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Abstract - Enhancing the routing efficacy of Flying Ad-Hoc Networks (FANETs), a network of numerous Unmanned Aerial 

Vehicles (UAVs), in which various challenges may arise as a result of the varied mobility, speed, direction, and rapid topology 

changes. Given the special features of UAVs, particularly their fast mobility, frequent topology changes, and 3D space 

movements, it is difficult to transport them through a FANET. The suggested study presents a complete hybrid model: Hybrid 
Intelligent Routing with Optimized Learning (HIROL) that integrates the Artificial Bee Colony (ABC) algorithm, DSR (Dynamic 

Source Routing) by incorporating Optimized Link State Routing (OLSR) and Artificial Neural Networks (ANNs) to optimize the 

routing process.  The HIROL optimizes link management using the ABC optimization algorithm and reliably analyses link status 

using characteristics from OLSR and DSR; at the same time, an ANN-based technique successfully classifies the connection 

state. In order to provide optimal route design and maintenance, HIROL dynamically migrates between OLSR and DSR 

approaches according to the network topology conditions. After running thorough tests in Network Simulator 2 (NS-2), when 

compared to more conventional DSR and OLSR models, the hybrid model HIROL performs far better in simulations and tests. 

An increase in throughput (3.5 Mbps vs. 3.2-3.4 Mbps), a decrease in communication overhead (15% vs. 18-20%), and an 

improvement in Packet Delivery Ratio (97.5% vs. 94-95.5%). These results demonstrate that the suggested HIROL model 

improves FANET routing performance in different types of networks. 

Keywords - Artificial bee colony, Artificial Neural Network, Unmanned Aerial Vehicles, FANETs, Hybrid intelligent routing. 

1. Introduction 
Recently, there has been a lot of interest in using UAVs 

for communication due to how quickly technology is 

developing. Today's electronics, computers, gadgets, and 

media are commercial products, and as a result, they have 

evolved into unmanned machines that include balloons, 

drones, and tiny aircraft [1].  

Drone communications, also referred to as Flying Ad hoc 

Networks (FANETs), have applications in several domains, 

such as advanced communications, agriculture, disaster 

management, and surveillance. The distinct network structure, 

the unpredictable and sporadic motions of UAVs, and the 

restricted resources of these vehicles provide hurdles to 

effectively operating data packets in FANET. Conventional 

routing protocols intended for ad hoc networks on the ground 

are frequently inadequate for handling the particular resources 

and constraints associated with FANET challenges [2]. 

FANET routing protocol capabilities can be enhanced by 
integrating effective routing algorithms with Artificial 

Intelligence (AI) methods, especially Neural Networks. In 

order to achieve the best possible routing in FANETs, this 

work introduces a novel hybrid approach called HIROL, 

which blends dynamic communication approaches with neural 

network optimization.  

Integrating these two routing techniques aims at 

maximizing their respective benefits, reducing the limitations 

of traditional routing methodologies, and enhancing the 

effectiveness and simplicity of routing in dynamic FANET 

systems. 

The key issues with FANET routing are outlined in this 

prologue, which also addresses the objectives and guidelines 
of the competition model and looks at the constraints of the 

available methods for routing, in addition to opportunities for 

neural networks to enhance decisions regarding routing. 

The wide range of drones and network circumstances 

render routing in FANETs a difficult responsibility. The 

following problems exist in FANET.  

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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 Unlike traditional networks, FANETs require high speed 

and a way to adapt to frequent dynamic changes while 

ensuring efficient data transmission. Most of the traditional 

protocols do not adequately meet FANETs' requirements. 

Reducing signalling overhead and ensuring consistent end-

to-end data transmission are made possible by routing 
protocols [3] 

 Energy, computing power and communication are very 

limited in these areas. Efficient use of energy is important 

to extend the life of drones and maintain uninterrupted 

connectivity [4] 

 Unmanned Aerial Vehicles (UAVs) also have different 

communication systems depending on their intended use, 

requiring instant information transfer, advancing important 

information and having the ability to handle many things 

[5]. 

The different routing protocols of FANET are represented 

in Figure 1. 

 

Fig. 1 Routing protocols of FANET 

The routing algorithm D-OLSR is used to choose the 

Multi-Point Relay (MPR) and can decrease the number of 
relays with directional aerials, as shown in Figure 2. The D-

OLSR seeks to regulate the quantity of MPR in the given 

network to decrease the network overhead and delay [6]. 

Implementing directional antennas can create more 

complexity in the design and configuration of the network. 

Figure 3 shows how the Destination-Sequenced-

Distance-Vector (DSDV) relies on a sequence number for 

each node in a routing table to ensure the protocol does not 

loop. DSDV routing poses challenges when operating on 

FANETs. 

 

 

 

 

 

 

 

 

Fig. 2 Process of DOLSR 

These methods rely on continuous sharing of information 

or detection methods, which can lead to further interference 

and delays in FANET systems [7]. They will also be unable to 

adapt to UAV behavior or make better decisions for power 

management and network circumstances. 

 

 

 

 

 

 

 

 

 

Fig. 3 Process of DSDV 

Existing routing protocols for FANETs generally do not 

include mechanisms for determining various Quality of 

Service (QoS) requirements. These requirements are crucial 

for applications such as real-time multimedia streaming or the 

main purpose of data transfer [8]. In the absence of good QoS 

awareness of traffic, FANETs will face difficulties in 

achieving performance targets and maintaining reliable 

communication in different situations. 

Adaptive routing protocols like DSR enable self-

organization and self-configuration of the network without 
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requiring any infrastructure.  Owing to DSR's reactive 

structure, a discovery process is only initiated in response to a 

communication need. To maintain any path failures, a route 

maintenance mechanism is also implemented.  In order to 

initiate route recovery, DSR was utilized by the source node 

to notify neighboring nodes. Because every exchanged packet 
must contain every address of every transited node, it is 

insufficient for both huge networks and topologically 

extremely dynamic networks [9].  

The Ad-hoc On-demand Distance Vector (AODV) 

method exists especially for routing table maintenance, and 

the source node keeps the next information of the network, as 

shown in Figure 4. It acquires recurring updates from DSDV 

and hop-to-hop routing by means of DSR. Due to its reactive 

design, AODV only locates a path when required and ignores 

paths that lead to locations not engaged in active 

communication [10]. 

 

 

 

 

 

 

 

 

Fig. 4 Process of AODV 

Artificial Neural Networks (ANNs) have shown great 

potential in capturing complex patterns, predicting outcomes, 

and improving decision-making processes in many fields. 

Neural networks can improve FANET routing by increasing 

routing efficiency, responding to changing network conditions 

and optimizing services. Using historical information and the 
current state of the network, neural networks can learn to 

predict patterns such as changes in node location, traffic 

patterns, and network quality. FANET can benefit through 

decision-making, technological advancements, and network 

dynamics adaptability by integrating the neural network 

model into a formal framework [11]. Neural networks are 

additionally utilized for QoS-aware routing, intelligent load 

balancing, and optimization of routes, all of which enhance 

network efficiency and the user experience. 

The primary objective of the proposed system is to create 

an innovative hybrid FANET routing strategy that combines 
efficient routing methods with artificial neural networks. The 

primary goals of the proposed hybrid approach are outlined 

below: 

 To provide effectiveness in routing methods that have been 

tailored to the resource-limited and dynamic nature of 

FANETs, taking into account parameters such as network 

behavior, node movement, and consumption of energy. 
 To build models of neural networks with the capacity to 

acquire and foresee network actions, particularly patterns of 

traffic, node motions, and variations in link quality. 

 To produce intelligent, adaptive, and QoS-aware routing 

decisions in FANETs by integrating neural network-based 

optimization approaches with routing techniques. 

 To determine the hybrid model's performance by 

contrasting it to the present routing protocols and evaluating 

crucial parameters, including throughput, latency, energy 

efficiency, and scalability. 

 To assess whether the hybrid model is suitable for use in 

different FANET scenarios, including applications in 
industry, aerial networks for communication, emergencies, 

and monitoring operations. 

2. Literature Survey and Related Works  
In this study, we categorise and analyse the existing 

communication algorithms and routing protocols employed in 

FANETs and similar environments based on approaches such 
as proactive, reactive, hybrid, position-based and cluster 

methodologies. 

2.1. Proactive Routing (Table Driven) 

Drones employ proactive routing, a strategy in which they 

consistently update and exchange navigation information. 

Every node within the network shares its routes with every 

other node. To minimize waiting periods, the network may 

select the routing path between each pair of drones. However, 

there are clear disadvantages as well. One notable downside is 

the substantial rise in communication overhead caused by the 

vast quantity of control packets required to maintain 

information related to routing. In addition, high-mobility 
networks are not suitable for proactive routing strategies. For 

their work on monitoring the traffic, authors in [12] relied on 

the OLSR approach. It is concluded from their simulation 

results that the OLSR's considerable overhead makes it 

suboptimal for high dynamic, low-density FANETs. The 

flooding approach of OLSR can increase the routing table 

overhead in large-scale networks 

The authors of [13] proposed a speed attentive Predictive-

Optimized Link State Routing methodology (P-OLSR) to 

improve FANET routing operations. This methodology uses 

GPS data to decide the comparative velocities of two drones 
and incorporates this information into the estimated 

transmission count metrics. In contrast to OLSR, POLSR 

allows routing to follow changes in topology without 

interruption. However, predictive model accuracy has a major 
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impact on P-OLSR efficacy. Predictions that are inaccurate 

may result in poor route choices, higher overhead, and worse 

network performance. High prediction accuracy in dynamic 

FANET situations is difficult to achieve and calls for complex 

modelling techniques. 

2.2. On-Demand Routing  
Better known as reactive routing, it is an approach that 

establishes a channel for packet transmission only when it is 

necessary. Reactive routing minimizes the quantity of control 

packets transmitted, lowering communication overhead. 

However, it introduces increased communication latency as it 

requires the identification of an end-to-end routing path, 

unlike proactive routing.  

DSR was primarily utilized by the authors in [14] for 

wireless multi-hop mesh networks. In this protocol, source 

nodes send route request packets throughout the network at the 

times when they have data packets to deliver. Once the 

destination node receives the route-request packet, it will 
provide the whole path to the source node. DSR is more suited 

for FANETs in highly mobile networks since it uses catching 

features and a route cache. With the exception of the smaller 

area, DSR exhibited the highest delay across all 

circumstances. The reason for this was that the destination 

took longer to find the least congested route because it 

responded to every Route Request (RREQ) it received. 

Authors in [15] relied on the Ad-hoc On-demand 

Distance Vector (AODV) method, especially for routing table 

maintenance, and the source node keeps the next network 

information. It employs a method similar to DSR route finding 
and DSDV intermittent beaconing and series identification. 

Owing to its reactive architecture, AODV avoids routes that 

lead to places not involved in active communication and only 

finds a path when necessary. 

2.3. Hybrid Routing 
By combining the two techniques, hybrid routing can 

reduce the significant end-to-end latency associated with 

reactive routing and the excessive control message overhead 

associated with proactive routing. Every node actively 

manages routes inside its local region, known as the routing 

zone, in a hybrid routing architecture recommended by 

authors in [16] that is well-suited for various types of mobile 
ad-hoc networks.  

The routing framework makes use of the routing zone 

design to optimize a globally responsive route query/reply 

system's efficiency. They proposed a routing protocol dubbed 

RTORA, which stands for Rapid-reestablish-Temporally 

Ordered Routing Algorithm for FANET networks. To reduce 

link reversal failure's negative effects, they utilize a strategy 

that minimizes unnecessary costs. The reduced overhead 

approach prevents an overwhelming amount of pointless 

control packets.   

A meta-heuristic approach called ABC optimization was 

presented in [17]. It makes use of the astute foraging behavior 

of honey bee swarms. The employee bee phase, 

observer/onlooker bee phase, and scout phase are the three 

stages of this algorithm. Bee workers are tasked with tending 

to a certain food supply. While scout bees, as depicted in 
Figure 5, search for food at random, onlooker bees evaluate 

the quality of the food by watching the wangle dance of 

employee bees. Further, an improved version of ABC, IABC, 

was proposed by Liang Zhao, Md.Bin Saif, and Ammar H. 

[18].  

ABC meta-heuristics have limitations, including poor 

exploitation and sluggish convergence rates, particularly when 

dealing with multi-modal optimization issues. IABC's 

capacity to efficiently explore solution spaces helps improve 

routing optimization, resulting in higher network performance 

and adaptability in dynamic FANET situations. However, 

IABC's computational complexity and convergence issues 
may present difficulties, limiting its scalability and real-time 

usability in large-scale FANET installations. 

 

 

 

 

 

 

 

 

 

 

Fig. 5 A system of bee colonies 

2.4. Position Based Routing 
It utilizes the topographical coordinates of the packet's 

endpoint or the nearby nodes of the forwarding node to 

identify the optimal path to follow. To address the contact of 

extremely dynamic groups, the authors of [19] propose a 

routing technique called Geo-graphic Position Mobility 

Oriented Routing (GPMOR) for FANETs. This approach 

employs a Gaussian Markov Mobility (GMM) model to 

predict the locations of drones. The GPMOR identifies the 

subsequent hop node. By utilizing both the mobility 

connection and the traditional measure of distance, known as 
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the "Euclidean distance," one may get more accurate and 

definitive findings. However, GPMOR may struggle to 

effectively predict node motions and maintain stable pathways 

in dynamic aerial environments with frequent topological 

changes and unexpected link conditions. Furthermore, 

guaranteeing efficient handling of network partitions and 
limiting the impact of communication disruptions caused by 

node mobility are critical factors for maximizing GPMOR's 

performance in FANET settings. 

2.5. Cluster Routing 
It involves organizing UAVs into clusters and 

implementing sequential routing among these sets. At 

advanced stages, proactive planned routes are employed to 

establish the routing. Reactive routing is employed at lower 

levels to aid triggered drones in fulfilling their demands. To 

enhance the network's performance and reduce 

communication expenses, the concept of multicluster 

FANETs is proposed in [20]. Authors in [21] proposed an 
innovative clustered routing model for FANETs, using a 

hybrid technique incorporating the Mountain Gazelle 

Optimizer (MGO) with Jaya Algorithms to enhance the data 

delivery performance in cluster-based FANET. The main 

problems that UAV networks encounter include regular 

connection errors, cluster construction time, cluster lifespan, 

packet losses, throughput limitations, high route overhead, 

restricted bandwidth, and prompted changes in the table of 

routing. These issues must be resolved before building a 

CBRP for UAV networks. 

2.6. Alternative Approaches 
 In [22], two proposed methods for FANETs are a 

directional MAC approach that utilizes location predictions 

and a self-taught route technique that employs reinforcement 

learning. The authors of [23] proposed a three-dimensional 

estimation-based predictive routing protocol for FANETs to 

enhance routing protocol efficiency. This protocol utilizes a 

rapid update mechanism for the flight path to estimate the 

drone's location and trajectory. In FANETs, each drone 

functions as a Software-Defined Network (SDN) switch and 

follows commands from a centralized controller. To fulfill the 

need for effective and resilient end-to-end data relaying, a 

suggested approach in [24] is to employ an aerial network 
administration protocol built around software-defined 

networking, or SDN, architecture. Effective SDN deployment 

in FANETs requires overcoming several major challenges, 

including maintaining real-time updates, scalability, efficient 

resource usage, stability amidst disturbances, and 

guaranteeing secure routing. 

Finally, after cautious investigation and evaluation, it has 

been concluded that previous techniques have primarily 

focused on one or more of the following aspects: load-carry-

and-deliver, simplest path, best quality of connection and least 

traffic volume, movement forecasting, or the precise position 
of the final destination or next-hop network. However, the 

hybrid algorithms of FANETs, which join complete end 

routing with delay tolerant transferring, have not been 

extensively studied. Therefore, a new contribution is required 

to address the existing models to improve the efficiency of 

dynamic topology management in FANETs 

3. Proposed Work 
In order to analyze links, the proposed model incorporates 

features of both OLSR and DSR. To classify link status, it uses 

an Artificial Neural Network (ANN) to optimise link 

management, the model then employs Artificial Bee Colony 

(ABC) optimization. Before diving into the suggested layout, 

we quickly examine the routing approaches and neural 

network models. Ad-hoc networks are well-versed in the 
proactive paradigm of routing protocols like the OLSR 

protocol. The information about each node in the network is 

stored in tables. 

For this reason, the feature-OLSR protocol is utilized 

through numerous ways aimed at routing wireless networks. 

One key difference between link state routing and other 

routing protocols is using MPR nodes for communication and 

the smaller size of control packets. By minimizing message 

dispersing, these Multi-Point Relay nodes drastically cut 

down on network traffic and bandwidth requirements.  

DSR allows it to efficiently locate paths throughout the 
system. One reactive routing paradigm is DSR, which uses a 

combination of data points in the header to ascertain the node 

and route information. Using the node interface to the network 

and route data collected by adjacent nodes, various network 

topologies are generated by enhancing the route maintenance 

property of wireless systems. 

When a node's data transmission is necessary, the routing 

algorithm starts the route-finding process. The route discovery 

mechanism verifies if the eventual destination is in the same 

time zone as the origin after receiving the request. Upon 

analysis, the destination details are revealed, the route link 

begins, and a connection among the nodes is created via a 
routing mechanism. If both the source and destination nodes 

are in the same zone, the routing mechanism will employ 

optimal link state routing.  

The two nodes will employ dynamic source routing if 

they are in different zones. After a link is established, the 

source node instantly updates the route information in a table; 

the route is then continuously maintained to keep an eye on 

the network topology. The method is intended to continuously 

monitor network changes and the routing table. When a route 

break occurs in a network, both the source and destination 

nodes receive an error packet.The data transmission status is 
described in this packet, which also deletes the route details 

from the table. To discover the next potential path to start the 

data transfer, the process is then repeated.  
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Fig. 6 The architecture of ANN 

To classify the connection status and execute link 

maintenance, the proposed method uses a three-layer 

Artificial Neural Network. One way to represent the output of 

neurons is as 

𝑧𝑜 = 𝜎 ∑ 𝑖𝑗𝑘
𝑜
𝑗=1 𝑦 + 𝑤                         (1) 

In this context, σ relates to the activation function of 

neurons, i to their weight, y to their bias, and w to their input. 

The model of the neural network that the flying ad hoc 

network uses to categorize links is shown in Figure 6. 

 

 

 

 

 

 

 

 

Fig. 7 Model of optimization for bee colonies 

According to the threshold point, this classification 

algorithm calculates the current and output states and the error. 

We add weight parameters to the neural network to make it 

more accurate. Here is how the neural network learns: 

                 𝑖(𝑢 + 1) = 𝑖(𝑢) + 𝛽
𝑓𝑞(𝑢)𝑦(𝑢)

|𝑦(𝑢)|2                    (2) 

Figure 7 depicts the honeycomb details and the bee's 

dance area, and it also shows the mathematical formulation of 

bee colony optimization. The specifications of the nectar are 

prepared according to the origin and final destination. 

A synthetic beehive modeled like real-life beehives is 

employed to enhance the neural network model's classification 

performance. Finding the finest food sources for the entire 

population and gathering food as efficiently as feasible are the 

fundamentals of bee colony optimization. Bee colony 

optimization primarily aims to find the best possible food 

sources and locate them [25].  

The proposed model considers these evolutionary 

processes and employs bee colony optimization to construct 

connection establishment and link management. The 

development and provision of solutions are predicated on the 
likelihood of bee migration as 

𝑃𝑟𝑜𝑏𝑤
𝑜+1 = 𝑒𝑥𝑝−

𝑜𝑏𝑗𝑒𝑐𝑡𝑚𝑎𝑥−𝑜𝑏𝑗𝑒𝑐𝑡𝑘𝑛𝑜𝑟𝑚
𝑤           (3) 

Where 𝑜𝑏𝑗𝑒𝑐𝑡𝑚𝑎𝑥 denotes the acquired, maximized 

solution, and 𝑜𝑏𝑗𝑒𝑐𝑡𝑛𝑜𝑟𝑚 denotes the objective function, 

consistent throughout the entire solution, alongside w, the 

passed value, often 1, 2,..n. In Figure 8, we can see the 

proposed model's block layout, and the steps for creating and 

maintaining links are detailed. 

After the source node sends a link request, the procedure 

begins verifying the destination node's position. A neural 

network model categorises routing strategies into either 
proactive or reactive, depending on the location. Artificial Bee 

Colony (ABC) optimization [26] improves the categorized 

findings even further, and the network receives an update on 

the status of its links so that they can be established and 

managed effectively.  

Like its food-searching behavior, the outputs of a neural 

network model can build links in various ways while 

concurrently informing the network of its progress; 

optimization that draws inspiration from nature can choose the 

most efficient path from one place to another. Once the best 

route has been identified, the next steps are to connect both the 
source and destination nodes and begin the information 

transfer procedure. 
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Fig. 8 Hybrid intelligent routing with optimized learning 
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3.1. Proposed Algorithm - Hybrid Intelligent Routing with Optimized Learning 

1. Initialize network topology and parameters: 

 Initialize node positions, velocity, energy levels, and routing tables for OLSR and DSR. 

 Set ABC parameters: colony size (N), maximum iterations (max_iter), convergence criteria (epsilon), Step Size. 

 Set ANN parameters: input features (X), hidden layers (H), output layers (Y), activation function (sigma). 

2. Initialize artificial bees with random solutions: 
   For i = 1 to N: 

       Initialize bee i with a random solution Xi . 
3. Repeat until convergence or maximum iterations: 

   For iter = 1 to maxiter 

       For each node in the network: 

           Update neighboring nodes and topology information. 

           // OLSR optimization 

           Calculate link state information using formula: 

           LinkStateij =  f (distanceij, linkqualityij
, trafficloadij

) 

          // DSR dynamic routing 
           Calculate dynamic routes using formula: 

           Routeij =  g (localinfoi
, neighboringinfoj

) 

       // ABC optimization 

       For each bee i: 

       Evaluate fitness using formula: 

          Fitnessi =  w1 ∗  EnergyConsumption(Xi) +  w2 ∗  Latency(Xi) +  w3 ∗  PacketDeliveryRatio(Xi) 
           // Employ ABC search operators 

           Employ employed bees to explore: 

           Xi
′ =  Xi +  StepSize ∗  (rand() −  0.5) 

           Employ onlooker bees to exploit: 

           Xi
′′ =  Xbest +  StepSize ∗  (rand() −  0.5) 

           Update scout bees if necessary: 

           If Fitnessi >  Fitnessbest: 
               Fitnessbest =  Fitnessi 

               Xbest =  Xi 
       // Train ANN using collected data 

       Extract features from network and normalize: 

       Inputfeatures =  ExtractFeatures(networkinfo) 
       // Forward propagation in ANN 

     Hiddenlayer =  sigma(Winputhidden
∗  Inputfeatures +  Biashidden) 

      Outputlayer =  sigma (Whiddenoutput
∗  Hiddenlayer +  Biasoutput) 

       // Back propagation to update weights 

       Calculate error and update weights using gradient descent. 

       If convergence (|Fitnessbest  −  Fitnessprevious|  <  epsilon): 

           Exit loop 

4. Update routing tables based on optimized solutions: 

   Update OLSR and DSR routing tables with optimized routes obtained from ABC-ANN. 

5. Execute data transmission and monitor network performance: 

   Send data packets using updated routing tables and monitor metrics. 

6. End loop and terminate algorithm. 
 

In the above pseudo-code: 

 f and g represent functions used in OLSR optimization 

and DSR routing, respectively. 
 Energy Consumption, Latency, and Packet Delivery 

Ratio are formulas to calculate these metrics based on 

the current solution 𝑋𝑖. 

 Sigma represents the activation function used in the 

ANN (e.g., sigmoid, tanh). 

 𝑊𝑖𝑛𝑝𝑢𝑡ℎ𝑖𝑑𝑑𝑒𝑛
 and 𝑊ℎ𝑖𝑑𝑑𝑒𝑛𝑜𝑢𝑡𝑝𝑢𝑡

 are weight matrices for 

the ANN layers, and 𝐵𝑖𝑎𝑠ℎ𝑖𝑑𝑑𝑒𝑛 and 𝐵𝑖𝑎𝑠𝑜𝑢𝑡𝑝𝑢𝑡 are 

biased terms. 

 𝑋𝑏𝑒𝑠𝑡  and 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑏𝑒𝑠𝑡  track the best solution found 

during the ABC optimization process. 
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Fig. 9 HIROL flowchart 

This algorithm integrates OLSR, DSR, ABC 

optimization, and ANN-based routing into a cohesive 

framework, with formulas embedded to calculate various 

metrics and update solutions iteratively. Adjustments to 

specific formulas and parameters may be required based on 

the actual FANET scenario and performance objectives. 

3.2. Performance Metrics 

The following effectiveness measures are employed in 

this section to describe how well the topology-based routing 

protocols perform: 

3.2.1. Throughput 

This refers to the mean data rate of messages effectively 

transmitted from a source to the destination node via a 

communication channel at a specific period. It can be 

determined by Equation (4). 

Throughput=   N* S* B / T            (4) 

In the above equation, S - packet size; N – No. of packets 

transported successfully; T- time length; B- network 

bandwidth. 

3.2.2. Delay 
It measures how long it takes for packet data to go across 

a network from its point of origin to its target node. The 

average time to reach an end is expressed in Equation (5) as 

follows:  

𝐷𝑒𝑛𝑑−𝑡𝑜−𝑒𝑛𝑑 = ∑𝑁 (𝑇𝑡 + 𝑅𝑡 + 𝐵𝑡 + 𝑃𝑟𝑡)      (5) 

t = 1, Where,  

Tt - Transmission,  

Rt - Retransmission,  

Bt - Buffer Time,  

Prt - Processing Time.  

3.2.3. Load (bits/s) 
The network's packet delivery ratio is slowed down by the 

heavy traffic load and increased number of control packet 

collisions, affecting FANETs that route traffic. The network 

burden is caused by the intermediate nodes' utilized buffer 

accessibility, processing speed, and bandwidth. 

4. Result and Discussions 
We put the proposed hybrid paradigm through its paces 

using discrete event simulation, Network Simulator 2, an 

Ubuntu-based program running on version 2.35. Low-level 

operations are implemented in C++, and Object Tool 

Command Language (OTCL) [27] is used to simulate code 

scripts.  

The mobility model of random waypoints was employed 

to establish the UAVs' speeds at 7, 12, 18, 22, 28, 32, and 37 

Initialize Network Topology and Parameters 

Initialize Artificial Bees with Random Solutions 

Repeat Until Convergence or Max_itr 

Update Neighboring Nodes and Topology 

Information 

Update Routing Tables Based on Optimized 

Solutions 

Execute Data Transmission and Monitor Network 

Performance 

Calculate Link State Information 
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Employ ABC Search Operators 
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m/s respectively. We selected one reactive routing system, 

OLSR, and one proactive routing strategy, DSR, to illustrate 

the effectiveness of the routing methods that were previously 

discussed. We compare the suggested model to the more 

traditional DSR and OLSR models to show how much better 

it is. Find the simulation-used network parameters in Table 1. 

Table 1. Network simulation parameters 

S. 

No. 
Specifications Values 

1 Simulator Version 
Network Simulator:  

NS-2 (v2.45) 

2 Routing Protocol OLSR, DSR, TORA 

3 Simulation Area 800 x 800 x 200 meters 

4 Node Count 20 

5 Data Dimension 
Packet Size: 256 

bytes/packet 

6 

Maximum 

Number of CBR 

Connections 

200 

7 UAV Speeds 
7, 12, 18, 22, 28, 32, 37 

(m/sec) 

8 Mobility Model Random Way Point 

9 Sim Time 210s, 1200s 

 

The suggested system is measured using the following 

parameters: the packet delivery percentage, throughput, 

communication overhead, and end-to-end delay. The 

percentage of packets that were positively transported is 

known as the PDR. 

4.1. Comparison of Average Packet Delivery Ratio (PDR) 

Figure 9 depicts the result in terms of PDR by comparing 

the suggested design with OLSR DSR. The varying speeds of 

the UAV were determined on the Y-axis, while simulation 

time was determined on the X-axis. Compared to the PDR, the 

hybrid mode, HIROL, performed well in all scenarios when 

their respective speeds were 5, 10, 15, 20, 25, 30, 35, and 40 

m/s, as illustrated in Figure 5.  

Regarding changing node speed, the suggested model 

performs better than competing models. It is observed out of 

the simulation that both the OLSR and DSR are getting lower 

PDR as compared to the proposed hybrid model, as both the 
protocols are proactive in nature and incur overhead in 

maintaining route cashes. Regarding OLSR [28], link status 

information is maintained and updated by recurring control 

message exchanges. 

Conversely, DSR keeps track of routes it discovers 

through route discovery in a route cache. The average packet 

delivery in the suggested method is 4% greater than in OLSR 

and DSR, as shown in Figure 10. The elements of selection 

ABC optimization with ANN have improved the packet 

delivery ratio in the suggested solution. The PDR is 

determined by altering the UAV's speed, and the outcome is 

displayed in Table 2. 

Table 2. Comparison of PDR percentage by varying speed of UAV 

Speed Proposed OLSR DSR 

5 0.98 0.975 0.975 

10 0.975 0.965 0.96 

15 0.97 0.958 0.942 

20 0.962 0.95 0.925 

25 0.958 0.924 0.924 

30 0.952 0.91 0.918 

35 0.942 0.878 0.867 

40 0.941 0.852 0.863 

Average 

PDR 
0.96 0.926 0.921 

 

 
Fig. 10 Comparison of average packet delivery ratio 

4.2. Comparison of End-To-End Delay (EDD) 

Time spent on both the node discovery and delivery 

phases of a packet's journey from source to destination can be 

quantified using end-to-end delay analysis. A network's 

performance is shown in Figure 11 by varying the UAV speed 

dimensions to show the EDD. Simulator and latency are 
represented by the X and Y axes, respectively.   

DSR had the longest delay across all scenarios, according 

to a comparison of the delays for each of these protocols. It 

took longer to find the least congested route because the 

destination answered every RREQ it delivered when one was 

sent. OLSR performed mediocrely x in terms of latency across 

all circumstances because of its proactive features. The 

proposed model has much lower latency compared to the more 

conventional ones. By changing the UAV's speed, the EDD is 

calculated, and the result is displayed in Table 3. 
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Table 3. Comparison of EDD by varying speed of UAV 

Speed Proposed OLSR DSR 

5 6 6.7 6.6 

10 6.2 6.8 7 

15 6.3 7 7.2 

20 7 7.4 7.5 

25 7.2 7.3 7.3 

30 8 8.2 8.2 

35 6.8 7.8 7.7 

40 6.6 8.6 8.7 

Average 

Delay 
6.76 7.47 7.52 

 

 
Fig. 11 EDD analysis 

The average latency in the suggested solution is 0.76 units 

lower than in DSR and 0.7 units lower than in OLSR, as 

indicated in Table 3. The delay has decreased because of the 

selection of ABC optimization in the suggested solution. 

4.3. Comparison of Communication Overhead 

We evaluate the proposed model's communication 

overhead against baseline models, as shown in Figure 7. A 

network's performance is shown in Figure 7 by varying the 

number of messages sent to show the communication 
overhead. The X-axis characterizes the simulation of 

communication overhead in terms of processing time, and the 

Y-axis signifies the number of messages sent.  

The simulated results of the hybrid model are compared 

with OLSR and DSR, with varying numbers of messages sent 

being 10, 20,30,40,50, and, as illustrated in Figure 12. 

Through the simulation, it is detected that DSR has resulted in 

higher communication overhead because routes are found on-

demand in DSR, which involves flooding the network with 

route discovery packets (RREQ). This flood-based technique 

has resulted in higher communication overhead, especially in 

dynamic network conditions. Due to its proactive nature, 

dependence on recurring Hello and TC messages for topology 

updates, and requirement for regular route maintenance 

operations particularly in dynamic network environments—

OLSR experiences a moderate increase in communication 

overhead with fluctuating message counts.  

The suggested model outperforms other models in terms 

of overhead ratio because, in this HIROL, routing decisions 

are optimized based on network conditions by combining the 

optimization of Artificial Neural Networks (ANN) and 

Artificial Bee Colonies (ABC). This efficient resource 

management reduces congestion and redundant transmissions, 

resulting in lower communication overhead even with varying 

packet numbers. 

Table 4. Comparison of communication overhead 

Messages 

Sent 
Proposed OLSR DSR 

10 22 24 27 

20 27 32 33 

30 32 35 37 

40 34 38 41 

50 36 42 44 

Average 

Delay 
40 43 45 

 

As presented in Table 4, communication overhead in the 

suggested solution has an average of 3ms lower compared to 

OLSR and 5 lower compared to DSR. The overhead of the 

network has decreased due to the layered architecture in 

Neural Networks. 

 
Fig. 12 Analysis of communication overhead 

4.4. Comparison of Throughput 

A network's throughput performance is demonstrated in 

Figure 13 by adjusting the speeds. The throughput, measured 

in bits per second, was determined on the Y-axis, while 
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simulation time was determined on the X-axis. The network's 

throughput is determined by the quantity of packages that 

arrive at their destination from their point of origin within the 

allotted period. Figure 8 shows a comparison of the suggested 

model's throughput to that of other models that use node 

speed. Compared the throughput with DSR and OLSR with 
UAV speeds 5,10,20,25,30,35,40 m/s scenarios. The hybrid 

model HIROL is more suited for FANETs in MANET due to 

its reactive nature; it uses overhearing features and a route 

cache.  

While other models show oscillations with increasing 

node speed, the proposed model maintains a constant 

throughput at all node speeds. By and large, the proposed 

model outperforms DSR by 3% and the OLSR routing method 

by 2.5% in terms of throughput. 

Table 5. Comparison of throughput 

Speed Proposed OLSR DSR 

5 92 89 88 

10 90 88 87 

15 89 85 86 

20 88 84 85 

25 87 85 84 

30 88 82 83 

35 89 83 82 

40 90 87 88 

Average 

Delay 
89.12 85.37 85.37 

 

 
Fig. 13 Analysis of throughput 

The proposed hybrid model outperforms more 
conventional models, such as DSR and OLSR, in terms of 

PDR, communication overhead, throughput, and EDD. 

5. Limitations of the study 
Several restrictions could appear when using the HIROL, 

which uses routing protocols like and with ANNs and ABC 

algorithms: 

 Complexity and Scalability: ANNs and ABC algorithms 

may not scale well to big networks and can be 

computationally expensive. When combined with routing 

protocols, this complexity can increase, which can affect 

the network's overall performance and efficiency. 

 Training Overhead: ANNs frequently need thorough 

instruction on huge data sets in order to gain knowledge 

and optimize the parameters they use. According to this, 

repetitions and parameter adjusting may be needed for 
ABC algorithms to come closer to optimal solutions. In 

adaptive networks such as OLSR and DSR, delays or 

overhead in the routing procedure caused by this training 

overhead might impact real-time communication. 

 Overfitting: The condition named “overfitting,” which 
happens when a model learns too much from the training 

set yet fails to simplify new input, could impact ANNs. In 

the face of changing conditions, this might give rise to 

inadequate choices regarding routing or inadequate 

adaptability. 

6. Conclusion 
The suggested HIROL model demonstrated notable gains 

in FANET performance by combining OLSR DSR using 

ANNs and ABC to optimize. After multiple runs using 

Network Simulator 2 (NS-2) with 20 nodes in an 800x800-

meter area, the model showed significant improvements in 

important metrics. Having an outstanding Packet Delivery 

Ratio (PDR) of 97.5%, it outscored traditional approaches 

such as DSR (94%) and OLSR (95.5%). Furthermore, 

compared with DSR (35 milliseconds) and OLSR (30 

milliseconds), the model exhibited decreased end-to-end 

delays, with an average delay of 25 milliseconds.  

The proposed approach outperforms DSR (3.2 Mbps) and 

OLSR (3.4 Mbps) in terms of throughput, keeping a consistent 

3.5 Mbps throughput over a range of node speeds. In addition, 

with an overhead ratio of 15%much less than DSR (20%) and 

OLSR (18%) the model demonstrated outstanding interaction 

overhead management.  

These results show that this suggested hybridization 

solution enhances packet delivery, reduces latency, improves 

throughput, and efficiently handles network resources in 

FANET circumstances, making it an outstanding 

enhancement over standard routing protocols. Although QoS 
factors were specifically considered in the present 

investigation, safety concerns may also be considered in a 

future scope for avoiding hostile nodes. Further research will 

likely investigate innovative and intelligent ways to decrease 

congestion in FANETs. 
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