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Abstract - Feature selection and dimensionality reduction are critical techniques in today's data-centric world, where vast and 

complex datasets necessitate efficient and effective methods for analysis and decision-making. In this research, an enhanced 

feature selection technique, Composite Node Information - Variance Inflation Factor (CNI-VIF), tailored for graph databases, 
which particularly focuses on network traffic datasets, is proposed. Traditional feature selection methods often fail to adequately 

capture the complex interrelationships in graph data. The proposed method incorporates Composite Node Information (CNI), 

an aggregate of Betweenness, Closeness, and Degree centrality, into the VIF framework to address these limitations. By 

integrating CNI, the proposed method not only improves the selection of graph-based features but also achieves dimensionality 

reduction and decreased computation time, making the feature selection process more efficient. Experiments conducted on CTU-

13, IoT-23, and NCC-2 datasets demonstrate that CNI-VIF significantly outperforms traditional methods by effectively selecting 

graph-based features, thus enhancing the performance of machine learning models. Specifically, the Random Forest algorithm 

shows exceptional results among all feature selection techniques, with CNI-VIF yielding the best performance overall. The 

results indicate that CNI-VIF is particularly effective for graph databases, offering a robust and efficient feature selection 

mechanism that enhances model computation and predictive accuracy. 

Keywords - CNI, CNI-VIF, Graph database, Feature selection, VIF. 

1. Introduction 
In today's data-driven world, the absolute volume and 

data complexity present substantial challenges for analysis 

and decision-making. Social networks, e-commerce websites, 

online applications, communication systems, and other 

technologies generate "big data", which is complex, valuable, 

structured, and unstructured.  Processing big datasets with 
high-dimensional feature space is a crucial problem. 

Nonetheless, a large number of features are frequently present 

in the training data of real-world classification applications 

[1].  

They might contain some redundant or unnecessary 

features, which would lower the performance of the resulting 

classifier as well as the training efficiency [2]. One of the most 

crucial methods for eliminating extraneous or irrelevant 

features from the original feature collection is dimensionality 

reduction. Feature selection and dimensionality reduction 

have become crucial techniques to address these challenges, 
particularly in the context of machine learning and data 

science [3, 4].  

These methods aim to identify the most relevant features 

from large datasets, reducing the dimensionality while 

retaining the essential information needed for accurate and 

efficient modelling. This not only enhances the performance 

of predictive models but also reduces computational costs, 

storage requirements, and the risk of overfitting. 

Dimensionality reduction techniques can improve application 

method performance, reduce computational costs, and prevent 

overfitting issues when processing high-dimensional 

information.  

The two primary approaches of dimensionality reduction 

used today are extracting features and selecting required 
features [4, 5]. Feature extraction helps to reduce 

dimensionality by converting the original feature space into a 

compact space. Feature selection eliminates superfluous or 

unnecessary characteristics when selecting a subset of the 

features compared to feature extraction. Four main categories 

can be used to categorize feature selection: filter, wrapper, 

hybrid, and embedded techniques [6, 7].  

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
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Wrapper techniques have a high processing cost despite 

being able to produce good classification results. Filter 

techniques are widely employed in practical applications due 

to their effortless and practical computations. The greatest 

elements from filter and wrapper approaches are combined in 

hybrid strategies. Embedded techniques use feature selection 
during the learning algorithm training phase to find the 

optimal feature subset. Filter techniques that are simpler to 

build, more generalizable, and independent of the learning 

model are more suitable for processing high-dimensional data 

than other approaches.  

Graph databases [8], representing data as interconnected 

nodes and edges, are increasingly used in various domains. In 

network traffic, relationships and interactions between IP 

addresses, devices, or nodes resemble a graph structure, where 

nodes represent entities (such as devices or IPs), and edges 

represent interactions (like connections or traffic flows). 

Graph databases can directly model these relationships, 
making it easier to visualize and analyse the network's 

structure. When it comes to storing and retrieving data, graph 

databases perform best in scenarios where the majority of the 

data is linked, such as social media, geolocation, networks, 

cybersecurity and biomedical data [9, 26].   

Traditional feature selection techniques often fall short in 

such databases as they do not fully leverage the structural 

information inherent in graph data. Features derived from 

graph properties can be used to get insights such as the 

importance and influence of nodes within the network. 

However, integrating these graph-specific features with 
conventional feature selection methods remains challenging. 

Researchers focused on developing graph-based feature 

selection techniques, which involve projecting intricate multi-

way feature interactions into a feature graph and using various 

graph-theoretic concepts to choose final feature subsets, 

which have proven superior to the classic feature selection 

methods [9, 10].  

Traditional feature selection methods do not account for 

graph-specific features like centrality measures, community 

structures, or connectivity patterns, which are crucial for 

understanding the underlying graph topology. Applying 

existing feature selection techniques to large-scale graph 
databases can be computationally intensive, especially if the 

graph has a high degree of connectivity and numerous 

features. This necessitates the development of modified 

techniques that incorporate graph-specific features and 

account for the complex relationships inherent in graph data. 

When compared to static feature graphs, the dynamic feature 

graph that was created was able to yield feature subsets of 

greater quality and more closely resemble the ideal feature 

graph [11].  

An enhanced approach called Composite Node 

Information-Variance Inflation Factor (CNI-VIF) is proposed 

to bridge this gap, integrating graph-based features with the 

traditional Variance Inflation Factor (VIF) framework. By 

incorporating Composite Node Information (CNI) derived 

from centrality measures such as betweenness, closeness, and 

degree centrality, CNI-VIF aims to provide a more 

comprehensive and interpretable measure of multicollinearity 
in graph databases. This approach not only enhances feature 

selection but also improves the overall performance and 

efficiency of machine learning models applied to graph-based 

data. 

The methodology used in this paper explores the 

effectiveness of the CNI-VIF approach by comparing it with 

traditional VIF, Principal Component Analysis (PCA), and 

Recursive Feature Elimination (RFE) methods. Experiments 
are conducted using three benchmark network traffic datasets: 

CTU-13 [12], IoT-23 [13], and NCC-2 [14] to measure the 

performance of the proposed method. This study underscores 

the importance of incorporating graph-specific characteristics 

in feature selection methodologies and positions CNI-VIF as 

a powerful tool for enhancing analysis and decision-making in 

graph databases. To be precise, the key contributions in this 

paper can be abridged as follows: 

1) An aggregate graph-based feature called “CNI” is 

introduced, which contains an average of three important 

centralities in a network.  

2) Based on the “CNI”, the original VIF feature selection 

algorithm is modified to make it more appropriate for 

graph databases.  

3) The efficacy of the proposed CNI-VIF is tested on three 

network traffic data sets of varying dimensions. The 

results demonstrate that CNI-VIF consistently selects 

more relevant features and achieves superior model 

accuracy and computational efficiency. 

The remainder of the paper is systematized as follows. 

The preliminary feature selection approaches, and the 

associated work on graph-based feature selection algorithms 

are specified in Section II. Traditional VIF, centrality 

measures and the proposed CNI-VIF are accessible in Section 

III. Then, in Section IV, we analytically verify the efficacy of 

the CNI-VIF by comparing it with the three latest feature 

selection algorithms with respect to graph-based feature 
selection, various performance metrics and running time. 

Finally, in Section V, a conclusion and a deliberate discussion 

of future work is provided.  

2. Literature Review  
The technique of removing unnecessary and significant 

attributes from a dataset to expedite processing is known as 

feature selection. Traditional feature selection techniques can 

be separated into behaviours for node-level, edge-level, and 

graph-level feature extraction [23]. Information such as the 

density of the node's neighbourhood cluster and node 

centrality can all be encoded by node-level attributes. Graph-



Anagha Patil & Arti Deshpande / IJEEE, 11(11), 100-113, 2024 

 

102 

level features can be used to wrench out information through 

counting the presence of various trivial subgraph structures, 

iterative neighbourhood aggregation or accumulating 

statistics/features from all nodes inside a graph. Edge-level 

feature techniques extract features by counting the number of 

paths of all lengths between two nodes or the count of 
neighbours that two nodes share. Graph-based feature 

selection methods proved superior to existing feature selection 

methods due to the capability of considering one-way or two-

way relations among the features. 

At present, the graph-based feature selection techniques 

can be broadly divided into various classes, including graph-

lasso-based [15, 17], graph-clustering-based [16] and 

evolutionary computation graph-based [18, 19]. Moreover, 

these approaches can be applied in a supervised, unsupervised 

and hybrid manner. 

The research [15] proposed a Graph Regularized Feature 

Selection with Data Reconstruction (GRFS) approach for 
feature selection. The approach formulates the feature 

selection problem in an unsupervised manner with the view of 

data reconstruction, where the objective is to choose features 

that maintain the discriminant information and similarity with 

the original data space. The approach uses a joint framework 

that integrates data reconstruction and graph regularization, 

and to solve the optimization problem, it uses a gradient 

method. The authors claimed that the proposed method can be 

stretched to supervised feature selection by incorporating label 

information into the graph regularization.  

The authors [16] note that the number of subgraph 
features can be extreme depending on the threshold of the 

frequent pattern mining algorithm. The Incremental Subgraph 

Feature Selection (ISF) algorithm leads classifiers to generate 

long-pattern subgraph features to avoid bias towards short-

patterns that form a sequence of primal-dual solutions that 

shrink the dual gap and render an improved solution towards 

the optimum. The Incremental Subgraph Join Feature 

Selection (ISJF) algorithm helps classifiers to generate long-

pattern subgraph features. The study also discusses the 

limitations of existing graph classification methods and 

proposes a max-margin graph classifier using the proposed 

algorithms. 

The authors [17] proposed an innovative feature selection 

method, Dual-graph regularized Feature Selection Clustering 

(DFSC), which maintains local geometrical structure by 

building neighbourhood graphs in feature and data spaces 

using the self-representation property. The authors also 

analyse the sensitivity of DFSC to parameters and compare it 

with co-clustering algorithms on the COIL20 dataset, showing 

that DFSC attains the best clustering results by utilizing both 

data and feature manifolds and selecting the most effective 

features. The effectiveness of DFSC is further validated using 

the "Ionosphere" dataset, revealing that the coefficients of the 

actual features are significantly greater than those of new 

features in the coefficient’s matrix P. 

Zhiwei Hu et al. [20] and T. B. Mudiyanselage [21] 

proposed graph-based feature selection approaches. [20] is 

built on the concept of feature clusters and uses a graph 

structure to represent the correlation between features and 
labels. At the same time, [21] aims to address the limitations 

of existing methods by considering feature dependencies and 

performing well in high-dimensional feature spaces. Future 

work includes investigating the similarity criteria between 

continuous value attributes and discrete value attributes, as 

well as refining the method to reconcile the conflict between 

high-dimensional data and computational complexity. 

The study [22] employs a graph kernel-based Structured 

Feature Selection (gk-SFS) technique for brain disease 

classification using Functional Connectivity Networks 

(FCNs) constructed on resting-state functional Magnetic 

Resonance Imaging (rs-fMRI) data. The authors also 
investigate the effects of regularization parameters and 

thresholds on the performance of the projected method and 

validate the identified brain regions with previous studies.  

Giorgio Roffo et al. [7] present a framework for filtering 

feature selection that handles relevance and redundancy 

principles by considering a subset of features as a path in a 

graph, wherein a node represents a feature, and an edge 

denotes interactions among features. The framework is 

evaluated on eleven different publicly available datasets to 

study the pros and cons of the unsupervised and supervised 

Inf-FS. 

Afnan Alharbi et al. [6] worked on CTU-13 and IoT-23 

datasets for graph-based botnet detection. The authors used 

supervised machine learning algorithms to evaluate proposed 

methods with filter-based feature evaluation metrics. This 

approach detects numerous botnet families with an increased 

botnet detection rate in reduced time. The authors suggest 

using attribute features along with structural features of the 

network for better botnet detection.  

The research [23] aims to propose a graph-based feature 

selection method, GBFS-SND, which constructs a dynamic 

feature graph and utilizes a multi-objective evolutionary 

technique to optimize its structure and nodes, leading to a 
high-quality feature subset. The paper also investigates the 

efficacy of GBFS-SND on twelve real-world datasets and 

compares it with existing algorithms, demonstrating its 

superiority in terms of accuracy and selected features. 

The study [24] aims to address the challenges of 

modelling high-dimensional spectral data with the help of the 

Mutual Information-Variance Inflation Factor (MI-VIF). 

While [16, 20] focus on the structure of the network, [24] does 

not consider it. Ling Zheng et al. [25], Fan Cheng et al. [23] 
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and Consolata Gakii et al. [26] aim to propose a graph-based 

framework for feature selection in real-world datasets, 

addressing the limitations of traditional FS methods. The 

authors identify several potential areas for future research, 

including investigating other search mechanisms for feature 

selection, improving feature grouping strategies, and applying 

the method to deep features. These opportunities aim to 

enhance the performance and flexibility of the proposed 

feature grouping framework. A detailed summary of the 

literature is presented in Table 1. 

Table 1. Summary of literature review 

Literature 
Feature Selection 

Approach 
Dataset(s) Contribution Gap 

[15] 

Graph-clustering 

based 

(Unsupervised) 

TDT2, Routers 

document corpora 

Features are chosen based on 

how well they maintain 

discriminant information and 

similarity in the original data 

space. 

The algorithms cannot 

handle high dimensional 

sub-graph feature space 

and more complex graph 

structures. 
[16] 

Graph-based 

(Supervised) 

Albert-Barabasi, 

Forest Fire, Small 

World, Erdos-Renyi, 

DBLP, MemeTracker 

A primal-dual incremental 

subgraph feature selection 

algorithm (ISF) and a subgraph 

join feature selection algorithm 

(ISJF) are proposed. 

[17] 
Graph lasso-based 

(Unsupervised) 

Umist, 

Dbworld_bodies, 

Isolet, Sonar, ORL, 

BC, Ionosphere, 

Dbworld_bodies 

By maintaining local 

geometrical information in both 

the feature spaces and the data, 

DFSC efficiently chooses the 

best representative features for 

clustering. 

DFSC removes related 

features after the feature 

selection process to 

avoid redundancy. 

[20] 
Graph-based 

(Supervised) 

Wine, Dermatology, 

Sonar, Wdbc, 

Parkinsons, 

Ionosphere, Lung, 

Hill Valley 

The correlation between 

features and labels filters out 

weakly correlated features, and 

the remaining features are used 

to construct a graph. 

The algorithm cannot 

handle high-dimensional 

data. 

[21] 

Graph-based 

(Supervised + 

Unsupervised) 

COIL20, ORL 

The method constructs a graph 

based on feature similarity and 

uses the Markov chain process 

to calculate each feature's 

score. 

New similarity 

calculation methods are 

required to better 

represent the original 

feature space and find 

the optimal feature set. 

[22] 
Graph-Kernel 

based (Supervised) 
ADNI, ADHD-200 

The structural information of 

networks is preserved, and the 

learning performance is 

improved by taking advantage 

of the local-to-global structural 

information. 

The methods can be 

integrated with other 

machine learning 

algorithms for enhanced 

classification. 

[7] 

Graph-based 

(Supervised + 

Unsupervised) 

Colon, Lymphoma, 

Leukemia, Lung, 

Prostate 

The method creates pathways 

of variable lengths that 

eventually grow to infinity by 

using the properties of a power 

series of matrices and 

depending on the principles of 

Markov chains. 



Anagha Patil & Arti Deshpande / IJEEE, 11(11), 100-113, 2024 

 

104 

[6] 
Graph-based 

(Supervised) 
CTU-13, IoT-23 

Using consistency, correlation 

and information, feature 

evaluation is derived. 
Only structural features 

of the network are 

considered. 
[26] 

Graph-based 

(Supervised) 

GSE60052, 

GSE81089 

Graph-based feature selection 

is used along with association 

miming to find associations 

between features in RNAseq 

data. 

[23] 
Graph-based 

(Supervised) 
12 datasets 

High-quality feature subset was 

obtained by dynamically 

adjusting the feature graph's 

node and structure. 

The candidate graph's 

graph structure is 

modified by eliminating 

a few links. 

[24] 
Graph-based 

(Supervised) 

Tea dataset, Diesel 

fuels dataset 

The objective is to maximize 

the correlation between 

independent variables and the 

response variable while 

minimizing collinearity 

amongst selected variables. 

The mutual Information-

Variance Inflation Factor 

algorithm does not focus 

on the graph's structure. 

[25] 
Graph-based 

(Supervised) 
20 datasets 

The framework constructs a 

graph based on feature 

interactions and uses Kruskal's 

algorithm to build a minimum 

spanning tree, which is then 

used to form feature groups. 

Feature grouping 

strategies can be 

improved. 

 

3. Methodology  
When working with datasets enriched with graph-based 

features, traditional methods for calculating VIF can be 

adapted to better capture the complex relationships inherent in 

graph data. While traditional VIF can detect multicollinearity, 

it does not consider the structural properties of the graph, 
which can be critical in network data.  The Modified VIF, 

referred to as CNI-VIF, aims to incorporate graph-based 

metrics to provide a more nuanced understanding of 

multicollinearity.  

3.1. Traditional VIF 

VIF [27] is a metric that illustrates the extent to which 

multicollinearity in the data increases the variance of an 

estimated regression coefficient. High VIF values can indicate 

multicollinearity but might also lead to overfitting if used 

excessively for feature elimination. Despite its effectiveness 

in traditional data structures, VIF does not inherently account 
for the interconnected nature of graph data. Traditional VIF 

ignores the contextual information provided by graph-based 

features, which can be crucial in detecting patterns like botnet 

behaviour in network data. 

The traditional VIF for a feature Xi is calculated to assess 

how much the variance of its estimated coefficient is increased 

due to multicollinearity with other features.  

The steps to calculate VIF are: 

 Fit a regression model where Xi is the dependent variable, 

and all other features are the independent variables. 

 Compute R2 for this regression, denoted as Ri
2. 

 Calculate VIF using: 

VIFi =
1

1−Ri2  (1) 

This formula measures the degree of multicollinearity; a 

higher VIF indicates greater collinearity. The results of 

regression are not invalidated by greater values of the VIF. 
Greater values indicate the removal of one or more 

independent variables or the need to combine them into a 

single index. So, Composite Node Information (CNI) is 

considered a single variable. 

3.2.  Centrality Measures 

When graph theory is used for network analysis, 

centrality measures play an important role as they capture the 

importance of nodes in terms of connections, 

communications, and relationships [6, 8]. Hence, these 

measures can be helpful to discriminate between normal nodes 

and bots. Some important centrality measures are explained 

below: 
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3.2.1. Betweenness Centrality (BC) 

The Betweenness Centrality of any node indicates the 

number of times that node resides on the shortest path through 

others. As stated differently, BC indicates the frequency with 

which a node spans the shortest path between two other 

vertices. A high BC count simply indicates that a particular 
node embraces authority over different clusters in a network 

or that both nodes are on the border of both clusters. 

3.2.2. Closeness Centrality (CC) 

This measure calculates the shortest paths between all 

nodes and then assigns each node a score based on its sum of 

shortest paths. In a densely connected network, CC can assist 

in identifying quality "broadcasters." 

3.2.3. Degree Centrality (DC) 

Degree Centrality measures how well a node is 

connected. It assigns a score based on the node’s 

communication with others in the network. DC is used to find 

popular connected nodes, nodes that hold the greatest 
information or nodes that can rapidly connect with the broader 

network. 

3.2.4. Eigen Centrality (EC) 

In addition, EC considers a node's degree of connectivity, 

the number of hyperlinks that connect it to other nodes, and so 

on through the network. 

3.2.5. PageRank (PR) 

An additional method of assigning a score to nodes based 

on their connections and their neighbours is PageRank, a 

variation of EC. The distinction is that PageRank considers 

both the direction and weight of connections, meaning that 
links can only carry varying degrees of influence in one 

direction. 

3.3. Composite Node Information (CNI) 

In this research, the focus is on graph-based network 

traffic data. So, to enhance feature selection in network data, 

we calculate the Composite Node Information (CNI) as an 

aggregate measure of three key centrality metrics: 

Betweenness Centrality (BC), Closeness Centrality (CC) and 

Degree Centrality (DC). These metrics provide a holistic view 

of a node's significance within the network.  

𝐶𝑁𝐼 =
𝐵𝐶+𝐶𝐶+𝐷𝐶

3
   (2) 

This adjustment reflects the added complexity or 

collinearity introduced by the network structure. 

In a network context, interactions between nodes (e.g., 

data packets sent from a source IP to a destination IP) can be 

characterized by the properties of both participating nodes. 

Incorporating separate CNI values for both source and 

destination IPs would effectively double the number of 

features related to CNI. This could increase the complexity of 

the model and the computational burden, especially in large 

datasets.  

By using the average_CNI (𝐶𝑁𝐼̅̅ ̅̅ ̅), the dimensionality of 
the entire feature space is reduced, simplifying the model 

while still capturing the essential characteristics of the node 

interactions. It's useful to combine the information from both 

ends of the connection to provide a comprehensive 
representation of these interactions.  

The 𝐶𝑁𝐼̅̅ ̅̅ ̅ serves this purpose by aggregating the CNI 

values of the source and destination nodes into a single metric, 
reflecting the overall influence or importance of the 

interaction within the network. 𝐶𝑁𝐼̅̅ ̅̅ ̅ captures the centrality or 
importance of nodes (features) within the graph, indicating 

how influential a node is within the network. 

3.4. CNI-VIF for Graph Databases 

The traditional VIF is modified by integrating the 𝐶𝑁𝐼̅̅ ̅̅ ̅, 
scaled by a parameter α: 

𝐶𝑁𝐼 − 𝑉𝐼𝐹𝑖 =
1

1−𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑(𝑅𝑖2 +𝛼∗𝐶𝑁𝐼)̅̅ ̅̅ ̅̅ ̅
     (3) 

Where: 

 Ri
2 is the unadjusted coefficient of determination for 

regressing the ith independent variable on the remaining 

ones. 

 CNI̅̅ ̅̅ ̅ is the mean value of the average_CNI for the dataset. 

 𝛼 is a parameter that adjusts the influence of the graph-
based feature. 

To ensure that CNI-VIF values are on a comparable scale 

and to prevent any undue influence of outliers, we normalize 

(𝑅𝑖2 + 𝛼 ∗ 𝐶𝑁𝐼)̅̅ ̅̅ ̅̅ ̅ using Min-Max normalization. Since both 

𝑅𝑖2 and 𝐶𝑁𝐼̅̅ ̅̅ ̅ are in [0,1], their sum, scaled by non-negative 

factor 𝛼, is also bounded.  

Explicitly: 

0 ≤  𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑(𝑅𝑖2 + 𝛼 ∗ 𝐶𝑁𝐼)̅̅ ̅̅ ̅̅ ̅ < 1 

The strict inequality <1 ensures that the denominator of 

the CNI-VIF equation: 

1 − 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑(𝑅𝑖2 + 𝛼 ∗ 𝐶𝑁𝐼)̅̅ ̅̅ ̅̅ ̅ 

Is always positive and never zero. This positive value 

ensures that the denominator does not approach zero, thus 

preventing the CNI-VIF from becoming infinite or undefined. 

Since the denominator is strictly positive, the CNI-VIF is 

finite. 
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Algorithm for CNI-VIF: 

Input 

X: DataFrame containing all features, 

including graph-based features (average_CNI),  

α: Parameter controlling the weight of 

average_CNI. 

Output CNI-VIFi for each feature Xi, Selected features 

Steps  

1: 
Calculate the average centrality (average_CNI) 
across the dataset. 

2: 
Calculate (𝑅𝑖2 + 𝛼 ∗ 𝐶𝑁𝐼)̅̅ ̅̅ ̅̅ ̅ , scaled by the 

parameter 𝛼. 

3: 
If the component (𝑅𝑖2 + 𝛼 ∗ 𝐶𝑁𝐼)̅̅ ̅̅ ̅̅ ̅ > 1, then 
normalize this component to ensure it is within 

[0,1].  

4: Repeat Step 1 – Step 3 for each feature Xi. 

5: Return CNI-VIFi for each feature Xi. 

 

Let’s consider an example where the betweenness 

centrality feature is added in the CTU-13 dataset. When this 

feature is added to the dataset, as the source and destination 

IPS are provided, which represent nodes in a graph database, 
it is necessary to calculate betweenness centrality for both of 

them.  

The feature “orig_betweenness” represents betweenness 

centrality for source ip. After applying VIF and CNI-VIF to 

the CTU-13 dataset, the following values are obtained as the 

output: 

VIF : inf (infinite) 

CNI-VIF : 9.893454 

If the traditional VIF value for a feature (in this case, 

orig_betweenness) is infinite, it indicates perfect 

multicollinearity among the predictor variables. This means 
that orig_betweenness can be perfectly predicted from the 

other features in the dataset, and the feature is eliminated. An 

infinite VIF value typically occurs when the coefficient of 

determination  𝑅𝑖2  for the regression of orig_betweenness on 
the other features is 1.0.  

When α is assumed as 1, a CNI-VIF value of 9.893454 

indicates high, but not perfect, multicollinearity when 

accounting for both traditional and graph-based features. The 

substantial but finite CNI-VIF suggests that orig_betweenness 

is still strongly influenced by other features, but the inclusion 

of CNI has alleviated the severity of perfect multicollinearity, 

providing a more nuanced understanding of feature 

relationships to sustain the feature. In practice, features like 

"orig_betweenness" might show a high CNI-VIF (indicating 
multicollinearity with other graph features) while exhibiting a 

non-significant traditional VIF. This showcases CNI-VIF's 

ability to detect dependencies missed by VIF, particularly 

those relevant to the graph's structural context. 

4. Experiments 
Here, the performance of the proposed CNI-VIF 

algorithm is analytically validated by comparing it with 

several benchmark algorithms. The network traffic datasets 

and benchmark algorithms used in the experiments are 

introduced (Section 4.1). Two data frames for every dataset 

are used here:  

1) one with centrality features of graph to show the 

effectiveness of our proposed method on graph-based 

datasets, and  

2) another with our composite parameter “CNI” instead of 
these centrality features to show reduced dimensionality 

and reduced computation time.  

Then, the results after comparing the proposed algorithm 

and benchmark algorithms are outlined with the help of 

evaluation metrics such as accuracy, precision, recall and F1 

score (Section 4.2). Additionally, to prove the dominance of 

the proposed method, all the listed techniques on the data sets 

of varying dimensions are compared with respect to the 

number of selected features, including graph features, and the 

running time (Section 4.2). 

4.1. Datasets 
The proposed algorithm is tested on three datasets 

containing network traffic for botnet detection. Graph 

databases can directly model these relationships, making it 

easier to visualize and analyse the network's structure. The 

experiments are conducted to, 

1) test the proposed method on network traffic datasets to 

ensure dimensionality reduction with the introduction of 

composite variable “CNI”;  

2) compare CNI-VIF algorithm with other feature selection 

methods to validate the performance in terms of 

performance metrics;  

3) compare CNI-VIF algorithm with listed feature selection 
methods with respect to execution time; and  

4) Additionally, to show the pre-eminence of the proposed 

method, all the listed algorithms are compared on the data 

sets of varying dimensions.  

The code and data sets are available online [28]. The 

algorithms and their evaluation are implemented in Python 

with the help of various ML and DL methods. All experiments 

are executed on a GPU with Nvdia GeForce Trx 4080 and 

16GB memory. 

To test the efficiency of the CNI_VIF approach, CTU-13, 

IoT-23 and NCC-2 datasets are used. CTU-13 contains PCAP 
files from infected ips formed by CTU University. Thirteen 
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scenarios comprising both malicious and benign traffic from 

different botnet families are included in the CTU-13 dataset. 

The IoT-23 dataset is designed for machine learning research 

on IoT-based cyber-attacks.  

The NCC-2 dataset was released in 2022 with the goal of 

capturing both periodic attacks on NCC [29] and irregular 
attacks on CTU-13. Various botnet tools are used in all three 

datasets to contain botnet traffic. Thus, the tuples in the 

datasets contain normal, background, and botnet traffic. The 

datasets are available for free download on the official 

websites and have been used in several research studies and 

competitions. 

Table 2. List of datasets 

Dataset Size 
No. of 

Features 

No. of 

Nodes 
Edges 

CTU-13 1.9 GB 17 52749 801132 

IoT-23 21 GB 21 1097904 1446639 

NCC-2 866 MB 18 8559 997757 

 

The detailed statistics of the data sets are provided in 

Table 2. Table 2 shows that the feature count in these datasets 
varies from 17 to 21. For every data set, the data is split 

randomly into two sets: 30% is used as the test set and 70% is 

used as the training set. The Accuracy, Precision, Recall, F1 

score and feature subset (how many graph-based features are 

still sustained) after feature selection and running time of 

algorithms on the test data are reported as the experimental 

outcomes. 

4.2. Experimental Setup and Results 

Experiments are being carried out to determine whether 

the CNI-VIF approach is effective. The performance of CNI-

VIF is compared with the three latest feature selection 
techniques, which are VIF, PCA [30], and RFE [31]. VIF is a 

measure used to detect multicollinearity among predictor 

variables in a regression model.  

PCA reduces dimensional space by transforming a large 

set of variables into a smaller set of uncorrelated components. 

It is widely used in machine learning and data analysis to 

reduce the dimensionality of data. RFE is a feature selection 

method that recursively removes the least significant features 

based on model performance, aiming to select the important 

set of features. 

Based on the listed data sets, CNI-VIF is compared with 

three algorithms that consider only graph-based features that 
focus on centrality. As these datasets mainly contain network 

traffic, three graph-based features are considered: BC, CC, 

and DC.  

All the datasets contain source and destination ips, which 

are further converted into nodes, so six centralities are added 

as graph-based features for BC, CC and DC, respectively, 

namely:  

 orig_betweenness,  

 resp_betweenness,  

 orig_closeness,  

 resp_closeness,  

 orig_degree,  

 resp_degree. 

Table 3. Feature selection obtained by all comparison algorithms for 

CTU-13 

Sr. 

No. 
Features 

Feature Selection 

Algorithms 

CNI-

VIF 
VIF PCA RFE 

1 

O
ri

g
in

al
 F

ea
tu

re
s 

Dur √ √ √ √ 

2 Proto     

3 SrcAddr √    

4 Sport √ √ √ √ 

5 Dir     

6 DstAddr √ √ √  

7 Dport √    

8 State √ √   

9 sTos     

10 dTos     

11 TotPkts   √  

12 TotBytes   √ √ 

13 SrcBytes √ √   

14 Label √  √  

15 Train     

16 StartTime √ √ √ √ 

17 ActivityLabel √ √ √ √ 

18 

G
ra

p
h

-B
as

ed
 F

ea
tu

re
s 

orig_degree √    

19 resp_degree √    

20 orig_closeness √    

21 resp_closeness √    

22 orig_betweenness √    

23 resp_betweenness √    
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Table 4. Feature selection obtained by all comparison algorithms for 

IoT-23 

Sr. 

No. 
Features 

Feature Selection 

Algorithms 

CNI-

VIF 
VIF PCA RFE 

1 

O
ri

g
in

al
 F

ea
tu

re
s 

Ts     

2 uid     

3 id.orig_h √ √ √ √ 

4 id.orig_p √ √ √ √ 

5 id.resp_h √ √ √ √ 

6 id.resp_p √ √ √ √ 

7 proto √ √ √ √ 

8 service √    

9 duration √ √ √  

10 orig_bytes √ √   

11 resp_bytes √ √   

12 conn_state     

13 local_orig     

14 local_resp     

15 missed_bytes     

16 history √ √ √ √ 

17 orig_pkts   √  

18 orig_ip_bytes     

19 resp_pkts     

20 resp_ip_bytes     

21 ActivityLabel √ √ √ √ 

22 

G
ra

p
h

-B
as

ed
 F

ea
tu

re
s 

orig_degree √ √ √  

23 resp_degree √    

24 orig_closeness √    

25 resp_closeness √    

26 orig_betweenness     

27 resp_betweenness     

 

Table 5. Feature selection obtained by all comparison algorithms for 

NCC-2 

Sr. 

No. 
Features 

Feature Selection 

Algorithms 

CNI-

VIF 
VIF PCA RFE 

1 

O
ri

g
in

al
 F

ea
tu

re
s 

StartTime √ √ √  

2 Dur √ √ √ √ 

3 Proto     

4 SrcAddr √    

5 Sport √ √ √ √ 

6 Dir     

7 DstAddr √ √ √  

8 Dport √    

9 State √ √   

10 sTos     

11 dTos     

12 TotPkts   √  

13 TotBytes   √ √ 

14 SrcBytes √ √   

15 Label √  √  

16 ActivityLabel     

17 BotnetName     

18 SensorId     

19 

G
ra

p
h

-B
as

ed
 F

ea
tu

re
s 

orig_degree √   √ 

20 resp_degree √    

21 orig_closeness √   √ 

22 resp_closeness √    

23 orig_betweenness √    

24 resp_betweenness √    

 

The proposed algorithm is tested on these data frames and 

the outcomes are reported from the following parts. Tables 3, 

4 and 5 give an idea about the feature selection for the CTU-

13, IoT-23, and NCC-2 datasets, respectively. The selected 

features are marked ‘√’ as shown below. Specifically, our 

focus is on whether or not graph features are selected after 
feature selection. 
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From Tables 3, 4 and 5, it can be observed that the CNI-

VIF method significantly outperforms for selecting graph-

based features for all the datasets used here and becomes the 

most eligible feature selection method to apply for graph 

databases.  

Other feature selection methods fail to select most graph-
based features and do not show their applicability to graph-

based databases. Since CNI-VIF selects most of the added 

graph-based features, the number of features selected is 

always greater in comparison with VIF, PCA and RFE, which 

also increases the computation time of the algorithm. 

To reduce the effect of this added dimensionality, CNI is 

used as an aggregate of BC, CC, and DC. Again, as we work 

on network traffic, CNI will be calculated for Source and 

Destination ips. We calculate  an average of CNI of Sip and 

Dip to have a single composite feature.  

Table 6 is simply an extension for Tables 3, 4 and 5, 

where all graph-based features are now replaced with CNI. 
Table 6 gives a clear idea about CNI feature selection using 

feature selection techniques for the datasets. 

Table 6. 𝐂𝐍𝐈̅̅ ̅̅ ̅ Selection obtained by all comparison algorithms for all the 

datasets used 

Dataset Feature 
Feature selection algorithms 

CNI-VIF VIF PCA RFE 

CTU-13 CNI √    

IoT-23 CNI √ √   

NCC-2 CNI √    

 

Clearly, from Table 6, the CNI-VIF algorithm 

demonstrates a superior capability to select graph-based 

features compared to other feature selection methods like VIF, 

PCA, and RFE. Specifically, the CNI feature was consistently 

selected by the CNI-VIF algorithm across all datasets, 

highlighting its effectiveness in recognizing the importance of 

graph-specific attributes.  

In contrast, the VIF method only identified the CNI 

feature in the IoT-23 dataset, and PCA and RFE failed to select 

CNI across all datasets. This indicates that traditional feature 

selection techniques may overlook essential graph-based 

features, potentially leading to a loss of critical information. 

Table 7. Running time(s) in seconds obtained by CNI-VIF and VIF 

Dataset 
Feature Selection Algorithms 

CNI-VIF VIF 

CTU-13 0.50 0.58 

IoT-23 1.64 2.40 

NCC-2 0.42 0.59 

 

 

 

 

 

 

 

 

Fig. 1 Comparison of algorithm running time for CNI-VIF and VIF 

 

 

 

 

 

 

 

Fig. 2 Model computation time obtained by all comparison algorithms 

for CTU-13 

 

 

 

 

 

 

 

Fig. 3 Model computation time obtained by all comparison algorithms 

for IoT-23 

The running times presented in Table 7 and Figure 1 

demonstrate that the CNI-VIF algorithm is consistently more 

efficient than the traditional VIF method across all tested 

datasets. These results indicate that incorporating CNI 

enhances the selection of relevant graph-based features and 
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contributes to a more efficient computational process.The 

reduced running times associated with CNI-VIF can be 

attributed to its ability to streamline the feature selection 

process by effectively capturing essential graph-based 

features, thus avoiding unnecessary computations. 

 

 

 

 

 

 

 

Fig. 4 Model computation time obtained by all comparison algorithms 

for NCC-2 

 

 

 

 

 

 

 

 

Fig. 5 Accuracy obtained by all comparison algorithms for CTU-13 

 

 

 

 

 

 

 

 

Fig. 6 Accuracy obtained by all comparison algorithms for IoT-23 

The model computation time is also evaluated using the 

listed feature selection techniques, and the results can be seen 

in Figures 2, 3 and 4. The models include Logistic Regression, 

Random Forest, SVM, Ensemble (Voting), Convolutional 

Neural Network (CNN), and Feed-Forward Neural Network 

(FFNN). CNI-VIF clearly outperforms the rest of the three 
algorithms. 

To evaluate the performance of the proposed method in 

contrast with the rest of the feature selection methods, the 

listed feature selection techniques are tested using popular 

machine learning models. The models such as Logistic 

Regression (LR), Random Forest (RF), Support Vector 

Machine (SVM), Convolutional Neural Network (CNN), 

Feed-Forward Neural Network (FFNN), and Ensemble 

methods with soft voting are used here.  

Table 8 describes accuracy, precision, recall and F1-score 

for all the evaluated models and the best performances are 

marked in bold. Figures 5, 6 and 7 denote these performances 
in graphical format. To maintain consistency, for values 

greater than 0.5, ceiling values are considered and for values 

less than 0.5, floor values are considered. 

 

 

 

 

 

 

 

Fig. 7 Accuracy obtained by all comparison algorithms for NCC-2 

Table 8 presents the accuracy (Ac), precision (Pr), recall 

(Re), and F1 score (F1) metrics for various machine learning 

models using different feature selection algorithms across 

three datasets. Across all datasets and models, the CNI-VIF 

approach consistently achieves perfect or near-perfect scores 

in all performance metrics. This indicates that CNI-VIF not 

only excels in selecting relevant features but also enhances 
model accuracy, precision, recall, and F1 scores, making it the 

most effective feature selection method among those tested. 

For instance, while VIF and PCA models show relatively high 

performance, they do not consistently achieve perfect scores, 

particularly in precision and recall. 

Table 8 shows that the CNI-VIF method performs 

exceptionally well across a range of models, including LR, 
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RF, SVM, CNN, FFNN, and Ensemble. Notably, models like 

RF and CNN often achieve perfect scores, further 

emphasizing the robustness of CNI-VIF in selecting features 

that enhance model performance. The results clearly 

demonstrate that the CNI-VIF method is superior to traditional 

feature selection methods for graph databases. CNI-VIF 

ensures the selection of relevant features and significantly 

enhances the performance metrics of various machine learning 

models. Clearly, the Random-Forest algorithm outperforms 

irrespective of the feature selection approach. 

Table 8. Accuracy, precision, recall and F1 score obtained by all comparison algorithms 

Dataset Model 

Feature Selection Algorithms 

CNI-VIF VIF PCA RFE 

Performance Metrics 

Ac Pr Re F1 Ac Pr Re F1 Ac Pr Re F1 Ac Pr Re F1 

CTU-13 

LR 1 1 1 1 1 1 1 1 87 83 77 80 89 87 78 82 

RF 1 1 1 1 1 1 1 1 99 99 99 99 99 99 1 99 

SVM 99.8 1 99.5 99.8 1 1 1 1 85 88 65 75 92 98 78 87 

FFNN 1 1 1 1 1 1 1 1 86 88 67 78 95 97 88 92 

CNN 99.8 1 99.5 99.8 67 62 61 11 86 87 68 77 98 97 96 96 

Ensemble 1 1 1 1 1 1 1 1 90 91 78 84 96 99 87 93 

IoT-23 

LR 99 99 1 99 99 99 1 99 86 86 99 92 86 86 99 92 

RF 1 1 1 1 1 1 1 1 99 99 99 99 99 99 99 99 

SVM 99 1 99 99 99 1 99 99 96 98 97 97 97 98 98 98 

FFNN 99 99 1 99 99 99 1 99 99 99 99 99 99 99 99 99 

CNN 99 99 1 99 99 99 1 99 97 99 98 98 99 98 1 99 

Ensemble 99 99 1 99 99 99 1 99 98 98 1 99 99 98 1 99 

NCC-2 

LR 97.5 76 63 69 96 70 38 49 97 74 58 65 1 1 1 1 

RF 1 1 1 1 98 85 68 75 99.9 1 98 99 1 1 1 1 

SVM 98.8 91 80 84 97 78 48 59 98.8 92 80 86 99 1 98 99 

FFNN 99 88 87 87 95 65 58 61 99 92 85 89 1 1 1 1 

CNN 98.9 81 82 82 97 71 62 66 98.9 88 88 88 1 1 1 1 

Ensemble 98.8 91 82 86 97 78 55 64 98.8 94 81 88 1 1 1 1 

 

5. Conclusion and Future Work  
The results validate the efficacy of the CNI-VIF approach 

in feature selection for graph databases. By integrating 

Composite Node Information (CNI) with traditional VIF, the 

proposed method successfully identifies and retains crucial 

graph-based features, significantly improving the 

performance of various machine learning models.  

Compared to traditional methods such as VIF, PCA, and 

RFE, CNI-VIF consistently selects more relevant features and 

validates superior performance regarding model accuracy and 

computational efficiency. This work introduces CNI-VIF, an 

enhanced feature selection method incorporating graph-based 

features such as centrality measures. By better capturing the 

importance and influence of nodes within the graph, CNI-VIF 

provides a more interpretable measure of multicollinearity that 

considers both traditional predictors and graph-specific 

features, offering deeper insights into the data. The Random 
Forest algorithm achieves the highest performance metrics 

with CNI-VIF-selected features, underscoring the robustness 

of our approach. This study underscores the importance of 

incorporating graph-specific characteristics in feature 

selection methodologies and positions CNI-VIF as a powerful 

tool for enhancing analysis and decision-making in graph 

databases. 
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CNI-VIF is a powerful feature selection method, 

particularly suited for graph-based datasets and applications, 

but it has some limitations. Calculating CNI values across 

large and highly interconnected graphs can be 

computationally intensive, especially for real-time 

applications. CNI-VIF relies heavily on the structure and 
accuracy of the graph database. If the graph structure has 

missing or noisy edges or nodes, it may misrepresent node 

importance, affecting feature selection and model 

performance. Since CNI-VIF leverages graph-specific 

centrality measures, its application and effectiveness may be 

reduced for non-graph or non-relational data. 

Future research can explore further enhancements to the 

CNI-VIF methodology, such as integrating additional graph-

based features or optimizing the selection of α for different 

datasets. Additionally, extending the CNI-VIF approach to 

other types of graph databases and applying it to real-time data 

analysis scenarios could provide further validation of its 
effectiveness and versatility. Investigating the scalability of 

CNI-VIF for larger graphs and diverse applications in 

cybersecurity, social network analysis, and bioinformatics 

presents promising avenues for future exploration. 
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