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Abstract - Medical imaging is essential for diagnosing and managing diseases that impact human organs. Two widely used 
imaging techniques, Computed Tomography (CT) and Magnetic Resonance Imaging (MRI), offer valuable information about the 

structural aspects of organs. However, relying solely on a single imaging modality can sometimes limit disease detection 

accuracy. To address this limitation, the integration of multiple modalities followed by segmentation has gained traction, offering 

improved precision in assessing organ health. Accurate segmentation of organs from multi-modal medical images forms the 

cornerstone of modern healthcare, facilitating precise treatment planning, early disease detection, and personalized medicine. 

This paper offers an in-depth review of the latest trends and challenges in abdominal organ segmentation using deep learning 

approaches. It explores the use of attention mechanisms, Graph Neural Networks (GNNs) alongside traditional methods such as 

Convolutional Neural Networks (CNN), Fully Convolutional Networks (FCN), and Generative Adversarial Networks (GAN) 

within the scope of abdominal organ segmentation. The paper also addresses key challenges and opportunities in the field, 

highlighting the importance of continued innovation and collaboration to advance abdominal organ segmentation for improved 

clinical outcomes. 
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1. Introduction 
Medical imaging is a fundamental aspect of modern 

healthcare, offering critical insights into both the structure and 

function of human organs. Computed Tomography (CT) and 

Magnetic Resonance Imaging (MRI) are particularly notable 

among imaging techniques, providing detailed anatomical 
data essential for diagnosing diseases and developing 

treatment plans [1]. However, despite the advancements in 

imaging technology, accurate segmentation of abdominal 

organs remains a challenge due to the complex nature of 

medical images and the inherent variability in organ shapes 

and sizes. 

Abdominal organ segmentation holds immense 

significance in clinical practice, facilitating precise 

quantification of organ volumes, early detection of 

abnormalities, and monitoring of disease progression [2]. 

Traditional segmentation techniques, based on manually 
designed features and algorithms, have long been applied in 

medical image analysis [3]. These methods often struggle to 

cope with the diverse characteristics of abdominal organs, 

leading to suboptimal segmentation results, particularly in 

cases of heterogeneous organs or images with low contrast. 

Recently, deep learning techniques have significantly 

transformed the field of medical image segmentation. 

Convolutional Neural Networks (CNNs), in particular, have 

shown exceptional ability to automatically learn complex 

patterns and features from large datasets, resulting in 

enhanced segmentation accuracy [5]. Moreover, the flexibility 

and adaptability of deep learning architectures have enabled 

the integration of multi-modal imaging data, further 
enhancing the precision of abdominal organ segmentation [6]. 

One of the key advancements in deep learning-based 

segmentation is the integration of attention mechanisms 

enables models to concentrate on important areas within the 

input image [5], enabling more precise localization and 

segmentation of abdominal organs. Additionally, Graph 

Neural Networks (GNNs) have shown promise in capturing 
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spatial relationships and anatomical structures, particularly in 

cases where organs exhibit complex interdependencies [8]. 

Alongside these advanced techniques, conventional models 

such as CNN, Fully Convolutional Networks (FCNs), and 

Unet [5,8] continue to play significant roles in abdominal 

organ segmentation, offering complementary advantages in 
certain applications. 

Despite the remarkable progress achieved with deep 

learning methods, several challenges persist in abdominal 

organ segmentation. These include the scarcity of annotated 

datasets, class imbalance, domain adaptation across different 

imaging modalities, and the need for interpretable and 

explainable models for clinical acceptance [9]. Overcoming 

these challenges demands joint efforts from both researchers 

and clinicians, along with advancements in data augmentation, 

transfer learning, and model interpretability techniques. 

In light of these considerations, this paper aims to provide 

a comprehensive review of emerging trends and challenges in 
abdominal organ segmentation using deep learning 

techniques. By examining the latest advancements in attention 

mechanisms and graph neural networks alongside 

conventional methods such as CNNs, FCNs, and Unet, this 

paper seeks to elucidate the current landscape of abdominal 

organ segmentation from single-modality and multi-modal 

images and chart future directions for research and clinical 

applications. Through a deeper understanding of these 

emerging trends and challenges, we can pave the way for more 

accurate, reliable, and clinically relevant segmentation 

methods, ultimately enhancing patient care and advancing 
medical image analysis in abdominal imaging. 

2. Fundamentals of Abdominal Organ 

Segmentation 
Abdominal organ segmentation is an essential task in 

medical imaging, focusing on isolating individual organs from 

CT or MRI data. Historically, this process has depended on 

manual or semi-automated methods, which can be time-

intensive, subjective, and susceptible to variability between 

observers. Recently, deep learning-based methods have 

gained attention as a promising solution for abdominal organ 

segmentation [11-13].  

Figure 1 shows that the process of segmenting abdominal 

organs from medical images typically follows a structured 
methodology encompassing various key steps. Initially, the 

dataset comprising images from MRI, CT, and other 

modalities is collected and subjected to preprocessing 

techniques such as normalization, resizing, and noise 

reduction to ensure consistency and quality. Data 

augmentation, though optional, may be employed to augment 

the dataset’s diversity, thereby enhancing the model’s 

robustness. 

 

 

 

 

 

 

 

 

Fig. 1 Steps involved in abdominal organ segmentation using a deep 

learning approach 

Following data preparation, a suitable deep learning 

architecture is selected based on factors like dataset size and 

complexity. The selected model is then trained using a portion 

of the dataset, with the remainder reserved for validation and 

testing. During training, hyperparameters are fine-tuned to 
optimize the model’s performance. Evaluation of the trained 

model involves assessing its accuracy and efficacy using 

metrics like the Dice coefficient and Jaccard index.  

Post-processing techniques, such as morphological 

operations, may be applied to refine the segmented output and 

improve its quality. Once the model is trained and evaluated, 

it is integrated into a software pipeline for practical 

deployment, enabling its use for segmenting new images.  

Additionally, a feedback loop may be incorporated to 

iteratively refine the model’s performance based on real-world 

use cases and feedback from stakeholders. This systematic 
approach ensures a comprehensive and effective methodology 

for abdominal organ segmentation using deep learning 

methods from single-modality and multi-modal images. 

Despite the potential of deep learning methods, several 

challenges exist in abdominal organ segmentation tasks. One 

major issue is that annotated medical imaging datasets are 

frequently small and lack diversity, which limits the ability of 

deep learning models to generalize effectively. To some 

degree, data augmentation techniques such as geometric 

transformations and variations in intensity can help mitigate 

this challenge [15]. Secondly, domain adaptation across 

different imaging modalities or scanner types remains a 
significant hurdle, as variations in image acquisition protocols 

can affect model performance. Transfer learning strategies, 

where models are pre-trained on large-scale datasets and fine-

tuned on smaller target domains, offer a potential solution to 

this challenge [15]. 
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The selection of model plays an important role in single 

as well as multi-modal image segmentation; for abdominal 

organs segmentation, Convolutional Neural Networks 

(CNNs) have shown remarkable success in learning 

hierarchical representations from raw imaging data, enabling 

automatic feature extraction and organ segmentation [16] 
[17]. Fully Convolutional Networks (FCNs) have extended 

CNNs to pixel-wise segmentation tasks, allowing for end-to-

end learning of organ boundaries without the need for 

handcrafted features [16].  

Furthermore, interpretability and explainability of deep 

learning models are critical considerations in medical imaging 

applications. Clinicians require confidence in the decisions 

made by automated segmentation algorithms, necessitating 

transparent and interpretable model architectures. Attention 

mechanisms enable models to concentrate on significant areas 

within the input image and can enhance interpretability by 

providing visual explanations for segmentation decisions [19]. 

DL approaches have demonstrated outstanding 

performance in single as well as multi-organ segmentation. 

These methods leverage DL to extract comprehensive features 

from medical images, capturing intricate structural 

information pertaining to different organs [18]. 

3. Basic Deep Learning Models for Abdominal 

Organ Segmentation 

CNN, FCN, and Unet models serve as foundational 

architectures for abdominal organ segmentation and can be 

further customized and optimized based on specific 

requirements and datasets. 

3.1. Convolutional Neural Network (CNN) 

Convolutional Neural Networks (CNNs) are fundamental 
tools in medical imaging, particularly for tasks such as 

abdominal organ segmentation from both single-modality and 

multi-modal images. CNNs are adept at extracting intricate 

features and patterns from medical images, allowing for the 

precise delineation of organ boundaries crucial for diagnosis 

and treatment planning [10].  

In a CNN architecture tailored for abdominal organ 

segmentation, the hidden layers are tailored to exploit the 

inherent spatial relationships and structural nuances present in 

medical images. This adaptation involves layers responsible 

for convolutions, pooling, activation, and fully connected 
operations. The arrangement of these layers is crucial for 

efficient feature extraction, classification, and decision-

making stages specific to organ segmentation tasks [12].  

The hidden layers of CNNs comprise layers responsible 

for convolutions. Let I denote the input image or feature map. 

K represents the convolutional kernel, and O represents the 

output feature map. The convolution operation is defined as: 

𝑂[𝑖, 𝑗] = Ʃ𝑚Ʃ𝑛I[i+, j+n].K[m.n]   (1) 

Where: 

O [i, j] is the value of the pixel at position i,j) in the output 

feature map. 

I [i+m, j+n] represents the pixel values in the input feature 
map. 

K [m, n] denotes the values of the convolutional kernel. 

The summation is performed over all possible positions 

(m,n) of the kernel. 

The next operation after convolution is max pooling, 

which is a downsampling operation that decreases the spatial 

dimensions of the input feature map by retaining only the 

maximum value within each pooling window.  

Let I be the input feature map, O be the output feature 

map, and s denote the size of the pooling window. The max 

pooling operation is defined as: 

𝑂[𝑖, 𝑗] =  𝑚𝑎𝑥𝑚,𝑛[i.s+m, j.s+n]    (2) 

Where: 

O[i,j] is the value of the pixel at position (i, j) in the output 

feature map. 

I [i⋅s+m, j⋅s+n] represents the pixel values in the input 

feature map within the pooling window. 

𝑚𝑎𝑥𝑚,𝑛 denotes taking the maximum value over all 

pixels in the pooling window. 

The convolution operation produces a feature map from 

the input matrix of the layer as the convolution kernel moves 
across it. This feature map serves as input for the next layer. 

As the kernel traverses the input matrix, it identifies features 

pertinent to abdominal organs, which are then utilized in later 

layers for additional processing. Additionally, pooling layers 

are strategically employed to downsample feature maps, 

reducing computational complexity while retaining essential 

information relevant to segmentation [12]. These layers are 

followed by others, such as pooling layers, fully connected 

layers, and normalization layers, as shown in Figure 2. 

CNN has proven useful in recognizing images, 

segmentation, detecting objects, and other areas. Some of the 

most well-known CNN architectures include Holistically-
nested CNN (HNN), MaskR-CNN, DCNN, AlexNet, 

VGGNet, Residual Networks (ResNet), and DenseNet. 

3.2. Fully-Convolutional Neural Network (FCN) 

Fully Convolutional Networks (FCNs) are tailored 

specifically for segmentation tasks and are widely employed 

in a range of segmentation applications, including medical 

image segmentation for tasks like abdominal organ 

segmentation [16].  
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Fig. 2 Convolutional Neural Network (CNN) 

 

 

 

 

 

 

 

 

 

Fig. 3 Fully-Convolutional Neural Network (FCN) 

In the case of Fully Convolutional Networks (FCNs) 

adapted for abdominal organ segmentation, the architecture 

undergoes modifications to accommodate the segmentation 

task. FCNs, devoid of fully connected layers, are employed to 

produce segmentation maps of the same size as the input 

images.  

This is achieved by replacing the fully connected layers 

in traditional CNNs with convolutional layers. During the 

segmentation process, the FCN transforms the feature maps 

from intermediate layers into two-dimensional feature maps 

of each pixel, retaining spatial information crucial for accurate 

organ delineation. The FCN utilizes deconvolutional layers to 

upsample the feature maps, thereby restoring them to the same 

size as the input images.  

This enables pixel-by-pixel classification on the 

upsampled feature maps, facilitating precise segmentation of 

abdominal organs. Depending on the desired level of 

upsampling, FCNs may employ different magnifications, such 

as FCN-32s, FCN-16s, and FCN-8s, to achieve varying 

degrees of segmentation granularity [18]. The network 

architecture of FCN is shown in Figure 3. Some of the most 

popular FCN models for medical image segmentation are 2D-
FCN, 3D-FC, SegNet, etc. 

3.3. Generative Adversarial Network (GAN) 

GANs hold significant promise in the realm of abdominal 

organ segmentation, offering avenues for improved accuracy 

and robustness. Comprising a generator and discriminator 

network, GANs function in an adversarial setup, where the 

generator produces synthetic images from random noise, and 

the discriminator attempts to differentiate between real and 

generated images. 

In the context of abdominal organ segmentation, 

researchers can adapt this framework by designing a generator 

network to translate abdominal MRI images into segmented 
organ masks. Meanwhile, the discriminator is tasked with 

discerning between genuine organ masks and those generated 

by the generator, providing feedback to refine the 

segmentation process. Through combined training, wherein 

the generator and discriminator networks are optimized 

concurrently, the model learns to produce realistic organ 

segmentations. In contrast, the discriminator improves its 

ability to discern real from fake segmentations, as shown in 

Figure 4. 

 

 

 

 

 

 

 

 

Fig. 4 Generative Adversarial Network (GAN) 

Additionally, the integration of convolutional layers for 

semantic segmentation and the use of multiscale loss functions 

further enhance the model’s capacity to accurately segment 

the organ structures, mitigating challenges associated with 
unbalanced pixel categories and anatomical variability 

commonly encountered in medical imaging datasets. To 

optimize the segmentation network, many researchers have 
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designed segmentation networks based on the ideas of GAN 

and a multiscale L1 loss.  Some of the popular GAN-based 

segmentation models are SCAN, PAN, NiftyNet [28], 

MedGAN, and AsynDGAN. 

3.4. Unet 

The U-Net architecture, built on the foundation of Fully 
Convolutional Networks (FCN), was specifically designed for 

biomedical imaging and became widely adopted for medical 

image segmentation following its introduction by 

Ronneberger et al. [8].  The U-Net architecture, as shown in 

Figure 5, is composed of two main components: a contracting 

path that captures contextual information and a symmetric 

expanding path that allows for precise localization.  

Convolutional three-fold down-sampling is implemented 

with an FCN-like architecture for extracting features. The 

expansion or up-convolution, also known as deconvolution, 

decreases the number of feature maps while simultaneously 

enlarging their dimensions. To avoid losing pattern 
information, feature maps are copied from the down-sampling 

to the up-sampling parts of the network. A 1x1 convolution is 

applied to the feature maps in order to generate a segmentation 

map. 

 

 

 

 

 

 

 

 

Fig. 5 Unet architecture  

Various extensions have been developed for U-Net to 

support different types of images. A few of these 

are:  Attention Unet, Unet+, Unet++, V-Net, Res U-Net, H-

DenseUnet.  

4. Attention Mechanisms in Abdominal Organ 

Segmentation 
Attention mechanisms in deep learning have become 

prominent due to their capability to improve model 

performance by concentrating on important features and 

minimizing the influence of less relevant ones. In abdominal 

organ segmentation, attention mechanisms are essential for 

enhancing accuracy by enabling the model to focus on the 

most informative areas of the input image [19].  

Several types of attention mechanisms can be integrated 

into Convolutional Neural Networks (CNNs) and Fully 

Convolutional Networks (FCNs) for abdominal organ 
segmentation. One commonly used attention mechanism is the 

self-attention mechanism, which enables the model to attend 

to different parts of the input image with varying degrees of 

importance. This is particularly useful in medical imaging, 

where certain regions may contain more diagnostically 

relevant information than others. 

Another type of attention mechanism is spatial attention, 

which focuses on specific spatial locations within the input 

image. This type of attention is often used in conjunction with 

self-attention to offer a more thorough understanding of the 

image context. Some of the popular attention models that have 

been applied to abdominal organ segmentation are: 

4.1. Attention Unet 

The Attention U-Net is a Convolutional Neural Network 

(CNN) architecture employed in semantic segmentation tasks 

within computer vision. It represents an evolution of the 

original U-Net model, incorporating attention mechanisms to 

enhance contextual understanding [19]. 

 

 

 

 

 

 

 

 

 Fig. 6 Attention U-net architecture  

Renowned for its precision, even with limited data, the U-

Net architecture comprises an encoder network and a decoder 
network connected by skip links. The encoder gradually 

reduces spatial resolution, while the decoder employs skip 

connections to up-sample and merge feature maps from the 

encoder for the final segmentation.  

To improve long-range context comprehension, the 

Attention U-Net integrates attention mechanisms into the 

Input 

1  64 64 

128 128 

256  256 

512   512 1024     512 

512   256 

256  128 

128 64 64  2 
Output 

3
9
2

 x
 3

9
2
 

3
9
0

 x
 3

9
0
 

3
8
8

 x
 3

8
8
 

3
8
8

 x
 3

8
8
 

2
0
0

2
 

1
9
8

2
 

1
9
6

2
 

1
0
4

2
 

1
0
2

2
 

1
0
0

2
 

5
6

2
 

5
4

2
 

5
4

2
 

3
2

2
 

3
0

2
 

2
8

2
 

6
8

2
 

6
6

2
 

6
4

2
 

1
4
0

2
 

1
3
8

2
 

1
3
6

2
 

2
8
4

2
 

2
8
2

2
 

2
8
0

2
 

5
7
2

 x
 5

7
2
 

5
7
0

 x
 5

7
0
 

5
6
8

 x
 5

6
8
 

Conv 3x3, ReLU 
Copy and crop 
Max pool 2x2 
Up-Conv 2x2 
Conv 1x1 

Input 

256 x 256 

2
5
6

 x
 2

5
6 

Maxpooling 2x2 
Up-conv 2x2 
Skip Connection 

Conv 1x1 
ReLU 

1
2
8

 x
 1

2
8 

6
4
 x

 6
4 

3
2
 x

 3
2 

3
2
 x

 3
2 

6
4
 x

 6
4 

1
2
8

 x
 1

2
8 

2
5
6

 x
 2

5
6 

Output 

Attention Gate 

256 x 256 

Sigmoid 
Add 
Multiply 

Conv 3x3, ELU 
Conv 3x3, ELU, dropout 



Snehal V. Laddha & Rohini S. Ochawar / IJEEE, 11(10), 10-21, 2024 

15 

decoder network, as shown in Figure 6. These mechanisms 

include both spatial attention, which assigns equal importance 

to all spatial positions within feature maps, and channel-wise 

attention, which weights each feature map’s contribution to 

the segmentation map [12]. 

The following formula describes additive attention: 

𝑞𝑎𝑡𝑡
1 =  𝜓𝑇(𝜎1 (𝑊𝑥

𝑇(𝑥𝑖
𝑙 + 𝑊𝑔

𝑇𝑔𝑖 + 𝑏𝑖)) + 𝑏𝜓   (3) 

𝛼𝑖
𝑙 =  𝜎2(𝑞𝑎𝑡𝑡

𝑙 (𝑥𝑖
𝑙 , 𝑔𝑖  ; 𝛩𝑎𝑡𝑡))   (4) 

Where, 𝑔 is the gating signal, and 𝑥𝑙 is the characteristics 
of the contracting route. The sigmoid function is denoted by 

the phrase 𝜎2(𝑥𝑖,𝑐) : 

𝜎2(𝑥𝑖,𝑐) =  
1

1+exp (−𝑥𝑖,𝑐)
       (5) 

The effectiveness of Attention U-Net extends to 

abdominal organ segmentation in both single and multi-mode 

scenarios, where it demonstrates promising performance. 

4.2. Residual Attention U- Net 

The Residual Attention U-Net is an advanced deep 
learning architecture that combines the U-Net framework with 

attention and residual blocks, widely applied in image 

segmentation tasks [21]. Attention gates within this 

architecture play a crucial role in diminishing noise and 

irrelevant background elements in images while emphasizing 

vital information concerning target objects.  

These attention gates utilize spatial information through 

an attention mechanism, potentially aiding in tasks like early 

detection, such as identifying small fires. Furthermore, the 

integration of residual blocks enhances the U-Net’s capability 

to extract finer details from convolutional layers.  

Residual blocks, a type of component in deep neural 
networks, contribute to improving gradient flow and empower 

the network to learn more intricate information. They 

incorporate a shortcut link, enabling the network to learn 

residual mappings by bypassing one or more levels in the 

network. 

The RAUNet architecture integrates the essential 

components of the UNet, including its contraction and 

expansion paths, along with an additional bridging element. 

Within the Residual Attention U-Net framework, attention 

gates are seamlessly integrated into both encoder and decoder 

blocks to enable selective focus on crucial features. Through 
the incorporation of a Residual Attention Module (RAM) at 

every layer of the encoder and decoder networks, the RAUNet 

extends the capabilities of the UNet architecture. 

 

 

 

 

 

 

 

 

Fig. 7 Residual attention U-net architecture  

These RAMs consist of two branches: a mask branch 
responsible for processing input feature maps to facilitate 

selective attention and a trunk branch that handles the feature 

maps themselves. The design of RAMs is aimed at 

emphasizing important aspects while suppressing irrelevant 

features, aiding in capturing long-range dependencies within 

images. 

The contraction path in Figure 7 comprises four levels, 

each housing a residual block containing dilated convolutional 

layers, batch normalization, and ReLU activation. The bridge 

layer includes a residual block layer with 512 feature maps of 

size 16 × 16, facilitating connectivity between the contraction 
and expansion channels. The output of the bridge layer serves 

as input for the attention gate on one side while it enters the 

convolutional transpose layer on the other side. Furthermore, 

the expansion path consists of four levels, starting with a 

residual block and concluding with a convolutional transpose 

layer. Each layer in the expansion path is connected to its 

corresponding layer in the contraction path through skip 

connections and attention gates, with the convolutional 

transpose (2x2) layer employed for upsampling. 

4.3. Spatial Attention U-Net 

Much like the original U-Net, the Spatial Attention U-Net 

is built with an encoder-decoder framework, depicted in 
Figure 8. The encoder component systematically decreases the 

spatial resolution of the input image using a sequence of 

convolutional and pooling layers. In contrast, the decoder 

component upscales the feature maps to generate the final 

segmentation mask. Skip connections are utilized to combine 

feature maps from the encoder with the corresponding layers 

in the decoder. These skip connections promote the transfer of 

low-level and high-level features across various scales, 

allowing the network to capture fine-grained details while 

maintaining contextual information. Spatial attention modules 

are integrated into the architecture to dynamically adjust the 
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importance of different spatial locations within the feature 

maps. These attention mechanisms assist the network in 

concentrating on relevant regions while suppressing irrelevant 

background information.  

 

 

 

 

 

 

 

 

 

Fig. 8 Spatial attention U-net architecture  

In the context of abdominal organ segmentation, spatial 

attention allows the network to prioritize features within the 

abdominal region and better delineate organ boundaries. The 

Spatial Attention U-Net captures multiscale context 

information by incorporating features from multiple levels of 

abstraction. This enables the network to effectively handle 

variations in organ size, shape, and appearance within the 

abdominal region, improving segmentation performance. 

5. Graph Neural Networks (GNN) for 

Abdominal Organ Segmentation 
Graph Neural Networks (GNNs) are a type of neural 

network uniquely crafted to work with graph-structured data, 

where entities are depicted as nodes, and the relationships 

between them are illustrated as edges [22]. GNNs excel in 

capturing complex relationships and dependencies present in 

data by leveraging the inherent structure of graphs. Unlike 

conventional neural networks that function on grid-like 

structures such as images or sequences, GNNs are capable of 

effectively modeling non-Euclidean domains, making them 

ideal for tasks that involve relational data. 

GNNs have emerged as a promising approach for 

segmentation tasks, including abdominal organ segmentation 

in medical imaging. In the context of segmentation, GNNs 
leverage the structural information encoded in the graph 

representation of the image to capture spatial relationships and 

contextual dependencies between image elements. One of the 

key advantages of using GNNs for segmentation is their 

ability to model long-range dependencies and capture global 

context within the image. Traditional CNNs are limited by 

their local receptive fields, which may struggle to incorporate 

contextual information from distant image regions. In 

contrast, GNNs can propagate information across the entire 

graph structure, allowing them to capture global relationships 

and improve segmentation accuracy. 

Moreover, GNNs can adaptively aggregate features from 
neighboring nodes in the graph, enabling them to incorporate 

both local and global contexts into the segmentation process 

[23]. This adaptive feature aggregation mechanism allows 

GNNs to effectively handle variations in organ shape, size, 

and appearance, making them robust to anatomical differences 

across different patients and imaging modalities. Some 

popular GNN models for medical image segmentation are: 

5.1. Graph Convolutional Networks (GCNs) 

Graph Convolutional Networks (GCNs) are a class of 

neural networks that operate directly on graph-structured data, 

enabling efficient feature extraction and propagation across 

nodes [24]. In the context of abdominal organ segmentation, 
GCNs offer a powerful framework for leveraging the spatial 

relationships between different regions of interest within 

medical images represented as graphs. 

 

 

 

 

 

 

 

 

Fig. 9 GCN architecture 

Figure 9, at its core, the GCN architecture begins with an 

input layer that takes in the graph representation of the medical 

image, where each node represents a pixel or voxel and edges 

denote spatial relationships. The graph convolutional layer 

applies convolutional operations directly on the graph, 
enabling the extraction of informative features from 

neighboring nodes. These features are subsequently processed 

through an activation function to introduce non-linearity and 

improve the network’s ability to represent complex patterns. 
Optionally, pooling layers may be incorporated to 

downsample the graph and reduce computational complexity 

while preserving essential information.  

Input 
3     16    16 

Output 

1x1 Conv Sigmoid 
3x3 Conv, DropBlock, BN, ReLU 

32    16    16 

32    32 

64    64 

64    32 

128     64    

128            128    Copy 
Spatial Attention Module 

Input Output 

Hidden 

Layer 
Hidden 

Layer 

Activation 

Function 
Activation 

Function 

ReLU ReLU 
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Finally, the output layer produces the segmentation map, 

assigning a label to each pixel or voxel based on the features 

learned throughout the network. This architecture allows 

GCNs to effectively capture spatial dependencies within 

medical images and produce accurate segmentations of 

abdominal organs, contributing to advancements in medical 
image analysis and diagnosis. 

5.2. Graph U-Net 

Graph U-Net represents a significant advancement in the 

realm of semantic segmentation within medical image 

analysis. Built upon the foundation of the U-Net architecture, 

Graph U-Net introduces graph convolutional layers to better 

leverage the inherent spatial dependencies and structural 

nuances present in medical images, which are naturally 

represented as graphs [25]. In this paradigm, nodes correspond 

to image elements like pixels or voxels, while edges 

encapsulate the spatial relationships between them. By 

embracing this graph-based representation, Graph U-Net can 
effectively capture intricate spatial relationships and 

contextual cues crucial for accurate segmentation of 

anatomical structures. 

The architecture of Graph U-Net adheres to the encoder-

decoder framework commonly seen in segmentation 

networks. However, unlike traditional approaches that directly 

process the image, Graph U-Net operates on the graph 

structure, enabling it to model spatial dependencies among 

image elements intricately. This novel approach empowers the 

model to adaptively adjust its segmentation strategy by 

performing convolution operations directly on the graph 
representation of the image. These graph convolutional layers 

enable the collection of information from adjacent nodes, 

allowing the model to capture both local and global contextual 

information [25]. As a result, Graph U-Net excels in scenarios 

where traditional convolutional neural networks struggle to 

capture complex spatial relationships, leading to more 

accurate segmentation outcomes across various medical 

imaging tasks, including organ segmentation, tumor 

delineation, and structural analysis. 

GCNs and Graph U-Net can offer powerful frameworks 

for abdominal organ segmentation by leveraging graph-based 

representations to model the spatial relationships and 
structural dependencies present in medical imaging data. By 

effectively capturing the complex interactions between 

different anatomical structures, these models can improve 

segmentation accuracy and facilitate more reliable diagnosis 

and treatment planning in clinical practice. 

6. Discussion  
 Various DL techniques based on distinct network 

architectures have been experimented with for single vs. 

multi-organs and single vs. multi-mode image segmentation 

of abdominal organs. The Dice Score is the most widely used 

metric for assessing the performance of segmentation 

algorithms. The Dice score is crucial in abdominal organ 

segmentation as it quantitatively evaluates the algorithm’s 

ability to outline organ boundaries accurately. This score is 

calculated by comparing the overlap between the predicted 

segmentation and the ground truth segmentation. It provides a 
measure of the algorithm’s performance in accurately 

identifying and segmenting different abdominal organs:  

Dice Score (DICE): The Dice score is evaluated as 

DICE (A, B) =
2 |A ∩ B|

|A|+ |B|
  (6) 

Where, A is the prediction voxel set, and the ground-truth 

set is B. 

The Dice score ranges from 0 to 1, with a perfect 

segmentation resulting in a score of 1. It is also called as Dice 

Similarity Coefficient (DSC) or Dice Coefficient (DC). The 

Dice score offers a straightforward and intuitive measure of 

segmentation accuracy. It enables researchers and clinicians 

to compare and evaluate various segmentation algorithms, 

aiding in the selection of the most suitable method for specific 

clinical applications. 

We have examined key studies that have made significant 
contributions to abdominal segmentation and presented in 

Tables 1 and 2. Analysis of various state-of-the-art deep 

learning networks experimented by the researchers for image 

segmentation work on abdominal organs has been 

summarized in Table 1. In contrast, Table 2 provides an 

analysis of different deep learning methods for multi-modal 

abdominal organ segmentation.  

The analysis presented in Tables 1 and 2 offers a 

comprehensive overview of Deep Learning (DL) approaches 

for abdominal organ segmentation, both in single-modality 

and multi-modal settings. Single modality segmentation 
studies encompass a diverse range of DL architectures, from 

traditional CNNs to more advanced models like Attention-

Unet and 3D-FCN. These studies demonstrate varying degrees 

of segmentation accuracy, with notable achievements such as 

Hu et al. showcasing remarkably high Dice scores for the liver, 

spleen, and kidneys using CNN. However, performance 

variability is evident across different organs and architectures, 

as seen in the contrasting results reported by Gabriel Efrain et 

al. for kidney segmentation. The emergence of novel 

architectures like Attention-Unet and 3D-2D-FCN highlights 

the ongoing innovation in network design to improve 

segmentation accuracy and robustness. Moreover, the 
predominance of CT imaging in single-modality studies 

underscores its importance and prevalence in abdominal 

imaging tasks. However, there’s a growing interest in MRI-

based segmentation, as demonstrated by Valindria et al. and 

Gross et al. 
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Table 1. Analysis of DL approaches for single modality abdominal organ segmentation 

Author Year Network Abdominal Organ Modality Dice Score 

Hu [13] 2016 CNN Multi-Organ CT 
96.0% (Liver), 94.2% (Spleen) 

and 95.4% (both kidneys) 

Gabriel Efrain [14] 2017 CNN Multi-organ CT 
59% and 58% (kidneys), 

83% (liver) 

Roth [16] 2018 3D FCN Multi-Organ CT 90% 

Oktay [19] 2018 Attention-Unet Pancreas CT 81.48 % 

Rafiei [26] 2018 3D-2D-FCN Liver CT 93.52% 

Valindria [17] 2018 FCN Multi-Organ MRI 90% 

Kakeya [27] 2018 3D U-JAPA-net Multi-Organ CT 

97.1% (liver), 96.9% (spleen), 

97.5% (right kidney) & 

98.4% (left kidney) 

Gibson [28] 2018 NiftyNet Multi-Organ CT 95% (liver) 

Gibson [29] 2018 DenseVnet Multi-Organ CT 81% 

M. Ahmad [30] 2019 DBN-DNN Liver CT 94.80% 

Y. C. Tang [31] 2019 DCNN Multi-Organ CT 94% 

Chung [32] 2019 FCN Liver CT 
96%, 

 

Y. Y. Zhou [33] 2019 DMPCT Multi-Organ CT 96.15% 

Tong [34] 2020 
Self-paced 
DenseNet 

Multi-Organ CT 84% 

Lin [5] 2021 Attention U-Net Multi-Organ CT 81.3% 

Xu, M [ 35] 2022 nnUNet Liver CT 95.8% 

Kayhan [36] 2022 

3D Unet based on 

Early Fusion 
Mechanism 

Multi-Organ CT 95% (spleen), 96% (liver) 

Nanyan Shen [20] 2023 

Spatial attention and 

deformable 

convolution 

Multi-Organ CT 80.46% 

Tian [23] 2023 Surface-GCN Prostate CT 94.49% 

Gross [37] 2024 3D-DCNN Liver MRI 97% 

 

In contrast, multi-modal segmentation approaches 

leverage complementary information from multiple imaging 

modalities to improve segmentation accuracy and resilience. 

The integration of CT, MRI, and even EM data allows for a 

more comprehensive analysis of abdominal organs, leading to 

improved Dice scores compared to single-modality 

approaches. Studies such as Valindria et al. and Conze et al. 

showcase the effectiveness of combining CT and MRI data in 

achieving higher segmentation accuracy, with Dice scores 

consistently surpassing 90%. Additionally, the introduction of 

novel architectures like UNet++ and cGv19pUNet1-1 reflects 

the evolving landscape of DL models for multi-modal 

segmentation tasks, promising further advancements in 

accuracy and clinical applicability. 

These findings pave the way for future research directions 

aimed at enhancing the accuracy, robustness, and clinical 

utility of DL-based abdominal organ segmentation techniques, 

ultimately benefiting patients and healthcare practitioners 

alike.

https://www.sciencedirect.com/science/article/pii/S136184152300244X#b57
https://www.sciencedirect.com/science/article/pii/S136184152300244X#b44
https://aapm.onlinelibrary.wiley.com/authored-by/Tian/Fengrui
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Table 2. Analysis of DL approaches for multi-modal abdominal organ segmentation 

Author Year Network Abdominal Organ Modality Dice Score 

Valindria [17] 2018 FCN Liver 
Multimodal  

(CT & MRI) 
90.7% (MRI), 94.3% (CT) 

Bobo [38] 2018 FCNN Multi-Organ 
Multimodal  

(CT & MRI) 
91.3% (liver) 

Mulay S. [39] 2019 Mask R-CNN Liver 
Multimodal  

(CT & MRI) 

94% (CT) 89% (T2-weighted 

MRI) and 91% (T1-weighted 

MRI0) 

Z. Zhou [40] 2020 UNet++ Liver 
Multimodal  

(CT, MRI & EM) 
94.12% 

Conze [41] 2020 cGv19pUNet1-1 Multi-Organ 
Multimodal  

(CT & MRI) 
97.95% 

Elghazy [21] 2023 
Triple stream 

UNET model 
Liver 

Multimodal  

(MRI T1 Dual) 
96% 

7. Conclusion and Future Scope 
This research paper presents an in-depth examination of 

Deep Learning (DL) techniques for abdominal organ 

segmentation, emphasizing the progress achieved in both 

single-modality and multi-modal imaging contexts. Through 

the examination of various DL models such as CNN, FCN, 

Unet, Attention-Unet, and others, it is evident that DL 
techniques have significantly enhanced the accuracy and 

efficiency of abdominal organ segmentation tasks. From 

achieving high Dice scores in single-modality CT and MRI 

imaging to effectively handling the complexities of multi-

modal imaging, these models demonstrate the versatility and 

robustness required for real-world clinical applications.  

As deep learning continues to evolve, integrating various 

techniques offers exciting prospects for enhancing abdominal 

organ segmentation. By combining attention mechanisms, 

Graph Neural Networks (GNNs), and existing Convolutional 

Neural Network (CNN) architectures, researchers can unlock 

new avenues for improving segmentation accuracy and 
robustness. Attention mechanisms have demonstrated their 

efficacy in focusing on relevant features during segmentation 

tasks. By integrating attention modules into CNNs and FCNs, 

researchers can enhance model interpretability and capture 

fine-grained details crucial for accurate organ segmentation.  

Future research may explore novel attention mechanisms 

tailored to the specific challenges of abdominal imaging, such 

as handling anatomical variations and image artifacts. GNNs 

offer a unique framework for modeling spatial dependencies 

and structural information in medical images represented as 

graphs. By treating pixels or voxels as nodes and their spatial 
relationships as edges, GNNs can effectively capture the 

underlying anatomical structures and their interactions.  

Integrating GNNs into segmentation pipelines enables the 

exploitation of global context and anatomical priors, leading 

to more robust segmentation performance across diverse 
patient populations and imaging modalities. The future of 

abdominal organ segmentation lies in the development of 

hybrid architectures that synergistically combine multiple 

techniques. By integrating attention mechanisms, GNNs, and 

traditional CNNs, researchers can leverage the complementary 

strengths of each approach to improve segmentation accuracy 

and generalization.  

Additionally, ensemble learning techniques, which 

aggregate predictions from multiple models, offer a promising 

avenue for further enhancing segmentation robustness and 

reliability in clinical settings. As deep learning techniques 
mature, the translation of research findings into clinical 

practice becomes increasingly important.  

Future directions should focus on validating proposed 

segmentation methods on large-scale clinical datasets and 

conducting rigorous evaluations against ground truth 

annotations. Moreover, the integration of segmentation 

algorithms into clinical workflows, such as computer-aided 

diagnosis systems, can streamline the interpretation of medical 

images and improve diagnostic accuracy for abdominal 

pathologies. 
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