The value of α ranges from (0, 1) 

but is generally fixed as α=1/2.In this manner, we can 

obtain the baseline signal (Lt). To make Ut monotonic 

between extremes, the baseline signal Lt should be a linear 

transformation of the original signal. With the help of 

nodes obtained, the baseline signal is reconstructed. After 

obtaining the baseline signal, the proper rotation residual is 

obtained by (1). 

 

4.2. Shannon Energy 

The third-order Shannon energy (TOSE) is used here 

for PCG signal envelope detection. As noticed from [26], 

Wang et al. used TOSE for PCG segmentation and showed 

that it attenuated unwanted low-intensity components. The 

average TOSE is calculated as follows 

 

E = −
1

L
∑ |U(i)|3 log|U(i)|3                           (4)

L

i=1
 

Where, L is the number of samples in that segment. 

Then the normalisation gives an effective amplification for 

high and medium-intensity components. The presence of 

low-intensity components in a PCG signal is due to 

murmurs, speech and ambient noise, leading to incorrect 

segmentation of cardiac sounds. 

 

5. Results and Discussions 
A PCG acquisition device-associated amplifier circuit 

was designed to capture and amplify the signals to validate 

the suggested method's performance. The PCG capture is 

made possible by a specially built-microphone probe. The 

microphone sensor is made up of a condenser microphone 

as well as the related electrical circuitry. It is housed in a 

sealed container shaped like a little cone, identical to a 

traditional stethoscope. Because the microphone probe's 

frequency response runs from 2Hz to 250Hz, it is suitable 

for capturing PCG signals for analysing the two main heart 

sounds, whose center frequency varies from 20Hz to 

200Hz. The mic sensor's placement across the patient's 

chest is unconventional since ideal auscultation sites for 

heart sounds differ depending on the subject.  

 

 
Fig. 2 Approximate arrangement of the microphone sensor for 

PCG signal collection 

 

 
Fig. 3 Block schematic for experiment hardware setup 

 

As a result, the examiner must trial to locate a location 

that provides a high-quality PCG signal. Fig.2 depicts the 

conventional location of the microphone sensor on the 

patient's chest. While seeing the signal on the host 

machine, the search for the correct spot is carried out. Data 

were gathered from 14 healthy participants. The 

microphone output is routed to a data recording PCB, 

which contains an instrumentation amplifier and a 

bandpass filter with a gain of 2 implemented with an 

operational amplifier. Fig.3 depicts the hardware design for 

physically gathering and analysing the PCG data. 

 Along with the manual acquisition, a good range of 

cardiac sound data is chosen from the University of 

Michigan's heart sound database [27] and the department 

of Washington database [28]. 7 PCG signals with S3 and 

S4 counts were chosen for proper analysis to test the 

proposed algorithm. A total of 24 acquired signals were 

sent into a computer and investigated using Matlab 

simulation. These cardiac sound signals are recorded at 

44.1 kHz.  
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5.1. Preprocessing 

The first step in the proposed workflow seems to be to 

pre-process the signal. Denoising and normalising the raw 

signal are two phases in pre-processing. Because it 

incorporates a succession of high and low pass filters, the 

discrete wavelet transform method is employed for 

efficient denoising [8]-[10]. The resulting signal is 

normalised, so all signals have the same amplitude ranges. 

If U(t) is the original input to be processed, then U norm(t) 

represents its normalised value. 

 

Unorm(t) =  
U(t)

R
                      (5) 

WhereR = maximum(U(t)), the obtained signal is 

passed further through a low pass filter with a cut-off 

frequency 200Hz, as the first cardiac sound(S1) has a 

frequency less than 200Hz.  

 

 
(a) 

 
(b) 

Fig. 4 (a) Input PCG signal (b) FFT of the input PCG Signal 

 

 
(a) 

  
(b) 

Fig. 5 (a) Filtered PCG signal output (b) FFT of filtered PCG signal 

 

The input signal and its FFT output are shown in Fig.4, 

consisting of primary and secondary components. A 

secondary component is observed due to noise present in 

the input cardiac sound signal. The filtered output and the 

FFT of the filtered signal are shown in Fig.5, where it 

contains only the primary component. 

 

The filtered and normalised output of the PCG signal 

is given to the decomposition block for further analysis. 

 

5.2. Decomposition 

A robust decomposition algorithm introduced by Frei 

and Osorio[26] allows the PCG signal to decompose into a 

baseline and a proper rotation component at every 

iteration. 

The noise-free PCG signal is allowed to decompose 

using the ITD approach into five levels (D1, D2, D3, D4, 

and D5). Out of five successive decomposed levels, the 

first three decomposed levels are considered and presented 

in Fig.6 as they showed dominance comparatively with 

other levels.  

 

5.3. Component Selection 

In each level of decomposition, a baseline component 

was observed for analysis. A significant decomposed 

component at a particular level is confirmed by calculating 

the Root mean square deviation (RMSD) and correlation 

factor (ρ) between original and decomposed signals. The 

RMSD is calculated as  
 

RMSD = √
∑ |D(k) − A(k)|2K

k=1

K
                      (6) 

 

Where A(k) and D(k) are actual and reconstructed 

signals, where k refers to the data sample index and K is 

the total number of sampled data. For each level of 

decomposition, ρ and RMSD are calculated, and Fig 7 

shows the plot of ρ and RMSD for all five decomposition 

levels.  

From Fig.7, the component obtained in D2 exhibited 

high correlation than other levels of decomposition, and it 

was considered for further processing. It was found that 

ρ = 0.95 for level 2 decomposed showed a minimum error 

and good correlation. 
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 Fig. 6 Decomposition levels of ITD 

 

 
(a) 

 
(b) 

Fig. 7 (a) Plot of Correlation values and (b) RMSD values for five 

levels of decomposition 

 
Fig. 8 Variations of correlation and RMSD values 

 

The error margin of the correlation factor is 0.876 ± 

4.97% and 0.0496±14.3% for RMSD. The same is plotted 

in Fig.8. Third-order Shannon energy is applied to the 

selected D2 component to enhance higher and medium 

energy components. Thereby it increases the identification 

probability of S1 and S2.  

 

5.4. Shannon Energy Calculation 

The average TOSE obtained from (4) is used for 

further computing. Then the normalised average TOSE is 

computed from (7). 

 

ENorm =
E − Eμ

Eσ
                                                        (7) 

 

Here Eμ is the mean value of E and Eσ is the standard 

deviation of E. In order to isolate the required components 

from other sounds, an adaptive energy threshold (ETR) is 

applied and calculated as follows 

 
Fig. 9 Shannon energy plot of D2 

 
Fig. 10 Shannon energy plot of D2 after thresholding 

 

ETR =
1

m
∑ ENorm(i)

m

i=1
                                                (8) 

 

Where ENorm(i) is obtained from the (7) calculated 

periodically to establish ETR. Fig.9 and Fig.10 depict the 

observable peaks in the Shannon energy plot. Dynamic 

thresholding is applied to the Shannon energy plot to find 

the location of the cardiac sounds. 
 

6. Localisation 
6.1. Locating S1 and S2 

Finally, the detection rules are implemented to 

determine the exact locations of S1 and S2. The detection 

rules are based on calculating the time distance index 

(TDI). TDI measures the intertimespace between the 

adjacent peaks. Table 1 presents the TDI measurements for 

the recorded PCG signals from 13 individuals. 
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Table 1. TDI measurements and observations for recorded signals 

ID Gender Age BPM 
TDI 

(ms) 
Observations 

Participant_01 M 27 77 486 S1 & S2 are detected properly 

Participant_02 F 20 72 475 S1 & S2 are detected properly 

Participant_03 F 21 67 471 S1 & S2 are detected properly 

Participant_04 F 21 69 487 S1 & S2 are detected properly 

Participant_05 M 33 70 471 S1 & S2 are detected properly 

Participant_06 F 41 75 491 S1 & S2 are detected properly 

Participant_07 M 42 69 477 
S1 & S2 are not appropriately detected due to interfering 

components 

Participant_08 M 39 79 482 S1 & S2 are detected properly 

Participant_09 M 18 76 483 S1 & S2 are detected properly 

Participant_10 M 22 72 488 S1 & S2 are detected properly 

Participant_11 M 21 67 479 S1 & S2 are detected properly 

Participant_12 M 21 70 480 S1 & S2 are detected properly 

Participant_13 F 20 69 477 S1 & S2 are detected properly 

Participant_14 F 20 79 481 S1 is detected properly 

Participant_15 F 21 79 488 S1 & S2 are detected properly 

 

6.2. Locating S1 and S2 in S3 or S4 Presence 

The abnormal activity of the heart results in 

extracardiac sounds (S3 and S4). This special case has 

investigated the signals where odd components' energy is 

deficient compared with normal features. If the input 

signal consists of first, second and third cardiac sounds 

(S1, S2 and S3), as presented in Fig.11 (a). From Fig.11 

(b), considering the above rules, the lowest energy peak, 

S3, gets neglected as the time distance between S2 and S3 

is in the range of 140ms to 220ms. 

 
(a) 

 
(b) 

Fig. 11 (a) PCG signal plot consists of S1, S2 and S3 (b) Shannon 

Energy plot after thresholding 

 

Consider another input PCG signal that contains the 

first and second cardiac sounds along with abnormal 

cardiac sound S4 is shown in Fig.12 (a). The SE plot of the 

signal is observed in Fig.12 (b). As same as in the S3 case, 

S4 should be discarded, and S1 and S2 are correctly 

identified. The abnormal sound S4 should be discarded to 

identify S1 and S2 cardiac sounds correctly. 

 
(a) 

 
(b) 

Fig. 12 (a) PCG signal with S1, S2 and S4 (b)  Plot of Shannon 

Energy after thresholding 

 

Table 2 presents the TDI measurements for the 

recorded PCG signals from 13 individuals. The 

performance of the proposed method evaluates with the 

parameter accuracy (Acc). The accuracy defined in (9) 

tells the method's efficiency in detecting normal cardiac 

sounds. 

 

Acc =
number of S1s or S2s identifed

Total number of cardiac cycles
× 100 %           (9)
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Table 2. TDI measurements and observations for collected signals 

from databases 

ID 
Signal 

description 

TDI 

(ms) 
Observations 

Signal_01 
PCG signal with 

S3 
488 

S1 & S2 are 

detected 

properly 

Signal _02 
PCG signal with 

S4 
478 

S1 & S2 are 

detected 

properly 

Signal _03 
PCG signal with 

S3 
479 

S1 & S2 are 

detected 

properly 

Signal _04 

PCG signal with 

S3 and 

Holosystolic 

Murmur 

487 

S1 & S2 are 

detected 

properly 

Signal _05 
PCG signal with 

S4 
481 

S1 & S2 are 

detected 

properly 

Signal _06 

PCG signal with 

S4 and Mid-

Systolic Murmur 

491 
S1 is detected 

properly 

 

As this work considered, 21 PCG signals were 

identified with 108 cardiac cycles. The accuracy in the 

detection of S1 and S2 is limited by noise and additional 

cardiac sounds. For some subjects, the cardiac cycles are 

not maintained in the specified time intervals may lead to 

wrong interpretation. 

 
Table 3. Accuracy comparison with other methods 

Methods S1 Acc (%) S2 Acc (%) 

EMD [23] 92.8 86.4 

HVD [24] 85.1 80.7 

STFT [25] 90.4 85.1 

Proposed 95.2 90.5 

 

The calculated accuracy for the proposed and existing 

methods listed in Table 3 demonstrates that the proposed 

method attained a higher accuracy than other methods. The 

number of S1s, S2s or the number of cardiac cycles is 

calculated on visual perception only. In the process of 

identification of cardiac sounds, the efficiency of the 

algorithm execution depends on the number of 

computations.  

 
Fig. 13 Computational time compared with other methods. 

 

The computational charge of the proposed workflow 

and other existing workflows are calculated. The methods 

are implemented in MATLAB on a personal computer with 

an Intel Core 2 Duo processor with 4GB RAM to 

determine the computational time. The obtained values are 

represented in Fig. 13, and further, it illustrates that the 

proposed method has achieved 6.5ms for processing a 

PCG signal of length 6s. 

 

7. Conclusion 
This paper discusses a technique for segmenting the 

first and second cardiac sounds using intrinsic time scale 

decomposition in conjunction with Shannon energy. Next, 

the locations of S1 and S2 are drawn from the proposed 

rules. The positional information of S1 and S2 are also 

inferred in the presence of S3 and S4. Further, the accuracy 

for 108 processed cardiac cycles is calculated and achieved 

at 95.2% for S1 and 90.5% for S2. Finally, the 

computational time of the proposed method is compared 

with the existing methods, revealing its effectiveness. The 

proposed method is contributed to the proper identification 

of cardiac sounds.  

Author Contributions 
Sai bharadwaj B wrote the paper with the obtained 

experimental results, Ch. Sumanth kumar designed and 

supervised the constructive procedure of the proposed 

work   

 

References 
[1] [Online]. Available: https://www.who.int/healthtopics/cardiovascular-diseases 

[2] D.Boutana, M.Benidir, and B.Barkat, “Segmentation and Identification of Some Pathological Phonocardiogram Signals Using 

Time-Frequency Analysis,” IET Signal Processing, vol. 5, no. 6, pp. 527-537, 2011. Crossref, http://doi.org/10.1049/iet-

spr.2010.0013 

[3] João Pedrosa, Ana Castro, and Tiago T. V. Vinhoza, “Automatic Heart Sound Segmentation and Murmur Detection in Paediatric 

Phonocardiogram's," Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 

Chicago, IL, pp. 2294-2297, 2014. Crossref, http://doi.org/10.1109/EMBC.2014.6944078 

[4] V. Nivitha Varghees, and K. I. Ramachandran, “Effective Heart Sound Segmentation and Murmur Classification Using Empirical 

Wavelet Transform and Instantaneous Phase for Electronic Stethoscope,” IEEE Sensors Journal, vol. 17, no. 12, pp. 3861-3872, 

2017. Crossref, http://doi.org/10.1109/JSEN.2017.2694970 

[5] Constantin Barabaşa, Maria Jafari, and Mark D. Plumbley, “A Robust Method for S1/S2 Heart Sounds Detection Without ECG 

Reference Based on Music Beat Tracking,” Proceedings of 10th International Symposium on Electronics and 

Telecommunications, Timisoara, pp. 307-310, 2012. Crossref, http://doi.org/10.1109/ISETC.2012.6408110 



B. Sai Bharadwaj & Ch.Sumanth Kumar  / IJEEE, 9(12), 22-29, 2022 

 

29 

[6] Supreeya Swarup, and Amgad N Makaryus, “Digital Stethoscope: Technology Update,” Medical Devices (Auckl), vol. 11, pp. 29-

36, 2018. Crossref, http://doi.org/10.2147/MDER.S135882  

[7] Hong Tang, Ting Li, and Tianshuang Qiu, “Cardiac Cycle Detection for Heart Sound Signal Based on Instantaneous Cycle 

Frequency,” Proceedings of 4th International Conference on Biomedical Engineering and Informatics (BMEI), Shanghai, pp. 676-

679, 2011. Crossref, http://doi.org/10.1109/BMEI.2011.6098371 

[8] Sanmitra Banerjee, Madhusudhan Mishra, and Anirban Mukherjee, "Segmentation and Detection of First and Second Heart 

Sounds (Si and S2) Using Variational Mode Decomposition," Proceedings of IEEE EMBS Conference on Biomedical Engineering 

and Sciences (IECBES), Kuala Lumpur, pp. 565-570, 2016. Crossref, http://doi.org/10.1109/IECBES.2016.7843513 

[9] E Elmar Messner, Matthias Zöhrer, and Franz Pernkopf, “Heart Sound Segmentation—An Event Detection Approach Using Deep 

Recurrent Neural Networks,” IEEE Transactions on Biomedical Engineering, vol. 65, no. 9, pp. 1964-1974, 2018. Crossref, 

http://doi.org/10.1109/TBME.2018.2843258 

[10] A Amit Krishna Dwivedi, Syed Anas Imtiaz, and Esther Rodriguez-Villegas, “Algorithms for Automatic Analysis and 

Classification of Heart Sounds–A  Systematic Review,” IEEE Access, vol. 7, pp. 8316-8345, 2019. Crossref,  

http://doi.org/10.1109/ACCESS.2018.2889437 

[11] Young Duck Shin et al., “The Correlation Between the First Heart Sound and Cardiac Output as Measured by Using Digital 

Esophageal Stethoscope Under Anaesthesia,” Pakistan Journal of Medical Sciences, vol. 30, no. 2, pp. 276-281, 2014.  

[12] Dr. Vajed Mogal, and Dr. Sandeep Sanap, “Peripartum Cardiomyopathy: A Rare Case Report and a Brief Review of 

Literature,” SSRG International Journal of Medical Science, vol. 7, no. 2, pp. 1-3, 2020. Crossref, 

https://doi.org/10.14445/23939117/IJMS-V7I2P101 

[13] Ali Moukadem et al., “A Robust Heart Sounds Segmentation Module Based on S-Transform,” Biomedical Signal Processing and 

Control, vol. 8, no. 3, pp. 273–281, 2013. Crossref, https://doi.org/10.1016/j.bspc.2012.11.008 

[14] D. Kumar et al., “Third Heart Sound Detection Using Wavelet Transform-Simplicity Filter,” in Proceedings of 29th Annual 

International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, pp. 1277-1281, 2007. 

Crossref, https://doi.org/10.1109/IEMBS.2007.4352530 

[15] Z. Sharif et al., “Analysis and Classification of Heart Sounds and Murmurs Based on the Instantaneous Energy and Frequency 

Estimations,” TENCON Proceedings Intelligent Systems and Technologies for the New Millennium, Kuala Lumpur, Malaysia, vol. 

2, pp. 130-134, 2000. Crossref, https://doi.org/10.1109/TENCON.2000.888404 

[16] Arash Gharehbaghi et al., “An Automatic Tool for Pediatric Heart Sounds Segmentation,” in Proceedings of Computing in 

Cardiology, Hangzhou, pp. 37-40, 2011. 

[17] Mehak Saini, “Proposed Algorithm for Implementation of Shannon Energy Envelope for Heart Sound Analysis,” International 

Journal of Electronics & Communication Technology, vol. 7, no. 1, pp. 15-19, 2016. 

[18] Runnan He et al., “Classification of Heart Sound Signals Based on AR Model,” in Proceedings of Computing in Cardiology 

Conference (CinC), Vancouver, BC, pp. 605-608, 2016. Crossref, https://doi.org/10.22489/CinC.2016.177-133 

[19] Noemi Giordano, and Marco Knaflitz, “A Novel Method for Measuring the Timing of Heart Sound Components through Digital 

Phonocardiography,” Sensors, vol. 19, no. 8, p. 1868, 2019. Crossref, https://doi.org/10.3390/s19081868  

[20] Samjin Choi, and Zhongwei Jiang, “Comparison of Envelope Extraction Algorithms for Cardiac Sound Signal Segmentation,” 

Expert Systems with Applications, vol. 34, no. 2, pp. 1056-1069, 2008. Crossref, https://doi.org/10.1016/j.eswa.2006.12.015  

[21] Ik-Soo Ahn, “A Study on Heart Management Using Healthy Heartbeat Frequency,” International Journal of Engineering Trends 

and Technology, vol. 68, no. 12, pp. 16-21, 2020. Crossref,  https://doi.org/10.14445/22315381/IJETT-V68I12P203 

[22] Samit Ari, and Goutam Saha, “Classification of Heart Sounds using Empirical Mode Decomposition Based Features,” 

International Journal of Medical Engineering and Informatics, vol. 1, no. 1, pp. 91-108, 2008. Crossref,  

 https://doi.org/10.1504/ijmei.2008.019473  

[23] H. Sharma, and K. K. Sharma, “Baseline Wander Removal of ECG Signals using Hilbert Vibration Decomposition,” 

In Electronics Letters, vol. 51, no. 6, pp. 447-449, 2015. Crossref, https://doi.org/10.1049/el.2014.4076 

[24] P. S. Vikhe, N. S. Nehe, and V. R. Thool, “Heart Sound Abnormality Detection Using Short Time Fourier Transform and 

Continuous Wavelet Transform,” In Proceedings of Second International Conference on Emerging Trends in Engineering & 

Technology, Nagpur, pp. 50-54, 2009. Crossref, https://doi.org/10.1109/ICETET.2009.112 

[25] Mark G Frei, and Ivan Osorio, “Intrinsic Time-Scale Decomposition: Time–Frequency–Energy Analysis and Real-Time Filtering 

of Non-Stationary Signals,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 463, no. 

2078, pp. 321–342, 2006. Crossref, https://doi.org/10.1098/rspa.2006.1761 

[26] Xinpei Wang et al., “Detection of the First and Second Heart Sound Using Heart Sound Energy,” In Proceedings of 2nd 

International Conference on Biomedical Engineering and Informatics, Tianjin, pp. 1-4, 2009. Crossref,  

https://doi.org/10.1109/BMEI.2009.5305640 

[27] R. D. Judge and, R. Mangrulkar, “The Open Michigan Heart Sound & Murmur Library (OMHSML),” University of Michigan, 

2015. 

[28] [Online]. Available: https://depts.washington.edu/physdx/heart/demo.html  

[29] Tien-En Chen et al., “S1 and S2 Heart Sound Recognition Using Deep Neural Networks,” IEEE Transactions on Biomedical 

Engineering, vol. 64, no. 2, pp. 372-380, 2017. Crossref, https://doi.org/10.1109/TBME.2016.2559800 


