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Abstract - This paper proposes a practical approach to wireless power and data communication systems for biomedical implants 

using an inductive power and data transfer link. The system comprises a class E power amplifier/transmitter, an Amplitude-Shift 

Keying (ASK) modulator, an Inductive Power and Data Link (IPDL) and an ASK demodulator. The modulation circuit comprises 

a capacitor and a MOSFET to switch the load of the Class-E transmitter between two states, satisfying both zero-voltage 

switching and derivative switching conditions, leading to higher DC to AC power transfer efficiency. This situation develops 

ASK data modulation in the class E transmitter. The developed IPDL contains an external class E transmitter part placed external 

to the human body to transfer wireless power and data to the internal receiver part (implanted device) for exciting and monitoring 

relevant nerves of damaged tissue. For the safety condition of the tissue, the IPDL system is operated at a selected lower carrier 

frequency of 4MHz, and the ASK modulator is envisioned to operate with a modulation index of 43% and a modulation rate of 

4.3% with a data rate as 172Kbps. A practical IPDL system is presented with results of real-time simulation using TINA ver. 8 
and MULTISIM ver12.0 software. 

Keywords - Wireless power transfer, Data transmission, Inductive link, Class-E power transmitter, Amplitude Shift Keying, 

Medical implant.  

1. Introduction 
The electronic prosthesis devices, namely deep brain 

stimulator, pacemaker, bionic eye (retinal implants), bionic 
ear (cochlear implants), and stimulator implants are 

biomedical devices - Implantable Medical Devices (IMDs) 

which mimic the behavior of damaged sensors of the human 

body. The main role of these micro-system stimulators is to 

generate electrical signals that excite the biological 

nerves/muscles to provide near-equivalent sensing [1]. The 

IMDs are powered using batteries that have limited endurance 

and chemical side effects. Several investigators chose various 

innovative schemes to power up and observe IMDs [2]. IMDS 

is generally powered through a transcutaneous path through 

an IPDL system comprising two parts: the external part and 

the interior unit. The exterior unit is for transferring 
power/data induced to the interior component, i.e., IMD 

placed within the body.  

The IPDL between the external RF transmitter and 

internal receiver is mostly a weak link that definitely needs an 

efficient modulator and efficient RF Power amplifier [3]. Out 

of three modulators such as ASK, ‘Frequency Shift Key 

(FSK)’, and Phase Shift Key (PSK)’, the ASK modulator is 

preferred for IMDs because of its low power consumption, 

less complexity, and lower cost, unlike complex multitone 

PSK modulation used by authors P. Dhull, et al. in [4]. An 

improved ASK modulator with a modulation index of 43% is 

shown with 86 KHz frequency and an improved class-E 

power amplifier, which has been working at carrier 4MHz 

frequency to eliminate the tissue heating based on the ISM 

(Industrial, Scientific, and Medical) band [5] for the external 

transmitter part whereas authors Mohammad Haerinia and 
Reem Shadid in [13] enumerated use of higher carrier 

frequencies for driving class-E amplifier that leads to tissue 

heating problem. The IPDL is designed for an assumed 

implanted electronic device load resistor as 100-1000Ω with 

static coupling coefficient k = 0.612. The IPDL is tested 

practically, and results are shown. The real-time simulation is 

carried out by using the electronic workbench version 

MULISIM 12. The second section deals with the overview of 

IPDL system architecture. The circuit details of ASK 

modulation are addressed in section three. Section four 

discussed Class-E RF power amplifier with its component 
values. Theoretical and practical IPDL characteristics with 

varied coupling coefficients are given in section five. 

Experimental data from practical IPDL circuit and IPDL 

simulated circuit is provided in section six, followed by 

concluding remarks in the 7th section.      

http://www.internationaljournalssrg.org/
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Fig. 1 Block-level view of inductive power/data transmission                                  

2. IPDL System Overview 
The IPDL functioning block diagram of the IPDL 

system for conducting power along with the data transfer 

digitally in IMDs is presented in Figure 1. An IPDL system 

includes an external part placed external to the human body. 

The exterior unit comprises a power supply, ASK modulator 
with binary data input, Class-E Power Amplifier (P/A) with 

4MHz pulse generator, and transmit Cu Litz coil. The interior 

unit comprises a receive Pt-Ir Litz coil, a rectifier to get power 

and data, a “voltage regulator to get constant DC-voltage to 

IMD, and remote electronics/Stimulator including an ASK-

demodulator to get the stimulating signal to the tissue. The 

coupled inductive links comprise two RLC circuits tuned at 

4MHz resonant frequency. The RLC circuit at the transmitter 

side is tuned at serial resonant with a lesser impedance load, 

and the receiver side RLC circuit has been synchronized for a 

parallel resonance cap. C2 [6, 12, 14]. A schematic of a class-

E RF power amplifier circuit, which has been ” designed and 

depicted in Figure 2, couples the external part to the internal 

part for the transfer of ‘power and data’ together efficiently. 

For an inductive/magnetic coupling system, the compensation 

capacitors can be connected in two different ways: parallel to 

both sides of the inductors and in series. These connections 

have produced four different topologies: Series-Series (SS), 

Parallel-Series (PS), Series-Parallel (SP), and Parallel-Parallel 
(PP). Table 1 lists the performance details for each topology. 

In the present paper, SP topology is used for higher efficiency 

of inductive links.  

Table 1. Compensation capacitor topologies 

Topology Acts as Source Independent of Changes Impedance@ Resonance Efficiency 

SS Current Cs Lower Very Higher 

SP Voltage Cs Lower Higher 

PS Voltage Cs Higher Medium 

PP Current Cp Higher Higher 

3. ASK Modulator Design 
The ASK RF transmission logic circuit depicted in 

Figure 2 is a Class-E power amplifier having a MOSFET 

transistor driven by a fixed frequency of resonance frequency 

0 with Lp(9µH), Cp(141pF) circuit. Data is transmitted by 
ASK modulation, developed by changing the power supply 

used in ‘ASK’ modulation, as in other schemes, which is 

preferred by altering the amplifier frequency response. A 

scope existed for optimizing energy transmission with 

dissipative components not used in modulation [7, 13, 25]. 

Based on the data driving the MOSFET Qmod, the resonant 

tank’s transfer function will be modified. Then, 2 separate 

levels would be transmitted for unipolar NRZ data as ‘‘0’’ 

and ‘‘1’’ utilizing the same carrier frequency and “the power 

in the ASK transmitter could be controlled via class E 
amplifier power supply (Vdd) because the ASK circuit or its 

response of frequency is changed [25, 27]. 

The proposed RF transmitter gives an advantage in that 

tuning of IPDL is possible to 1 frequency, and this level could 

be allocated to a digital logic” level “1” [25]. Under no data, 

the efficiency is higher because the same level is transmitted 
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all the time. For another logic level, “0”, if transmitted, 

reduced efficiency is possible because of the change in fine-

tuning of the amplifier [25]. The intended circuit lessens this 

impact and makes it possible to achieve greater transmitting 

power efficiency because additional modulating logic (a 

transistor that controls power from the amplifier supply or 
defines the transmitting level) is not required [25]. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
Fig. 2 Schematic of class E Amp/ASK modulator with SP compensation 

capacitor topology 

Amplitude-shift keying modulation is a popular choice 

for IMDs due to: 

1. Simple modulation technique to implement. 

2. Low power operation. 

3. Ease of demodulation. 

4. Compatibility with power transfer.  

Transmission speed may be raised by increasing the 

carrier frequency with suitable design of circuits. The 

modulating schematic in Figure 2 uses MOS transistor Qm, 

the resistor, and the capacitor to adjust the MI with a value of 

43% and MR with a value of 4.3%. The binary data with a bit 

rate of 5.8 µs is employed from the pulse generator, as shown 
in Figure 1. 

With values of “1” and “0,” the binary data signal for “the 

ASK modulator is shown in Figure 3(a). In Figure 3(b), the 

ASK modulated signal at the transmitter coil with Vmax=30V 

and Vmin=12V is shown. The formulas in ” (1 and 2) are used 

to calculate the MI and MR, where Vmax & Vmin stand for 

the max and min amplitudes for ASK modulation, 

respectively. 

MI = (Vmax-Vmin)/(Vmax+Vmin)%100 (1) 

MR = (Data Rate)/(Operating Frequency) x100%  (2) 

With Vmax = 4.8V and Vmin = 2.0V, Figure 3(c) 

displays received ASK modulation at the receiving coil. It is 

observed that the MI is the same for the transmitter and 

receiver coils on both sides.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
Fig. 3(a) The binary serial data signal, (b) ASK Tx Signal, and (c) ASK 

Rx signal at the bottom in the above picture have approximately the 

same modulation index. 

4. Class-E Power Amplifier at 4 MHz 
Because it eliminates the need for a mixer and has a high 

theoretical efficiency of 90-95%, Class-E power amplifiers 

are broadly utilized in biotelemetry and external RF 

transmitters of IMDs. They also consume less power when 
used with ASK modulators because they are high-energy 

transmitters [7]. A parallel capacitor is connected to an NMOS 

switching transistor to enable zero-voltage switching of non-

ideal NMOS transistors.  

An RF choke with negligible resistance prevents drops in 

the Vdd power supply. These components make up the 

structure of “the class-E power amplifier. A specific frequency 

is chosen to tune an RLC network to achieve a constant current 
from the supply source. In addition, the RLC network converts 

the digital input signal into a sinusoidal output signal with no 

Direct Current (DC) component.  

To minimize tissue damage, the class-E power amplifier 

was designed to operate at a low band frequency” of 4MHz [8, 

15, 14]. The mathematical  m o d e l  involves a Pout of 

150mw, f0 = 10MHz, VDD =3.3V; RL (load resistor) is 50Ω, 

and Equation (3) is for calculating the optimum resistance 

RLopt. [9, 16]. Equations (4), (5), and (6) are for calculating 

values of class – E components, as in Figure 4.   

Pout = {2(1+π2/4)} x {V2
DDRLopt}  (3)   

Cp = {10RL(1+π2/4) (π/2)} ={10(5.447RL)} (4)  
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Lp = QRL0     (5) 

Cs = Cp {5.447Q}{1+1.42(Q - 2.08)}  (6) 

The Quality factor (Q), which reduces the bandwidth of 

the IPDL system, should be at maximum for maximum 

efficiency in order to produce an output that is as close to 

sinusoidal as possible [10, 17]. The selection of Q needs to be 

realistic, and it is calculated as 27 according to Equation (7).  

Q ≤ (L)R  (7) 

 
 

 
 

 
 

 
 

 
 

 

 
Fig. 4 Schematic of class-E power amplifier with 50% duty cycle of 

switch Qc. 

Reduce Qc transistor switching losses to make a class-E 

power amplifier with high efficiency. Qc is activated when 

its drain voltage reaches zero again. As shown in Figure 5, 
the drain voltage has been increased from 0 at the point of 

activation, allowing for a slight decrease without affecting 

effectiveness. 
       

 
Fig. 5(a) VDS- drain to source voltage and VGS gate to source voltage 

pulse waveforms from MULTISIM 12 

The drain to source voltage signal VDS of MOSFET Qc 

in Figure 5 shows a peak voltage of 14V when its gate drive 

signal VGS is zero, and the primary resonant tank circuit gets 

charged. When VGS is +5V pulse, the peak value of VDS of 

MOSFET Qc is +0.5V. 

 
Fig. 5(b) ASK Tx coil and Rx coil voltages output signals 

5. Inductive Powering Links                               
IMDs are generally powered inductively for power as 

well as data transfer at a short range. As seen in Figure 6 [11, 

18, 19], IPDL comprises two resonant RLC circuits.  

The first is called the primary part, external part, or in 

vitro part, and it is situated outside the human body. It is 

powered by an effective RF class E power amplifier. A portion 

of the magnetic flux generated by the external part is coupled 

to the secondary coil, which serves as an antenna, powering 

the secondary, internal, or vivo part. 

 

 

 

 
 
 

 
Fig. 6 Block diagram of IPDL 

As can be seen in Figure 2, the SP capacitive 

compensation topology is used to tune the primary and 

secondary coils at the same resonant frequency in order to 

increase power transfer efficiency. The coupling link 
efficiency is directly affected by the variables involved in 

the inductive coupling link are the coupling factor (also 

known as the coupling coefficient, denoted as k, which must 

be between 0 and 1), resonant frequency (f0), mutual 

inductance (M), primary coil inductance (Lp), secondary 

coil inductance (Ls), and the coupling factor. The coupling 

factor K is the primary determinant of the power capacity 

for implanted devices [12, 20, 21]. The coupling coefficient, 
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or “k,” is clearly reliant on the flux that connects the primary 

coil inductance, or “mutual inductance,” Lt, to the secondary 

coil inductance, Lr. The ratio of M to the square root of the 

product of Lp & Ls is how M and k are expressed in Equation 

(8).  

k = M√L𝑝L𝑠  (8) 

The resonant capacitor Cp across Qcvalue can be 

calculated using the Equation (4). Another resonant capacitor 

Cr value can be calculated using the Equation (9).  

Cs = {𝑅𝑙𝑜𝑎𝑑+ √𝑅2
𝑙𝑜𝑎𝑑 −  4𝜔0

2 𝐿𝑠 
2 }{2𝜔0 

2 Rload𝐿𝑠 }  (9)  

Rload is assumed to be the IMD’s load resistance [13, 22-

24] which is usually greater than 2Ls. 

When “the primary and secondary coils are tuned to the 

identical resonant frequency of 4 MHz, the TINA simulation 

results in Figure 7 show that the IPDL functions as a band 

pass filter with a center frequency of ” 4 MHz. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7(a) Primary Tx coil voltage Vs Frequency graph 

The outcomes of the TINA simulation in Figure 8 depict 

the correspondence between the constant load resistor at value 

250Ω with variable coupling coefficients as K= 0.5, K= 0.6, 

K= 0.7, K= 0.8, and it is found that maximum voltage gain 

(prim. Tx Volt./second RxVolt) is observed at K=0.8. 

It is concluded from the simulation outcomes in Figures 

7, 8, and 9 that the IPDL design is suitable for powering IMDs 

with Rload from 100Ω to300Ω.  

Further, it can be pointed out that Rload may be treated as a 

function of the amplitude of secondary R x  coil voltage, and 
larger Rx coil voltage indicates more power consumption.  

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Fig. 7(b) Secondary Rx coil voltage vs Frequency graph 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 8 Voltage gain vs frequency graph with variable K and fixed load 

resistance Rload of 250 Ohms 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 
       Fig. 9 RF link efficiency vs Variable load graph with variable 

IPDL distances of 4mm, 7mm, and 10mm 
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6. Results from MULTISIM 12 Simulation 
   Simulation software such as TINA 8 and MULTISIM 12 

simulate the IPDL system architecture. The results of the TINA 

simulation, as shown in Figure 3(a), correspond to binary serial 

data signals with “1” and “0” values that are supplied to the 

ASK modulator with 100ps rise/fall times with a frequency of 

86.2KHz (172Kbps). ASK modulated signal on the 

transmission coil with Vmax = 30V and Vmin = 12V is 

depicted in Figure 3(b). ASK modulated signal with a 

maximum voltage of 4.8V and a minimum voltage of 2V is 

shown at the receiving coil in Figure 3(c).  

The Modulation Index (MI) as well as Modulation Rate 

(MR) for transmitted as well as received signals are 43% and 
4.3% respectively. Figure 5 shows the results of simulating 

Class-E power amplifier by MULTISIM 12. Figure 5(a) shows 

two waveforms such as Qc MOSFETS’s Gate to Source 

Voltage (VGS) drive pulses at 86.2KHz driving Qc  ON & OFF 

to generate Qc’s Drain to Source Voltage (VDS) pulses for 

generating sinusoidal output current in primary Tx coil Lp and 

Figure 5(b) shows the primary Tx coil output signal of the 

power amplifier with the best efficiency opt of 81% based on 
optimal k, quality factors Qp and Qs of primary and secondary 

coil [26] as given in (10). 

opt = 
𝑘2𝑄𝑝𝑄𝑠

 

 [ 1+ √1+𝑘2𝑄𝑝𝑄𝑠  ]
2
  (10) 

Furthermore, a good sinusoidal wave is generated by the 

class-E power amplifier for IPDL, improving overall IPDL 

efficiency. 

7. Conclusion 
The authors presented a design of an external module of a 

practical transcutaneous efficient IPDL system for IMDs for the 

human body to transmit with a carrier of 4MHz and ASK 

modulation of the power with data to implanted devices.  Three 

parts of the external primary module were developed and 
simulated with OrCAD Pspice16.2 software tools and TINA 8 

and MULTISIM-12. It is observed that IPDL can transfer an 

improved power to IMDs with a data rate of 0.2 Mbit/s and MI 

43%. The IPDL can be used in IMDs with a 100 to 1000 ohms 

load range. 

This paper presented a Simultaneous Wireless Power and 

Data Transmission System (SWPDTS) on one pair of coils with 

higher power efficiency delivery and forward data transmission. 
An extensive simulation of the proposed SWPDTS is performed 

to evaluate the safety and reliability of the SWPDTS, attaining 

around 10,000 data bits. Future work may include bidirectional 

data transmission between the external/primary system and the 

internal/secondary system for the IPDL. In conclusion, the 

proposed SWPDTS provides high power and data transmission 

performance and has the potential for IMD applications 

requiring higher data rates, lesser power drain, and higher power 

transfer efficiency.
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