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Abstract - The Grey Wolf Optimizer (GWO), a bio-inspired metaheuristic algorithm, has gained prominence for solving complex 

optimization problems across various domains. Despite its advantages, the standard GWO algorithm often suffers from 

premature convergence and inefficacy in handling local optima, limiting its applicability for global optimization tasks. This 

research paper introduces an efficient GWO algorithm incorporating a novel adaptive search mechanism designed to overcome 

local optima entrapment issues and slow convergence rates inherent in the conventional GWO approach. This research analyses 

the behavior of the traditional GWO algorithm and identifies its key limitations in the exploration and exploitation phases. Then, 

a modified exploration technique is proposed with an adaptive exploitation method, dynamically adjusting the position update 

mechanism of wolves. The proposed modifications aim to sustain diversity in the search space and enhance the global search 

capability, thus accelerating convergence towards the global optimum and converging fast to the solution. Extensive 

experimental evaluations on several benchmark unimodal and multimodal functions demonstrate that the modified GWO 

algorithm significantly outperforms the original version and other contemporary optimization techniques regarding 
convergence speed, solution accuracy, and robustness against local optima. This research not only presents a viable solution to 

the limitations of the standard GWO but also contributes to the broader field of swarm intelligence, offering insights that could 

inspire further innovations in metaheuristic algorithms. 

Keywords - Global optima, Grey Wolf Optimization (GWO), Metaheuristic algorithm, Optimization problems, Swarm 

intelligence. 

1. Introduction  
The Grey Wolf Optimization (GWO) algorithm [1], based 

on grey wolves' social hierarchy and hunting activity, has 

emerged as a powerful metaheuristic optimization technique 

for solving complex optimization problems across various 

domains. GWO mimics the collaborative hunting strategy of 

grey wolves, where individuals coordinate their movements to 

locate and capture prey effectively. Despite its initial success 

and widespread adoption, the standard GWO algorithm 

exhibits certain limitations that hinder its performance in 

tackling real-world optimization problems. 

One of the primary challenges the conventional GWO 

algorithm faces is its susceptibility to premature convergence 
and inefficient solution space exploration [2, 3]. The standard 

updates equations for the position of wolves lack adaptability 

and may lead to stagnation in local optima, particularly in 

high-dimensional and multimodal optimization landscapes. 

Additionally, the slow convergence rate of the naive GWO 

algorithm can impede its effectiveness in finding globally 

optimal solutions within a reasonable computational budget. 

To address these shortcomings and enhance the efficacy 

of the GWO algorithm [4], this research proposes 
modifications to the updated position equations of wolves. By 

introducing novel strategies for adjusting the movement of 

wolves during the optimization process, we aim to mitigate the 

issues of premature convergence and limited exploration 

capacity inherent in the conventional GWO approach. 

The proposed modifications seek to strike a balance 

between exploration and exploitation, which is crucial for 
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effective optimization in diverse and challenging problem 

domains. By incorporating adaptive mechanisms and dynamic 

adjustments to the update equations, the modified GWO 

algorithm aims to enhance its ability to escape local optima 

traps and converge more efficiently towards globally optimal 

solutions. 

This paper presents a detailed analysis of the limitations 

of the standard GWO algorithm and elucidates the rationale 

behind the proposed modifications. A comprehensive 

overview of the revised update equations is provided, and 

discussed their theoretical underpinnings are discussed in the 

context of enhancing exploration-exploitation trade-offs. 

Furthermore, extensive empirical evaluations on benchmark 

functions are conducted to assess the performance and 

efficacy of the modified GWO algorithm compared to its 

conventional counterpart and other state-of-the-art 

optimization techniques. 

This research endeavor contributed to advancing 
metaheuristic optimization algorithms by providing insights 

into designing more robust and efficient optimization 

techniques. The proposed modifications to the GWO 

algorithm hold the potential to broaden its applicability and 

effectiveness in solving complex optimization problems with 

improved convergence rates and solution quality. 

2. Contribution Made in the Paper 
Introduced an Efficient Grey Wolf Optimization (Eff. 

GWO) algorithm to overcome the limitations like premature 

convergence and ineffective handling of local optima by 

standard GWO. The proposed modifications focus on an 

adaptive exploration and exploitation mechanism, improving 

global search capability and accelerating convergence. 

Empirical evaluations on benchmark functions (Sphere and 

Rastrigin) demonstrate that Eff. GWO outperforms traditional 

GWO and ex-GWO regarding convergence speed and solution 

accuracy. 

The study contributes to the broader field of swarm 
intelligence by offering a more robust and computationally 

efficient metaheuristic algorithm. 

3. Literature Survey 
Metaheuristic algorithms have gained much attention in 

finding solutions to optimization problems. Among them, the 

Grey Wolf Optimizer (GWO), proposed by Mirjalili et al. [1], 
stands out due to its ability to mimic grey wolves' leadership 

hierarchy and hunting strategies. Despite its initial success in 

optimization tasks, the standard GWO exhibits limitations, 

such as premature convergence and trapping to local optima, 

especially in high-dimensional and multimodal functions.  

Further, Li et al. [3] introduced an improved version of 

GWO tailored to solve engineering optimization problems. 

Modifying the position update equations aimed to improve 

GWO’s ability to escape local optima and enhance its global 

search capabilities. Their findings showed that the improved 

GWO variant outperformed the standard algorithm regarding 

convergence rate and solution accuracy across various 

engineering problems. 

In the context of structural optimization, Upadhyay et al. 

[4] conducted a comparative study of standard, modified, and 

variable weight GWO for 2D structural shape optimization. 

Their research highlighted the limitations of standard GWO in 

handling local optima and demonstrated the superiority of 

modified versions in terms of convergence speed and 

robustness. The application of GWO in numerical 

optimization problems has also been explored by Mohammed 

et al. [5], who introduced enhancements to GWO to handle 

complex, nonlinear objective functions better. Their research 

showcased the effectiveness of GWO variants in solving both 

unimodal and multimodal functions, particularly when 
augmented with adaptive mechanisms that dynamically adjust 

the exploration and exploitation phases. 

Another notable modification is the Ex-GWO introduced 

by Seyyedabbasi and Kiani [6]. This algorithm improved the 

position update mechanism by considering the positions of all 

wolves in the previous iterations rather than focusing only on 

the alpha, beta, and delta wolves. The experimental results 

proved that Ex-GWO outperformed the standard GWO in 

terms of convergence speed and solution accuracy, although 

the proposed algorithm had the cost of additional 

computational overhead.  

Given the limitations identified in the literature, the 

present work introduces an Efficient Grey Wolf Optimization 

(Eff. GWO) algorithm to overcome premature convergence 

and slow exploitation in the standard GWO. By modifying the 

position update mechanism and introducing adaptive 

exploitation strategies, this research aims to improve GWO's 

computation time and accuracy performance on benchmark 

functions such as Sphere and Rastrigin. Comparative analysis 

with Ex-GWO and other variants further validates the 

superiority of the proposed Eff. GWO. 

4. Materials and Methods 
4.1. Grey Wolf Optimizer 

The GWO algorithm [1] is a meta-heuristic algorithm 

proposed and employed to solve various optimization-based 

functions [7]. The algorithm is based on grey wolves' social 

hierarchy and hunting activity, which exhibit cooperative 

strategies for efficient prey localization. GWO mimics the 

hierarchical structure of a wolf pack, as shown in Figure 1, 
comprising alpha, beta, delta, and omega wolves, representing 

the dominant, subdominant, subordinate, and omega wolves, 

respectively. The alpha wolf represents the dominant 

individual in the wolf pack, exhibiting leadership and 



Dipak Patel et al. / IJEEE, 11(10), 47-52, 2024 

49 

authority. In the context of GWO, the alpha wolf corresponds 

to the best-performing solution found thus far in the 

optimization process. The position of the alpha wolf serves as 

a reference for other wolves, guiding their movement towards 

promising regions of the search space. The update equation for 

the alpha wolf involves a balance between exploration and 
exploitation, aiming to refine the search around the best-

known solution. The beta wolf is the second-highest-ranking 

individual in the wolf pack, supporting the alpha wolf and 

assisting in leading the pack. 

In GWO, the beta wolf represents a solution that is 

inferior to the alpha wolf but still competitive. The beta wolf's 

position influences other wolves' movement, providing 

additional guidance towards promising areas of the search 

space. The delta wolf is subordinate to alpha and beta wolves 

but holds a higher rank than the omega wolf. 

In GWO, the delta wolf represents a solution inferior to 

the alpha and beta wolves but still of moderate quality. The 
updated equation for the delta wolf emphasizes exploration, 

encouraging movement towards unexplored areas while 

exploiting promising solutions. The omega wolf is the lowest-

ranking individual in the wolf pack, often deferring to the top 

wolves, alpha, beta, and delta. While the omega wolf may not 

contribute significantly to the optimization process, its 

presence ensures diversity in the search population. 

 

 

 

 

 

 

Fig. 1 Hierarchy of wolves 

The attacking activity of grey wolves is divided into three 

parts: first, tracking of prey is done, then harassing the prey, 

and finally, the attack on the prey is carried out. Based on the 

dimensionality of the data, the number of elements in the 

position vector of a wolf is determined.  

Let vector Ji = [j1, j2, ……jk] indicate the place of the ith 

number wolf. The equations used to change the position of a 

wolf are shown below: 

𝑍 ⃗⃗  ⃗ = |𝐿 ⃗⃗⃗  . 𝐽𝑝⃗⃗⃗  (𝑡) − 𝐽 ⃗⃗ (𝑡)|   (1) 

𝐽 ⃗⃗ (𝑡 + 1) =  𝐽𝑝⃗⃗⃗  (𝑖) − 𝐺 ⃗⃗  ⃗. 𝑍 ⃗⃗  ⃗  (2) 

In the above equations, t indicates the current iteration, 

and t+1 represents the next iteration. Vector Jp⃗⃗⃗   shows the 

position vector of the prey and the vector J  ⃗indicates the 

current position of the wolf.  L ⃗⃗⃗⃗ and G ⃗⃗  ⃗are vectors which are 

computed according to the following equations: 

𝐺 ⃗⃗  ⃗= 2. 𝑎 ⃗⃗⃗  . 𝑟1⃗⃗⃗   -𝑎 ⃗⃗⃗    (3) 

𝐿 ⃗⃗⃗  = 2. 𝑟2⃗⃗⃗    (4) 

Here, the vector is reduced from two to zero in entire 

iterations. Here, vectors 𝑟1⃗⃗⃗   and 𝑟2⃗⃗⃗   specifies any random 

vectors in the range [0, 1]. 

4.2. Hunting the Prey 

Gray wolves possess the ability to detect the location of 

potential prey, with the search process primarily guided by the 

alpha (α), beta (β), and delta (δ) wolves. In all iterations, the 
top three wolves α, β, and δ in the current iteration are 

reserved, and the positions of the other wolves are updated 

based on the information from these leading wolves. The 

following formulas are used for this purpose. 

𝐽1⃗⃗  =   𝐽∝⃗⃗  ⃗ − 𝐺1
⃗⃗⃗⃗ . | 𝐿1

⃗⃗  ⃗. 𝐽∝⃗⃗  ⃗ − 𝐽 ⃗⃗  |  (5) 

𝐽2⃗⃗⃗  =   𝐽𝛽⃗⃗  ⃗ − 𝐺2
⃗⃗⃗⃗ . | 𝐿2

⃗⃗⃗⃗ . 𝐽𝛽⃗⃗  ⃗ − 𝐽 ⃗⃗  |  (6) 

𝐽3⃗⃗⃗  =   𝐽𝛿⃗⃗⃗  − 𝐺3
⃗⃗⃗⃗ . | 𝐿3

⃗⃗⃗⃗ . 𝐽𝛿⃗⃗⃗  − 𝐽 ⃗⃗  |  (7) 

𝐽 ⃗⃗ (𝑖 + 1) =  
𝐽1⃗⃗⃗⃗ +𝐽2⃗⃗⃗⃗ +𝐽3⃗⃗⃗⃗ 

3
  (8) 

In the above equations, 𝐽∝⃗⃗  ⃗,  𝐽𝛽⃗⃗  ⃗ , and 𝐽𝛿⃗⃗⃗    indicate the 

position vector of alpha (α), beta (β), and delta (δ) wolves 

respectively. The position updating mechanism is visualized 

in Figure 2. 

4.3. Efficient GWO 

Although the traditional GWO [1] approach offers many 

benefits, it also faces certain limitations like susceptibility to 

local optima and slow convergence. To overcome these 

limitations, enhancements have been introduced, resulting in 

a new and efficient model called Eff. GWO. In the efficient 

GWO, the proposed modification occurs during the wolves' 
final position update formulation. Traditionally, GWO 

updates the position based on the current positions of α, β, and 

δ wolves, as per Equation (8). However, in the modified 

proposed approach, the next position of the wolf, J(t+1), also 

considers the existing position (Jk) [8] as given in Equation 

(9). Consequently, the formula of Jk is given in Equation (10), 

where the immediate best and worst solutions are named J+ 

and J-, respectively. This modification results in finding the 

solution in less number of iterations and increases the 

accuracy, as discussed in the results section. 

Alpha 

Beta 

Delta 

Omega 
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 Fig. 2 Position updating in GWO 

𝐽 ⃗⃗ (𝑡 + 1) =  
𝐽1⃗⃗⃗⃗  + 𝐽2⃗⃗⃗⃗  + 𝐽3⃗⃗⃗⃗  + 𝐽𝑘⃗⃗ ⃗⃗  

4
  (9) 

𝐽𝑘⃗⃗⃗  =  𝐽 ⃗⃗ + 𝑟1  ⃗⃗⃗⃗ (𝐽+ − 𝐽−) + 𝑟2⃗⃗⃗   (𝐽
+ − 𝐽−)  (10)  

The pseudo-code of the GWO algorithm is presented 

below.  

GWO Algorithm: 

Assign random values to the initial population of wolves 

Calculate the fitness of each wolf. 

Initialize top wolves as alpha, beta, delta, and omega 
wolves. 

While (End condition not arrived) do 

    For each wolf, do 

        Change position using Equation (8) 

        Apply boundary constraints if necessary 

    End for 

    Update vectors (a)  , (G)  and (L)   
    Evaluate fitness of new position 

    Update alpha, beta, delta, and omega wolves  

End while 
 

Eff. GWO Algorithm: 

Initialization of wolves 

Calculate the quality value of complete search agents 

Set, as first three best search agent 

While (End condition not arrived) 

 For each wolf 

 Change the position of wolves as per Equation (9) 

 End of for 

 Change parameters (a)  , (G)  and (L)   
 Calculate the fitness of complete search agents 
 Change the position of wolves, and   

 Next iteration t = t + 1 

End of while 

Return (Best Wolf) 

 

5. Simulation Results and Comparison 
The superiority of the Eff. GWO algorithm is evaluated 

using two benchmark functions (unimodal and multimodal), 

as shown in Table 1, the comparison of Eff. GWO is also made 

with the other variant of GWO, the Expanded-GWO (Ex-

GWO) [6]. Seyyedabbasi et al. [6] modified the position 

update Equation (8) of wolves as below: 

𝐽𝑛(t+1)=
1

n-1
∑ 𝐽𝑖(𝑡);    𝑛 = 4,5,6,… . .𝑚𝑛−1

𝑖=1   (11) 

In the above equation, symbol n represents the current 

wolf, m indicates the number of wolves in the pack, and t 

represents the current iteration; parameter i selects the wolf 

from one to the last wolf. In this version of GWO, the nth wolf 

updates the position from previous n-1 wolves.    

Table 1. Benchmark functions used to test Eff. GWO 

Function 

Name 

Function 

Formula 
Range Optima Type 

Sphere 

𝐹1(𝑥)

= ∑𝑥𝑖
2

𝑛

1=1

 

[-10, 

10] 
0 Unimodal 

Rastrigin 

𝐹2(𝑥)

= ∑[𝑥𝑖
2

𝑛

1=1

− 10
∗ cos(2𝛱𝑥𝑖)
+ 10] 

[-5.12, 

5.12] 
0 Multimodal 

Table 1 shows two benchmark functions, namely sphere 

and Rastrigin functions, which are used to test variants of 

GWO algorithms. Benchmark functions [7, 9, 10] shown in 

the above table are used to test the efficiency or ability of an 

algorithm to find the optimal value.  

 

 

 

 

 

 

 

Fig. 3 Unimodal square function 
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The sphere function is an unimodal function with one 

global and local minima, whereas the multimodal function has 

multiple local minima.  Figure 3 shows a 3-D visualization of 

Sphere and Rastrigin, respectively, for better understanding. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Multimodal rastrigin function 

To compare both variants of GWO, the solution search 

was conducted in the range of -10 to 10, with an initial 

population set to 50. All populations were assigned three-

dimensional random values. r1⃗⃗  ⃗  and  r2⃗⃗  ⃗ Equations (3) and (4) 

were assigned random values in the range of [0 1], and a value 
decreases linearly from 2 to 0. Maximum number of iterations 

was set to 200. 

Table 2 illustrates that Eff. GWO achieved the optimal 

value for the sphere function within 20 iterations. In contrast, 

another variant of GWO (Ex-GWO) failed to reach the 

optimal value even after 120 iterations, obtaining a value of 

14.603, which is significantly far from optimal. Additionally, 

GWO required 5 more iterations than Eff. GWO to attain the 

optimal value. 

Table 3 compares Ex-GWO and Eff. GWO on the 

Rastrigin function to find the optimal value of 0. Eff. GWO 

achieved the optimal value within 90 iterations, while Ex-
GWO did not reach the optimal value even after 120 iterations, 

obtaining a value of 0.016. Additionally, GWO required 125 

iterations to reach the optimal value, indicating that Eff. GWO 

converges faster than GWO. 

Furthermore, Ex-GWO has an additional overhead of 

O(n2) time complexity because it considers the positions of all 

previous wolves to update the position of the next wolf. On 

the other hand, efficient GWO has no extra overhead, and its 

time complexity is linear. The above comparison is also shown 

in the below chart for better visualization.  

 
Fig. 5 Comparative chart for benchmark functions  

Table 2. Comparison of Ex-GWO and Eff. GWO on sphere function 

Algorithm 
Optima for Sphere 

Function 

No. of Maximum 

iterations Took 

The Value Obtained at the 

End of Maximum Iterations 
Time Complexity 

Ex-GWO 0 120 14.603 
The extra overhead of 

n2 (n is no. of wolves) 

Eff. GWO 0 20 0 No extra overhead 

 
Table 3. Comparison of Ex-GWO and Eff. GWO on rastrigin function 

Algorithm 
Optima for 

Rastrigin Function 

No. of Maximum 

Iterations Took 

The Value obtained after the 

Maximum Number of 

Iterations 

Time Complexity 

Ex-GWO 0 120 0.016 
The extra overhead of 

n2 (n is no. of wolves) 

Eff. GWO 0 90 0.00 No extra overhead 
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6. Conclusion 
This research paper presents the efficient version of the 

GWO algorithm to overcome the problems of local optima and 

slow convergence to the solution of the basic GWO algorithm. 

Empirically testing of Eff. GWO algorithm is performed on 

unimodal and multimodal benchmark functions, namely 

Sphere and Rastrigin. The empirical results demonstrate the 

superiority of Eff. GWO algorithm is used to solve standard 

benchmark functions and fast convergence of solutions on 

unimodal and multimodal functions specifically, Eff. GWO 

consistently achieved the optimal values significantly faster 

than both Ex-GWO and the standard GWO. For the sphere 

function, Eff. GWO reached the optimal value within 20 
iterations, whereas Ex-GWO failed to do so even after 120 

iterations, obtaining a value far from optimal. 

Similarly, for the Rastrigin function, Eff. GWO achieved 

the optimal value in 90 iterations, while Ex-GWO could not 

achieve the optimal value even after 120 iterations, and 

standard GWO took 125 iterations to converge means Eff. 

GWO can reach the optimal value in the case of the Rastrigin 

function with 28% lower iterations compared to basic GWO—
the Eff. GWO algorithm outperforms the other GWO variants 

regarding convergence speed, solution accuracy, and 

computational efficiency. These findings validate the 

modifications introduced in Eff. GWO and underscore its 

potential as a robust and efficient optimization tool for solving 

complex optimization problems. Future research can extend 

the application of Eff. GWO to other domains and explore 

further enhancements to improve its performance. 
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