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Abstract - Hand Gesture Recognition (HGR) is crucial for Human Computer Interaction (HCI) with applications including 

assistive technologies for disabled persons to advanced human computer interfaces. HGR from Electromyography (EMG) 

signals possessed issues regarding noise and variability due to the complex muscle movements. So, for effectively recognizing 

hand gestures from EMG signals, this paper proposes a hybrid Deep Learning (DL) model combining Long Short-Term Memory 

(LSTM) and Gated Recurrent Unit (GRU) networks, incorporating an attention mechanism to highlight pertinent features and 

enhance the model’s focus on critical data segments. The study utilized a dataset with static hand movements captured using an 

MYO Thalmic bracelet with eight equally distributed sensors, and the raw EMG data was preprocessed. Feature extraction is 

analyzed in both the time and frequency domains, leading to a more robust and comprehensive analysis of the EMG signal. The 

proposed model achieved 98.875% accuracy, 97.82% precision, 98.07% recall, and 97.74% F1 score, outperforming existing 
models. Thus, the proposed model demonstrates significant advancements in hand gesture recognition with high accuracy, 

making it reliable for several real-time applications. 

Keywords - Hand Gesture Recognition, Human Computer Interaction, Electromyography, MYO Thalmic, Long Short-Term 

Memory, Attention mechanism gated, Recurrent unit. 

1. Introduction 
A hand gesture is a significant and explanatory posture or 

actual movement of the hands. Hand gestures are considered 

one of the important ways for humans to convey and express 

intuitive intentions like emotions, thoughts and ideas without 

words [1]. Hand gestures are used in deaf and speech-impaired 

people communication, Human-Computer Interaction (HCI), 

robot control, home automation, clinical applications, sign 

language recognition, problem-solving, decision-making, and 

understanding of complex subjects. Different types of gestures 

include finger movements and hand grasps. Different finger 

movements are possible due to the flexion produced by each 

finger [2]. The human body consists of two large muscles 

responsible for each finger’s flexion and additional muscles 
supporting their movements. The basic hand/finger gestures 

are given in Figure 1. 

The HGR is broadly divided into static and dynamic 

recognition. Static HGR is based on a single image or frame, 

like a thumbs-up or peace sign, where the gesture is identified 

by its particular shape or configuration [3]. On the other hand, 

dynamic methods use the temporal features of hand motion by 

considering the gesture as a sequence of hand shapes. 

According to various applications, static and dynamic HGRs 

are critical as static HGRs are employed in command-based 

systems, and dynamic HGRs offer more expressive and 

organic interactions [4]. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Basic hand gesture
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Unlike gesture detection, which primarily identifies the 

presence of gestures, HGR focuses on interpreting the 

meaning. Motion tracking involves following the trajectory of 

movements but may not infer the intent behind them. 

Conventional HGR commonly utilizes cameras, data gloves 

and Inertial Measurement Units (IMU). Data gloves and IMU 
necessitate direct contact with the fingers to track hand joints. 

However, limiting natural interaction and cameras require a 

direct line of sight. These technologies excel at recording 

motions but fail to capture subtle kinetic changes in hand 

movements, especially during muscle fatigue [5, 6]. 

Electromyography (EMG) based HGR is an emerging 

field in HCI and biomedical engineering. The EMG signal is a 

random signal that relies on the muscles’ neuromuscular, 

anatomical and physiological properties [7]. These signals are 

captured by placing surface electrodes on the skin, providing 

important information about the muscle movements. Surface 

EMG (sEMG) is a non-invasive method of acquisition of EMG 
signal using surface electrodes. The amplitudes of the sEMG 

hang on the muscle under study and the characteristics of 

electrodes. Recent advancements in EMG-based HGR enhance 

the accuracy and reliability of gesture classification [8]. The 

applications included assistive technologies for persons with 

physical disabilities, which can be used as substitutes for 

prosthetics and other digital systems. In addition, as the EMG 

signal propagates through the tissues, noise gets added to the 

signal, which can be recorded using different types of 

electrodes placed on the skin. The recorded EMG signals are 

processed for further analysis.  

Given wide-ranging applications, there is a need for 

developing cutting-edge recognition methods for accurate and 

versatile recognition of gestures, paving the way for 

technological advancements in areas such as virtual and 

augmented reality, touchless control interfaces, sign language 

recognition, leading to improved quality of life and 

enhancements in human performances. Thus, this paper uses a 

hybrid DL method to generate HGR from EMG signals 

efficiently. The main contributions of the study are as follows. 

• To improve recognition accuracy in hand gesture 

recognition by effectively processing EMG signals. 

• Analyzing signals in both time and frequency domains to 
improve gesture recognition systems’ performance. 

• To develop a hybrid DL model utilizing LSTM and GRU 

networks to capture EMG signals’ temporal dependencies. 

• Integrate the attention mechanism to emphasize pertinent 

features of the EMG signal for accurate gesture 

recognition. 

The structure of the study unfolds as follows: Section 2 

provides related works of hand gesture recognition methods 

and explores the research gap that delves into the proposed 

model. Section 3 details the proposed hybrid deep learning 

model enhanced with the attention mechanism. Section 4 

details the in-depth analysis of the results of handling EMG 

signals. Section 5 furnishes concluding remarks. 

2. Literature Review 
Lopez et al. [9] employed spectrograms and 

Convolutional Neural Networks (CNN) to analyze the effects 

of post-processing, which filtered prediction sequences and 

removed false labels on the HGR model. The effect of 

memory cells on model accuracy was evaluated by comparing 

the performance of CNN and CNN-LSTM. The EMG-EPN -

612 dataset with five hand motions was utilized. With post-

preprocessing, the CNN-LSTM model achieved an accuracy 

of 90.55%. The model possessed limitations due to the 

computational load from LSTM networks. Pourmokhtari et al. 
[10] investigated sEMG signals for controlling upper arm 

prostheses utilizing four unique channels to classify five 

different finger movements. The study employed k-nearest 

neighbors for the classification and two-time domain features 

(min, max) with Root Mean Square (RMS) and Mean 

Absolute Value (MAV). The combination of min and max 

with MAV yielded the highest accuracy rates of 91.0%, 

89.9%, 89.8% and 96.0%, respectively, for the four channels. 

The study possessed challenges in muscle coverage and 

potential cross talk.  

Wang et al. [11] suggested a model to virtually increase 
the dimension of EMG signals without the need for additional 

EMG signal acquisition electrodes for accurate gesture 

recognition by providing the solution for the problem of peak 

accuracy triggered by the information saturation from physical 

recordings. The study introduced the Separability of Feature 

Vectors (SFV), a feature selection method derived from the 

divergence and correlation of the feature extracted. The 

effectiveness of increasing the virtual dimension strategy was 

verified using SFV by predicting the classification result 

before the classification process. SFV outperformed statistical 

motion intention recognition models and was suitable for 

small sample sets.  

Abdelaziz et al. [12] established a hybrid CNN-LSTM 

model to extract features from EMG signals and to capture 

important features from gestures. The study utilized two 

publicly available datasets, DualMyo and EMG36, with 8 

hand gestures. The testing time issues are solved without 

compromising the testing accuracy by cascading CNN and 

max pooling layer to obtain a reduction rate of 1/20 in testing 

time compared with hybrid CNN-LSTM. The experimental 

outcomes showed that the suggested method was suitable for 

real-time applications with challenges, including expanding 

gesture vocabulary. Zhang et al. [13] suggested a dynamic 
time regularization approach due to the instability and 

sensitivity of sEMG signals for accurate and real-time gesture 

recognition. The similarity between the sample and model was 

determined by fusing three sEMG signals with the Dynamic 

Time Warping (DTW) algorithm with a 3D printed prosthesis. 

Six gesture classification models were combined to generate 
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the optimal feature model. The model achieved an accuracy of 

93.75% with challenges including the generalization for 

prosthetic arms.  

Ashraf et al. [14] addressed the limitations in real-time 

applications because of the latency introduced by the 

optimization technique. The authors proposed a CNN model 
based on Myoelectric Control (MEC), utilizing a generalized 

hyperparameter setting and an improved data segmentation 

method as a solution. Two different segmentation approaches, 

disjoint and overlap, were assessed using different overlap 

sizes. Using a segment size of 200 ms and 80% overlap, the 

overlap technique significantly outperformed the disjoint 

method (p-value < 0.05). Hyperparameter tuning uses 

Bayesian optimization, which reduces the mean Classification 

Error Rate (CER), outperforming traditional manual, grid, and 

random search methods.  

Al-Khazzar et al. [15] focused on three neural network 

models, a four layer Deep Neural Network (DNN), an eight-
layer DNN and a 5-layer CNN, to identify and classify seven 

gestures from a public EMG dataset. The study utilized five 

optimizers, Adam, Adamax, Nadam, Adagrad, and AdaDelta, 

for testing. Adding layers resulted in slight accuracy 

improvement, indicating that four-layer DNN offered good 

performance. The Adam optimizer provided the best results 

over all models. The model’s limitations included the higher 

computational requirements with increasing layers for models. 

Côté-Allard et al. [16] proposed a gesture recognition 

system that learns informative properties from massive 

amounts of data generated by combining signals from many 
users, reducing recoding effort while increasing recognition of 

gestures. As a result, the study recommended using transfer 

learning on aggregated data while exploiting the ability of DL 

algorithms to discover discriminant characteristics from big 

datasets.  

Jain et al. [17] suggested an EMG signal classification 

model based on ML approaches focused on Support Vector 

Machine (SVM) and data selection based Genetic Algorithm 

(GA). SVM was trained using the average similarity values 

determined using cosine similarity. Rubio et al. [18] used 

supervised machine learning approaches to create an 

automatic recognition system for hand or wrist movements. 
The dataset consists of recordings of EMG signals acquired 

from 36 subjects. The performance of the Random Forest (RF) 

model and CNN has been assessed, and the RF model 

outperformed. 

Although hand gesture recognition with EMG signals has 

made great strides, existing approaches have several 

drawbacks that require more research and development. Even 

though hybrid models that combine CNN and LSTM have a 

good accuracy rate, they frequently have a large 

computational burden. Techniques based on basic time-

domain characteristics and classification algorithms like k-

nearest neighbors provide good accuracy but suffer from 

cross-talk and muscle coverage issues. Techniques that 

effectively expand the dimensions of the EMG signal 

complicate selecting and extracting features. Some models 

exhibit great accuracy and improvements in testing time, but 
they struggle to increase data size with different gestures. In 

addition, the sensitivity of sEMG signals remains a significant 

challenge, emphasizing the need for robust feature extraction 

and advanced deep learning models to enable real-time 

applications with low processing costs and enhanced 

accuracy. 

3. Materials and Methods 
Hand gesture recognition using EMG signals is crucial, 

but it also has several challenges, including noise, variability 

in signal patterns, and the need for real-time processing. The 

recognition process is difficult because of the complexity of 

muscle movements and the minute variations in EMG signal 

patterns. So, a hybrid DL model is suggested for efficient 

HGR. The EMG signal from the dataset is preprocessed, and 

features are extracted before training the hybrid attention-

based LSTM-GRU model. The gestures are recognized and 

classified through softmax and fully connected layers. Figure 

2 provides the block diagram of the suggested model. 

3.1. Dataset 

This study utilized data from [19], recording the patterns 

using a MYO Thalmic bracelet worn on a user’s forearm and 

a PC equipped with a Bluetooth receiver. Equally distributed 

around the forearm, eight sensors are embedded in the bracelet 

to acquire the myographic signals. These signals are 

transmitted to the PC through the Bluetooth interface. The 

dataset consists of raw EMG data from 36 subjects while 

performing a series of static hand gestures. The subjects 

execute two series, with six (seven) fundamental gestures 

each. Each gesture was achieved for 3 seconds with a gap of 3 

seconds between gestures. There are about 40000-50000 
recordings in each column. The description of raw data is 

given in Table 1.  

Table 1. Description of class labels for gestures 

Class Label Gesture Description 

0 Unmarked Data 

1 Hand at Rest 

2 The Hand Closed in a Fist 

3 Wrist Flexion 

4 Wrist Extension 

5 Radial Deviations 

6 Ulnar Deviations 

7 Extended Palm 
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3.2. Data Preprocessing and Exploratory Data Analysis 

Preprocessing of EMG data is crucial to ensuring high-

quality input for the hand gesture recognition models. Data 

normalization is organizing data in a database to remove 

redundancy and improve data integrity [20]. To guarantee the 

streamlining and consistency of the stored data, the process 
involves structuring tables and recognizing relationships 

between them, which implies simplified data management 

across all records and fields. Data normalization standardizes 

the range of EMG signal data using Min- Max normalization, 

boosting uniformity and aiding convergence during training. 

Min-Max normalizes and transforms each feature to a range 

typically between 0 and 1. The process is an alternative to zero 

mean, unit variance scaling. Mathematically, Equation (1) 

represents Min-Max scaling, 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
        (1) 

Where x is the original value of a feature, 𝑥𝑚𝑖𝑛is the 

minimum, and 𝑥𝑚𝑎𝑥 is the maximum value of the feature in the 

dataset. 

 

 

 

 

 

 

Fig. 2 Proposed model block diagram 

By maintaining the relative relationship between the other 
values, the Min-Max scaler scaled linearly by preserving the 

effect of outliers, where the maximum value is represented by 

the largest data point that occurs, and the minimum value is 

represented by the smallest one. Data cleaning is also done for 

finding and fixing errors and inconsistencies in data. This 

stage is important because inconsistent data might lead to false 

or erroneous conclusions. Data cleaning involves handling 

missing values, checking for duplicates, and checking for each 

column’s data types and unique values.  Exploratory Data 
Analysis (EDA) is used to analyze the distribution and 

characteristics of the data. Precise gesture recognition depends 

on identifying the outliners, anomalies and other data quality 

issues like missing or duplicate values, which EDA enables. 

The histogram in Figure 3 illustrates the distribution of data 

for each channel and the class label in the dataset with EMG 

signals.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Histogram of sampled columns 
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The frequency distribution of the signals obtained 

through the MYO Thalmic bracelet for channels 1 to 8 is 

provided. With values ranging from 0 to 7, the histogram for 

the class label shows the distribution of different gesture 

classes, as shown in Table 1. Figure 4 illustrates the 

correlation matrix of the EMG data, providing the visual 
representation of pairwise correlation coefficients between 

various channels and time in the dataset. These coefficients 

show the intensity and direction of the correlations between 

the variables, which range from -1 to 1. The value 1 denotes a 

positive correlation, whereas the negative value shows a 

negative correlation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4 Correlation matrix of the EMG data 

Figure 5 represents the scatter and density plot of the 

signal, providing relationships and distribution of numerical 

features in the dataset. The scatter plot displays the pairwise 

correlation between the different channels. The density plot is 

given diagonally in the scatter matrix, providing a distribution 

of individuals where each peak indicates the most common 
values for each feature.   

The time domain signal is transformed into the frequency 

domain signal using the Fast Fourier Transform (FFT) for 

frequency domain analysis. The FFT of a discrete signal y(n) 

is defined by (2). 

𝑌(𝑘) = ∑ 𝑦(𝑛)𝑒
−𝑗2𝜋𝑘𝑛

𝑁𝑁−1
𝑛=0                           (2) 

Where N is the number of points in the signal, k is the 

frequency index, and j denotes the imaginary unit. Filtering 

using a Low Pass Filter (LPF) is applied after obtaining FFT 

to remove the unwanted frequencies below a certain cutoff 

frequency 𝑓𝑐. The low pass filter in the frequency domain is 

defined by (3). 

𝐻(𝑘) = {
1   𝑖𝑓 |𝑓𝑘| ≤ 𝑓𝑐

0   𝑖𝑓 |𝑓𝑘| > 𝑓𝑐
           (3) 

The filtered signal output, as in Figure 6, is obtained by 

multiplying the FFT of the signal with filter 𝐻(𝑘) as (4). 

𝑌𝑓(𝑘) = 𝑌(𝑘) ∙ 𝐻(𝑘)         (4) 

The inverse FFT returns the filtered signal in the 

frequency domain to the time domain by (5). 

𝑦𝑓(𝑛) =  
1

𝑁
∑ 𝑌𝑓(𝑘)𝑒

−𝑗2𝜋𝑘𝑛

𝑁𝑁−1
𝑘=0      (5)  

The envelope of the original signal is extracted using the 

Hilbert transform by obtaining the analytic signal as in Figure 

7. The analytic signal of the original signal is given by (6). 

𝑧(𝑡) = 𝑦(𝑡) + 𝑗�̂�(𝑡)     (6) 

Where 𝑥(𝑡) is the Hilbert transform represented by (7).  

�̂�(𝑡) =  ℋ[𝑦(𝑡)] =
1

𝜋
𝑃 ∙ 𝑉 ∫

𝑥(𝜏)

𝑡−𝜏
𝑑𝜏

∞

−∞
    (7) 

Here,  𝑃 ∙ 𝑉 is the Cauchy principal value. A signal’s 

envelope is the analytic signal’s magnitude, as represented by 

(8). 

𝐸(𝑡) = |𝑧(𝑡)| = √𝑦(𝑡)2 + 𝑦(𝑡)̂2                 (8) 

An LPF is again used to soften the envelope. The low pass 
filter uses convolution with a smoothing kernel with window 

size M, as illustrated by (9). The smoothened output of the 

envelope is shown in Figure 8.  

𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝑡) =
1

2𝑀+1
∑ 𝐸(𝑡 + 𝑘)𝑀

𝑘=−𝑀        (9) 

3.3. Feature Extraction 

The valuable signal characteristics in the time domain are 
extracted using Mean Absolute Value (MAV), Root Mean 

Square (RMS), Waveform Length (WL), Zero Crossing Rate 

(ZCR), and Simple Square Integral (SSI). These 

complementary features provided a comprehensive 

representation of the data, ensuring the model could 

effectively learn patterns for gesture classification. The 

effectiveness of this approach lies in its ability to balance the 

strengths of time and frequency domain analyses. The MAV 

calculates the average of absolute values, indicating the 

activity level of muscles as (10). 

𝑀𝐴𝑉 =  
1

𝑁
∑ |𝑥𝑖|

𝑁
𝑖=1      (10) 

Where N is the number of samples and 𝑥𝑖 is the i-th 

sample.                             
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Fig. 5 Scatter and density plot

 

 

 

 

 

 

 
Fig. 6 Output after applying FFT transform 

 

 

 

 

 
 

Fig. 7 Output after extracting the envelope 

 

 

 

 

 

 

 

 
Fig. 8 Output of smoothened envelope 

WL measures the cumulative length of the waveform with 

respect to time, as given by (11). 

𝑊𝐿 =
1

𝑁
∑ |𝑥𝑖+1 −  𝑥𝑖|

𝑁
𝑖=1                             (11) 

ZCR gives the frequency at which the signal changes its 

sign as (12). 
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𝑍𝐶𝑅 =
1

𝑁−1
∑ 1(𝑥𝑖∙𝑥𝑖+1<0)

𝑁−1
𝑖=1                            (12) 

The square root of the average of the squares of signal 

values is given by RMS value as illustrated in (13). 

𝑅𝑀𝑆 = √
1

𝑁
∑ 𝑥𝑖

2𝑁
𝑖=1                                     (13) 

SSI is calculated as the sum of squares of signal values, 

represented by (14). 

𝑆𝑆𝐼 = ∑ 𝑥𝑖
2𝑁

𝑖=1                                    (14) 

The Absolute Differences Signal (ABS_DIFFS) is 

calculated by (15). 

ABS_DIFFS = ∑ |𝑥𝑖+1 −  𝑥𝑖|
𝑁
𝑖=1   (15) 

Figure 9 shows the output of the feature extracted for 

channel 1. Features with minimum labels are eliminated 

during feature extraction.  

 
Fig. 9 Extracted feature from channel 1 

The Power Spectral Densities (PSDs) of two signals, the 

original signal and the smoothened envelope, are employed to 

analyze the frequency content and assess the impact of the 

filtering process and the smoothing effects. Figure 10 

illustrates the PSD of the original and smoothened version of 

the signal. 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 10 PSD of the original and smoothened version of the signal 

3.4. Proposed Attention-Based LSTM-GRU 

The suggested model is designed to identify the hand 

gestures from the input EMG signals. The model uses a hybrid 

combination of attention-based LSTM and GRU to predict the 

intended actions precisely. The input layer processes the input 

sequence using a self-attention mechanism to extract the more 

pertinent features for classification. In the process of attention 

mechanism, the model initially calculates a score for each 

element of the input sequence and a given query using (16), 

𝑆𝑐𝑜𝑟𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑠𝑖 = 𝑠𝑐𝑜𝑟𝑒(𝑞, ℎ𝑖)   (16) 

Where q is the query, and ℎ𝑖 is the input element.  

These scores show the significance of each input element 

regarding the query. Afterwards, the raw attention scores 

undergo normalization using a softmax function, guaranteeing 
that the resulting attention weights sum up to one, thus creating 

a probability distribution across the input elements.  

Then, attention weights are generated through element-

wise multiplication with the feature maps to highlight 

significant regions of the input. Mathematically, the attention 

weight calculation is represented by (17). 

𝛼𝑖 =
𝑒𝑥𝑝(𝑠𝑖)

∑ 𝑒𝑥𝑝(𝑠𝑖)𝑁
𝑗=1

                                 (17) 

Where N represents the total number of input elements.  

These attention weights are then employed to compute a 

weighted sum of the input elements, generating an attended 

representation as in (18).  

𝑐 = ∑ 𝛼𝑖 ∙ ℎ𝑖
𝑁
𝑖=1                                  (18) 

As shown in Figure 11, the weighted sum is the content 

vector representing the most pertinent sections of the input 

data. 
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This attention-enhanced representation is fed into LSTM, 

an RNN architecture for solving the problem of long-term 

dependencies in the data using a gating mechanism. There are 

multiple memory gates in each memory cell of the LSTM, 

including forget input and output gates. LSTM cell is the buried 

layer of LSTM. LSTM cell architecture is given in Figure 12. 

 The LSTM gates and state equations are represented by 

the following: 

Cell State: 

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ tanh (𝑊𝑐𝑥𝑡 + 𝑊𝑐ℎℎ𝑡−1 + 𝑏𝑐)  (19) 

Output Gate: 

𝑂𝑡 = 𝜎(𝑊𝑜𝑥𝑥𝑡 + 𝑊𝑜ℎℎ𝑡−1 + 𝑏𝑜)                  (20)  

Input Gate: 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑥𝑡 + 𝑊𝑖ℎℎ𝑡−1 + 𝑏𝑖)                      (21) 

Hidden State: 

ℎ𝑡 = 𝑂𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑐𝑡)  (22) 

Forgot Gate: 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑥𝑡 + 𝑊𝑓ℎℎ𝑡−1 + 𝑏𝑓)    (23) 

The input vectors are coupled with distinct weight 

matrices, 𝑊𝑓 , 𝑊𝑖 , 𝑊𝑐 . The symbol σ stands for the sigmoid 

activation function, while element-wise multiplication is 

indicated by the *. Furthermore, the bias values for the input 

cell state forgot the variables specified gate and output gate 

𝑏𝑖 , 𝑏𝑓 , 𝑏𝑐, and 𝑏𝑜, respectively.  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 11 Illustration of attention mechanism 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 12 Basic LSTM cell architecture 

The GRU architecture is followed by an LSTM layer to 

further refine the temporal patterns and dependencies. As 

shown in Figure 13, the GRU architecture addresses the 

problem of vanishing gradients by employing gating 
mechanisms. Unlike traditional RNNs, GRUs utilize a hidden 

state instead of a separate cell state, generating a new hidden 

state at each time step by combining input and the previous 

hidden state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13 Basic GRU architecture 

The process involves two key gates: the reset gate 𝑟𝑡𝑖  and 

the update gate 𝑧𝑡𝑖.The reset gate controls the rate at which the 

previous state is forgotten, as in (24),  

𝑟𝑡𝑖 = 𝜎(𝑊𝑟 . [ℎ𝑡𝑖−1,𝑥𝑡𝑖] + 𝑏𝑟)                          (24) 

While the update gate manages how much of the prior 

state is retained, as represented by (25). 
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𝑧𝑡𝑖 = 𝜎(𝑊𝑧 . [ℎ𝑡𝑖−1,𝑥𝑡𝑖] + 𝑏𝑧)                         (25)  

The candidate activation  ℎ𝑡𝑖  captures new data and 

integrates it into the hidden state expressed as (26), 

ℎ𝑡𝑖 = (1 − 𝑧𝑡𝑖) ∗ ℎ𝑡𝑖−1 + 𝑧𝑡𝑖 ∗ ℎ𝑡𝑖
̅̅̅̅    (26) 

Thus, the proposed hybrid model combines LSTM and 

GRU layers with an attention mechanism to effectively capture 

spatial and temporal dependencies in EMG signals. The 

attention mechanism assigns weights to the most significant 

input features, ensuring the model focuses on critical data 

segments.  The LSTM layers capture long-term dependencies, 

while GRU layers address vanishing gradient issues, ensuring 

efficient learning. This combination leverages the strengths of 

both architectures to improve recognition accuracy. The final 

output is obtained through a fully connected layer followed by 
a SoftMax function for gesture classification.  

3.5. Hardware and Software Setup 

A comprehensive setup is used for this study to ensure a 

well-equipped environment to handle the demand of neural 

network training and deployment consisting of NVIDIA 

GeForce GTX 1080Ti GPU, an Intel Core i7 processor, 32GB 

of RAM, and the Python-based Keras library integrated with 

the TensorFlow framework. With Google Colab’s vast 

computing resources and Keras’s user-friendly interface, 

building models was made easy and complex structures were 

ensured to be trained and executed successfully.  
Hyperparameters are critical parameters that specify the 

operation and functions of a deep learning framework 

throughout the training. Table 2 demonstrates 

hyperparameters, which are user-specified prior to training, in 

contrast to the model’s parameters, which are determined by 

the data. 

Table 2. Hyperparameter specifications 

Hyperparameters Values 

Loss Function Sparse Categorical Cross Entropy 

Activation Function SoftMax 

Dropout 0.5 

Batch Size 512 

Optimizer Adam 

Epoch 100 

 

4. Results and Discussions 
4.1. Performance Evaluation 

Performance evaluation of the model was conducted to 

ensure a comprehensive understanding of its effectiveness 

using a variety of metrics. The primary metrics, shown in 

Table 3, offers insights into the model’s performance. These 

metrics were chosen for their relevance in tasks requiring 

detection accuracy and minimizing false positives/negatives. 

Table 3. Evaluation parameters 

Performance Metrics Equations 

Accuracy (TP+TN)/(TP+TN+FP+FN) 

Precision TP/(TP+FP) 

Recall TP/(TP+FN) 

F1 Score 
2*(Precision*Recall) / 

(Precision+Recall) 

Where, TP-True Positives, FP-False Positives, TN-True 

Negatives, and FN-False Negatives 

 

With the help of the evaluation metrics, the effectiveness 

of the hybrid model for HGR is evaluated. The classification 

report of the suggested model is illustrated in Table 4, and 

Figure 14 represents its visualization.  

Table 4. Classification report of proposed method 

Evaluation Metrics Results (%) 

Accuracy 0.9887 

Precision 0.9782 

Recall 0.9807 

F1- Score 0.9774 

 

 
Fig. 14 Graphical representation of performance evaluation 

Table 4 shows that the hybrid Attention-based LSTM-

GRU is highly effective in recognizing hand gestures. The 

model performs well with an accuracy of 98.875%, indicating 

the correctness in recognizing most hand gestures. The model 

shows 97.82% precision, indicating the effectiveness in 

predicting particular gestures, reflecting a low false positive 

rate. With a recall rate of 98.07%, the model accurately detects 
the real motions, demonstrating a low false negative rate. F1-

Score of 97.74%, a combined score of precision and recall, 

demonstrates a balanced performance in both gesture 

recognition and accurate classification. 

The study’s accuracy and loss plots were crucial for 

assessing the model’s performance throughout training. The 

accuracy plot demonstrated the model’s learning progress, 
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which showed strong generalization as training accuracy 

increased gradually and validation accuracy followed suit. 

The consistent decay in the loss plot indicates that the model 

has fewer errors and is more efficient in learning. No 

divergence between the training and validation metrics 

indicates no overfitting. The model’s accuracy and loss plot 
are shown in Figure 15. The confusion matrix depicted in 

Figure 16 illustrates the model performance by comparing it 

with the actual labels. Predicted labels are compared to actual 

labels, with accurate predictions along the diagonal and 

incorrect classifications shown by off-diagonal parts. Several 

performance metrics are calculated from the confusion matrix 

to assess the framework’s efficiency, as indicated in Table 3.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15 Accuracy and loss plot of the suggested hybrid model

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16 Confusion matrix of the suggested model 

4.2. Performance Comparison 

Table 5 and Figure 17 show the proposed model’s 

effectiveness compared to existing models. The effectiveness 

of several models has been demonstrated in Table 5. The 

LSTM model offers an accuracy of 0.818 and reasonably 

better performance in capturing temporal dependencies, and 

CNN achieves an accuracy of 0.850 by effectively capturing 
spatial information from EMG signals. By combining spatial 

and temporal feature extraction, the hybrid CNN+LSTM 

model provides an accuracy of 0.921, showing a considerable 

performance improvement.  

The proposed Attention-based LSTM-GRU model with 

an accuracy of 0.9887, precision of 0.9782, recall of 0.9807, 

and F1 score of 0.9774 is more effective in hand gesture 

recognition by analyzing complex patterns from the EMG 

signals. Figure 17 shows the accuracy of comparing the 
suggested model with the existing methods.  
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Table 5. Comparison with the state of the art model 

Model Accuracy Precision Recall F1 Score 

LSTM 0.818 0.792 0.800 0.795 

BiLSTM 0.728 0.730 0.76 0.744 

GRU 0.835 0.802 0.831 0.815 

CNN 0.850 0.832 0.826 0.829 

CNN+LSTM 0. 921 0.900 0.878 0.912 

Proposed model 0.9887 0.9782 0.9807 0.9774 

 

 
Fig. 17 Accuracy comparison of the suggested model with the existing methods

5. Conclusion 
HGR improves human-computer interaction by 

facilitating natural communication with gadgets and offering 

crucial accessibility for those with disabilities. This research 

suggested a hybrid deep learning model combining attention-

based LSTM and GRU networks for efficient HGR using 

EMG signals. The suggested model utilizes the capability of 

both LSTM and GRU to capture the temporal dependencies. 

An attention mechanism is incorporated to extract the 
pertinent features of the data. Frequency domain and time 

domain analysis are evaluated for efficient gesture 

recognition. The study demonstrates that the hybrid model 

achieves superior performance metrics, with 98.875% 

accuracy, 97.82% precision, 98.07% recall, and an F1 score of 

97.74%, significantly outperforming existing methods.  

These findings demonstrated the robustness and the 

model’s potential for real-time applications, including 
assistance for individuals with disabilities and advanced HCI, 

resulting in enhanced quality of life. While the model 

demonstrates strong performance, challenges like noise in 

EMG signals, dataset limitations (static gestures only), and 

computational demands should be acknowledged. 
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