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Abstract - Integrating DL techniques has revolutionized gait analysis, enhancing the accuracy and efficiency of detecting and 

characterizing gait abnormalities. This paper surveys recent studies employing Deep Learning algorithms (DL), such as 

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), to analyze gait patterns from diverse data 

sources with wearable sensors, video footage, and motion capture systems. The advantages of DL in handling complex, high-

dimensional gait data and its potential to uncover subtle patterns indicative of disease or recovery status are discussed. 

Furthermore, the clinical applications of DL-based gait analysis, emphasizing its role in personalized rehabilitation programs 

and real-time monitoring, are explored. The paper also addresses the challenges of implementing DL in clinical settings, such 

as the need for large, annotated datasets, computational resources, and interdisciplinary collaboration. In conclusion, this survey 

highlights the transformative potential of DL methods in gait analysis for fracture and Parkinson's disease patients. By providing 
a detailed overview of current research and identifying key trends and challenges, this work seems to inform and inspire further 

advancements in this field, ultimately enhancing rehabilitation outcomes and quality of life for affected individuals. 

Keywords - CNN, DL techniques, Gait analysis, RNN. 

1. Introduction 
Human gait is bipedal, with forward propulsion as the 

body’s center of gravity, characterized by alternate sinuous 
movements of distinct body parts that need little energy [1]. 

Gait analysis is the systematic study of human walking with 

the primary goal of identifying and categorizing the 

uniqueness of each individual's walking style for various 

important applications. Gait analysis is essential in fields like 

healthcare, sports, robotics, and security. Providing objective 

data on how a person moves allows for better diagnosis, 

treatment, performance optimization, and even personal 

identification based on movement patterns. Understanding 

and analysing gait can improve outcomes in diverse areas, 

whether for clinical rehabilitation, athletic performance 

enhancement, or security applications.  

Gait pattern variability refers to the natural fluctuations or 

differences observed in a person's walking or running patterns 

over time. Gait pattern variability necessitates biological data 

for clinical investigation, enabling the exact identification of 

compromised body components [2]. Early detection can help 

to avoid significant health problems in skeletal illnesses, 

vascular concerns, and mental issues [3].  The human gait 

refers to locomotion achieved through the movement of 

human limbs. Human gaits are the various ways in which a 

human can move. In the field of orthopaedics, identifying and 

treating patients with fractures requires a precise grasp of gait 

patterns. The human walking pattern known as gait analysis 

offers important new understandings of the biomechanics and 

functional restrictions related to musculoskeletal injuries. 

The applications of gait analysis are shown in Figure 1. 
The gold standard gait analysis technique involves extracting 

gait patterns from the human body using opto-

photogrammetric equipment outfitted with retroreflective 

markers [4]. However, this technique is expensive and 

involves extensive testing. Alternative techniques, such as 

wrist and shoe sensors, have been developed [5] to overcome 

these limitations. Technological advancements have led to the 

creation of marker-free gait monitoring devices that are both 

affordable and non-invasive [6, 7]. These systems can 

estimate skeletal joints by utilizing RGB cameras with 2D and 

3D inputs. The model-free technique uses pre-defined human 
anatomy, whereas model-based approaches use posture 

estimation algorithms to predict skeleton joints [8-10].

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1 Gait analysis applications (a) Sports, (b) Smart prosthetic leg, (c) Robotics, (d) Surveillance, and (e) Rehabilitation. 

DL has recently revolutionized gait analysis, creating new 

prospects for more accurate, efficient, and scalable 

examinations. DL is a type of machine learning that involves 

training artificial neural networks with multiple layers to learn 

and extract complex patterns from large datasets. This feature 

makes DL particularly well-suited for analysing the high-

dimensional, time-series data collected during gait analysis 

[11].  

The application of DL to gait analysis involves several 

key components: 

 Data Acquisition: Modern gait analysis employs various 
data sources, including wearable sensors, video 

recordings, and motion capture systems. Wearable 

sensors provide continuous monitoring of gait dynamics 

in natural environments, while video recordings and 

motion capture systems offer detailed spatial and 

temporal data of gait movements. 

 Feature Extraction: DL algorithms, such as CNNs and 

RNNs, properly extract meaningful gait features from raw 

data. CNNs are particularly effective for analyzing spatial 

patterns in video and motion capture data, whereas RNNs 

excel in handling temporal sequences, making them ideal 

for time-series gait data. 

 Pattern Recognition: DL algorithms may detect 

complicated patterns and anomalies in gait data, which 

may indicate specific conditions or stages of recovery. 

For example, minor variations in stride length, cadence, 

or joint angles can indicate the course of efficacy in 

fracture patients. 

 Predictive Modelling: DL algorithms can predict future 

gait patterns and outcomes using massive datasets, 

allowing for the construction of personalized 

rehabilitation regimens. These projections can assist 

physicians in adjusting interventions to patients' 

individual needs, increasing the success of rehabilitation. 

 Real-Time Analysis and Feedback: DL provides real-time 

gait data processing, allowing patients and clinicians to 
receive instant feedback. This functionality is critical for 

tracking progress and making necessary changes to 

rehabilitation methods. 

DL into gait analysis shows great promise for expanding 

the science of rehabilitation. It enhances the precision and 

depth of gait assessments, allows for continuous and non-

intrusive monitoring, and supports the development of 

individualized treatment strategies. By overcoming the 

limitations of traditional methods, DL is poised to transform 

the way gait analysis is conducted, ultimately improving 

outcomes for patients with fractures and Parkinson's disease 

[12]. Using deep learning methods for gait analysis has 
become a viable path for improving the effectiveness of 

fracture diagnosis and treatment planning as medical research 

adopts new technologies. 
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2. Background of the Study 
Many research studies have devised, implemented, and 

endorsed numerous approaches and procedures for identifying 

a specific person based on their gait characteristics. Gait 

recognition [13] is a significant approach for following people 

while they walk. Gait data can be gathered in two ways: 

Wearable Sensors and Non-wearable Sensors. Wearable 

sensors, including pressure sensors, accelerometers, and 

gyroscopes, are commonly used to capture human motion data 

for gait analysis [14]. In contrast, non-wearable gait 

recognition relies on visual input from image sensors, often 

referred to as "vision-based gait recognition" [15]. Biometrics 

involves identifying individuals based on physical 
characteristics (fingerprints, face, iris, voice, hand geometry, 

or retina) or behavioral traits (typing patterns, stride, or 

walking behavior). 

Gait analysis is a biometric technique that allows for the 

identification of individuals based on their walking patterns, 

as shown in Figure 2. Human motion capture is applied in 

various fields to assess, interpret, and replicate diverse 

movement behaviors (P P Min, 2019). Gait disorder analysis 

often involves measuring joint kinematics and kinetics in all 

three dimensions. Key features that make human gait 

distinctive include: 

 The ability to identify individuals from a distance. 

 Functionality in challenging environments, such as low 

light or poor resolution. 

 The ease of capturing gait data in public spaces without 

specialized equipment. 

Gait recognition has been widely employed to solve 

various difficulties over the last 30 years. The recent trend has 

shifted from non-deep to DL techniques based on the gait 

recognition solution [17].  

 

 

 

 

 

 

 

Fig. 2 Initial stages of the gait cycle 

2.1. Gait Phases 

The gait cycle is defined as the time between consecutive 

strikes of the same foot during human locomotion. The entire 

gait cycle is divided into two separate phases, such. 

 Stance 

 Swing. 

2.1.1. Stance Phase 

This phase of gait accounts for almost 60% of the gait 

cycle. It starts when the foot touches the ground and ends 

when the foot is taken off the ground [18]. 

2.1.2. Swing Phase 

It includes a ratio for the final 40% of the gait cycle. It 

starts when the foot is raised off the ground and finishes when 

the same foot touches the ground again [19]. Figure 3 depicts 

quantifying the gait cycle impression in terms of the stance 

and swing phases seen during the subject's locomotion. 

 

 

 

 

 

 

Fig. 3 Stance and swing of gait phase 

3. Literature Survey 
A comprehensive search of the current literature is 

conducted to acquire relevant data from reputable publications 

such as IEEE, Sensors, Elsevier, and conferences. Initially, 

simple keywords were used to obtain relevant gait analysis 

articles considering reputed journals and conferences within 

the search box. They were electronically searched, such as 

Gait evaluation with DL (DL), Gait evaluation for 

rehabilitation, etc., yielding an approximation of (1000-1500) 
articles for DL and a total of (5000-7000) articles on 

rehabilitation. Then, imposing the criteria on the search string 

by other keywords such as Knee fracture, Hip fracture, and 

Ankle fracture and illuminating duplicate and unrelated 

articles provided about 400 articles focusing on Knee fracture 

and (1300-1600) on rehabilitation. Finally, after removing the 

articles that were not in full text and following the screening 

and acceptability criteria, a total of 282 and 102 articles were 

selected for GAIT analysis for rehabilitation based on sensor-

based, vision-based, and hybrid techniques, respectively, to be 

further studied. Gait acquisition methodologies are broadly 

classified into two types: vision-based and sensor-based. 

3.1. Vision-Based (VB) 

Vision-based gait analysis employs optoelectronic 

Motion Capture (Mocap) technology to evaluate a person's 

stride in a manner comparable to how the human eye functions 
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[20]. This camera-based method accurately measures gait with 

various cameras, including analog, digital, and depth cameras. 

This method has two subcategories: marker-based and 

marker-less (or appearance-based), yielding accurate gait 

assessments [21]. 

3.1.1. Model-Based  
This modality uses human body modelling to generate 

clinically significant gains. Initially, retroreflective markers 

are attached to the human body, indicating the location of 

indicator points for measuring joint angles. The recommended 

body landmarks are then recognised with a video-based 

optoelectronic device like VICON or Polaris [22]. 

Retroreflective marks may be passive or active [23].  Passive 

markers are usually coated with reflective material layers, 

allowing them to reflect light emitted by an LED-equipped 

camera and pinpoint the body's landmarks.  

Alternatively, active markers are LEDs directly affixed to 

the subject's body, with the camera recording joint positions 
via infrared radiation. Ishikawa et al. (2024) the angle of 

elevation when walking was investigated in both patients and 

Healthy Controls (HC) [24]. They used eight metal plug-in 

gait markers and a nine-camera motion capture system. The 

study indicated that the planar law was advantageous for 

patients, with an AUC of 0.69 ± 0.767, precision of 0.84 ± 

0.23, recall of 0.57 ± 0.26, F-measure of 0.66 ± 0.15, and a 

threshold of 8.56 ± 1.80. 

Roiz et al. [25] used a 3D human motion analysis system 

with six infrared cameras and eighteen active markers to 

examine gait metrics in 12 people with idiopathic Parkinson's 
Disease (PD) and 15 healthy controls. The findings revealed 

significant differences between PD patients and healthy 

persons, with gait factors corresponding to clinical 

parameters. Zhang et al. (2026) [26] created a system for 

analyzing, extracting, and comparing the gait parameters of 

six Parkinson's disease patients walking under three 

conditions: without help, pushing a roller walker, and holding 

a powered walker at varying speeds.  

This study tracked body landmarks with nine Vicon 

Mocap system cameras and reflective markers. The results 

indicated a significant decrease in the asymmetry index from 

6.7% to 0.56% under the first condition, with even lower 
values under the third condition, confirming the motorized 

walker's ability to enhance gait symmetry in PD patients. 

Pachoulakis et al. [27] used a stereoscopic vision recording 

setup consisting of two Panasonic NV-GS500 camcorders (25 

frames per second) with a resolution of 720x576 and reflective 

markers to represent the kinesiological condition of a PD 

subject. The results showed that this approach has a significant 

potential for measuring PD. Although model-based methods 

are highly accurate at locating body landmarks, they require 

controlled and complicated laboratory environments to meet 

gait acquisition goals. 

3.1.2. Model-Free 

One of the distinguishing features of the Marker-Less 

(ML) modality, also known by its name. Specifically, 

appearance-based modality eliminates the need to manually 

develop a model of the human body to collect gait data. The 

model-free modality captures defective gait using a single 
video camera, such as the Kinect V2, with no markings on the 

patient's body. It focuses on shape, camera angle, and 

appearance, gathering films using a camera and then using 

background subtraction to extract a silhouette image with 

shape and motion parameters [22]. 

Verlekar et al. [21] designed a system that uses a single 

2D video camera to diagnose and classify gait disorders 

automatically. This system examines both foot-related 

features and body-related features. Using an SVM, the system 

obtained an impressive 98.8% accuracy, beating existing 

markerless video-based systems and demonstrating reliability 

for diagnosing various diseases, including knee problems. 
However, the system had certain limitations, including the 

inability to analyze arm movements in silhouette photographs 

and the need for a camera. 

Cui et al. [28] A system for accurate gait analysis of 

fracture patients has been presented, which uses a single 

Kinect sensor and a depth-sensing RGB-D camera to record 

joint depth information. The researchers computed kinematic, 

kinetic, and spatiotemporal data and used DTW to calculate 

knee joint angles. Using SVM for classification, the Kinect 

sensor displayed excellent efficiency in fracture detection with 

a 97% accuracy rate.  

Video-based cameras, such as 2D/3D and CCD, have 

proved critical in VBML gait collecting for PD diagnosis. 

Shaw et al. [29] used markerless gait capture technology to 

analyze the gait characteristics of 16 patients with Parkinson's 

disease and 16 healthy controls. Silhouette images captured 

with a high-quality video camera enabled the Hidden Markov 

Model (HMM) to achieve 99.7% PD detection accuracy. 

Furthermore, numerous academics have investigated the wide 

range of applications for Kinect sensors provided by 

Microsoft. 

Prochazka et al. [30] used the MS Kinect sensor to 

classify healthy and PD persons, reaching a 94.1% accuracy 
through Bayesian classification with spatiotemporal 

characteristics. Dranca et al. [31] created a Kinect-based 

system to differentiate severity levels among 30 PD patients. 

Using two Kinect sensors and a 30fps sampling rate, scientists 

detected roughly 115 linked variables and used a Bayesian 

network to predict PD phases with an accuracy of 

approximately 93.4%. 

Aside from video cameras and Kinect systems, 

smartphone technology has shown new insights into this 

subject [32]. For example, a study examined the stride length 
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parameter of Parkinson's disease patients using a mobile 

phone camera with a 30fps sample rate, demonstrating the 

system's capability with an absolute inaccuracy of 0.62 cm. 

3.2. Sensor-Based (SB) 

Another major gait acquisition technique uses sensors 

attached to the human body. These are divided into two 
subcategories based on their ability to be worn on the subject's 

body: non-wearable sensors and wearable sensors. 

3.2.1. NWS 

 FLS are used in NWS to measure gait characteristics. 

Force plates, electronic pressure mats, and instrumented 

treadmills are examples of sensors integrated into the floor 

platform that can directly measure the force vector.  

3.2.2. Wearable Sensors  

Wearable sensors are an emerging technology for gait 

collection that requires individuals to wear them on their 

bodies. These sensors can be classified into several sorts based 

on their purpose. Kotti et al. [33] developed a rule-based 
technique to compare fractured subjects to healthy individuals 

and achieved a 5-fold Cross-Validation accuracy of 72.61% ± 

4.24%. Mezghani et al. [34] developed a system that used two 

Kistler force platforms and a treadmill to identify between 

broken and healthy patients, attaining an overall accuracy of 

91% with GRF settings and the Nearest Neighbour Classifier. 

3.2.3. Inertial Sensors (IS) 

These electrical devices work based on inertial 

measurement. They use three major sensors to measure the 

subject's bodily movements: accelerometers, gyroscopes and 

magnetometers. These sensors are frequently coupled in 
Inertial Measurement Units (IMUs), efficiently collecting 

linear and angular readings. Mezghani et al. [35] created an 

IMU-based system with an accelerometer range of ±8 g and a 

gyroscope range of ±2000 degrees per second. The study, 

which included 20 patients with idiopathic illnesses, found 

that this novel strategy was successful for population 

monitoring. 

3.2.4. Electromyography 

In rehabilitation, these sensors detect muscle electrical 

impulses that reflect patients' muscle activity and patterns, 

which might vary greatly. These patterns show muscular 

strength and aid in calculating various gait metrics. EMG 
sensors can be introduced into muscles with cables or needles 

or put on the skin with integrated electrodes. 

Kozey et al. [36] tracked 38 knee patients throughout time 

using surface EMG electrodes to measure lower limb 

movements, ground response forces, and kinetic moments. 

They discovered changes in gait speed and muscle activation 

among groups due to aging and other factors. Putri et al. [37] 

employed pattern recognition to analyze EMG signals and 

distinguish between 15 patients with gait issues and 8 healthy 

controls. They reached 88.4% accuracy with an Artificial 

Neural Network, emphasizing the necessity of EMG in gait 

diagnosis. 

3.2.5. Insole Shoe Sensors (INS) 

Pressure shoe technology monitors pressure distributions 

during walking activity via force-sensitive resistors, allowing 
for comparison of gait variances [38]. Zeng et al. [39] 

suggested a method for distinguishing between fractured and 

healthy humans based on phase space reconstruction, 

empirical mode decomposition, and neural networks. The 

study employed data from the PhysioNet dataset using 

empirical decomposition with a neural network to achieve 

81.1% accuracy. 

3.2.6. Clothing Sensors (CLS) 

Clothing sensors, also known as smart fabric, have greatly 

enhanced clinical gait assessment by detecting body 

movement and joint angles. Bergmann et al. [40] suggested a 

new clothing sensor system that incorporates sensors inside 
clothing and compared it to a gold standard system. The 

proposed system's reliability was verified by a coefficient of 

determination greater than 0.99. Okuma et al. [41] conducted 

a full-body garment study to identify fall events in people with 

Parkinson's disease, resulting in reliable identification of fall 

occurrences in both groups. 

3.3. Gait Recognition Techniques 

There are two broad techniques in existence for gait 

analysis: 

 Model-free method 

 Model-based method. 

The first broad approach focuses on extracting statistical 

features from the appearance of gait sequences, whereas the 

model-based method targets the extraction of the gait features 

from the model of human motion explicitly based on its prior 

knowledge [42]. 

The model-free technique has lower computing 

overheads than the model-based approach. Like the approach, 

the model-based approach is insensitive to the subject’s 

clothing and appearance. This system implemented a model-

free approach of a simple averaged silhouette technique for 

appearance-based gait recognition using eigenvectors and 
Euclidean distance in the video sequences. The complete 

process is separated into various stages such as: 

 Subject Detection 

 Tracking 

 Feature Extraction 

 Training 

 Recognition 
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The improved recognition rate is achieved by 

experimenting with each subject in different recording 

settings, such as walking with arms in pockets, wearing a 

backpack, static occlusion, and dynamic occlusion [43]. 

3.3.1. Silhouette-Based Gait Recognition 

Silhouette uses shadows of people walking for optimal 
performance based on the human shape, even for low-

resolution input images captured from a distance. This type of 

gait recognition has found its major role in security-based 

applications and forensics. GEI is considered the baseline 

and one of the most effective patterns for evaluating the 

performance of silhouette-based gait recognition. The major 

challenges that exist in silhouette-based gait recognition are 

Pedestrian detection, monitoring, and classifications 

concerning their walking speed, clothing, items of baggage, 

occlusion, and other similar parameters that reflect along with 

the subject silhouette. In such instances, it is essential to find 

the best way of mounting multiple 3D/moving cameras to get 
better viewpoints and directional characteristics for enhanced 

gait recognition results [44]. 

The existence of several object obstacles, such as 

buildings, construction beams, bridge columns/pillars, 

vehicles, trees, etc., helps the occlusion of various parts of the 

individual’s body. Thus, occlusion handling is a difficult yet 

critical issue in gait recognition. Formulation of occlusion 

management in gait recognition can be done on its relative 

position, such as relative static-based occlusion (tree, 

building, bridge, etc.) and relative dynamic-based occlusion 

(moving vehicles, people). To handle these occlusions, an 
efficient CNN and GAN (Generative Adversarial Networks) 

have been proposed through spatiotemporal silhouette 

sequence reconstruction and image/video inpainting 

techniques [45]. 

Spatiotemporal silhouette analysis is offered for a series 

of images using the background removal method and simple 

segmentation technique for tracking the moving shadows of 

walking subjects. Then, appropriate PCA for dimensionality 

reduction and Eigen transformation over time-varied input 

signals were performed for this silhouette image sequence. 

Finally, SVM classification techniques are used to recognise 

patterns in the lower-dimensional eigenspace [46]. Implicit 
capture of the structural and transitional features of gait is done 

by this method very efficiently for the outdoor image series. 

This study presents a novel approach for combining 

appearance-based and model-based gait identification 

approaches [47]. It uses a CNN trained on silhouettes and a 

GCN trained on skeletal data. Two new modules were added 

to the GCN to improve the representation of skeletal data. The 

system processes spatiotemporal data using a dual-branch 

model and a multidimensional attention module. When tested 

on the CASIA B dataset, this method produced promising 

results. 

3.3.2. Machine Learning-Based Gait Analysis 

Kececi et al. [48] used three distinct SML models to 

detect human activity. 

 RF 

 Naive Bayes 

 Instant Based Learning classifiers. 

The hugaDB collection contains data on standing, sitting, 

running, and walking, which were acquired using 

accelerometers and gyros. Among the machine learning 

models tested, random forest performed better in terms of 

classification accuracy and needed less setup time. Moon, Le, 

Minaya, and Choi [49] presented a multi-model gait detection 

classifier that combines convolutional and recurrent neural 

networks with an SVFE. Wang et al. [50] used CNN and 

LSTM to create a classifier that automatically extracts 

numerous features from sound data for gesture identification. 

Shao et al. [51] also contributed to this research area. 

Hnatiuc et al. [52] created a system that uses gait as a 

biometric to identify people from a distance. They employed 

IMU sensors in smartphones and an Arduino resistive flex 

sensor to capture walking patterns. Individuals were identified 

using a variety of classifiers, including tree, rule-based, SVM, 

K-nearest neighbors, and NB, which were trained on data from 

various subjects. 

The study employs Artificial Neural Networks and 

SVMs to detect muscular Parkinson's disease in patients by 

analyzing their stride [53]. During training, the researchers 

consider kinetic, kinematic, and spatiotemporal aspects while 

employing intra- and inter-group normalization procedures. 
The findings indicate that intra-group normalized 

spatiotemporal parameter combination increases performance 

for both neural networks and SVMs. 

Saboor et al. [54] investigate WS and ML techniques in 

human gait analysis. Their research focuses on two major 

advancements: using wearable devices for efficient and cost-

effective data collecting and applying MLMs for gait 

evaluation. They discuss current advances in step analysis 

employing wearables and MLMs, concentrating on step 

boundaries and material elements of stride measurement. The 

study discovered that employing PCA to remove redundant 
stride data improves SVM classification accuracy to 87%, 

beating a 101-layer step design without PCA. 

Table 1 summarizes a detailed assessment of various 

models, data sets, gait features, and gait recognition accuracy 

during the literature review. The study focused on utilizing DL 

algorithms with different metrics such as performance, 

characteristics, advantages, and limits. Table 2 summarizes 

the details of the gait analysis of fracture patients and 

rehabilitation of patients. 
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Table 1. Summary of gait analysis in various models 

Reference Model Data set Gait feature Accuracy 

Wang et al. [55] CNN CASIA A GEI 95% 

Wang et al.  [56] CNN CASIA A/B GEI 98.30% 

Wazzeh et al.  [57] CNN OU-ISIR GEI 97% 

Rohan et al. [58] CNN Skeletal Images GEI 97.30% 

Zou et al. [59] CNN 
Data Collected Using 

Sensors 
GEI 97% 

Shao et al. [60] CNN LeNet5 CASIA B GEI 98% 

Sung et al. [61] DCNN CASIA B 
Gait Type (Walking, 

Running, Climbing and 

Descending) 

90% 

Chakravorty et al. [62] DCNN 
Market Dataset-Tsinghua 

Univ 
GEI 93.60% 

Turner et al. [63] LSTM 
Data Collected Using a 

Pressure Sensor 
Axial Acceleration 83.20% 

Peinado-Contreras et al. [13] LSTM Sensor Collected Data 
Vertical Acceleration- 

Gravity Force 
97% 

  
Table 2. Summary of gait analysis of fracture patients and rehabilitation 

Reference Model Dataset Skeletal joint Description Performance 

Jung et al. 

[68] 
CNN 

EMG data of 

multiple individuals 
Ankle 

Uses a hybrid system comprised 

of a Powered Ankle Foot 

Orthosis (PAFO), and FES 

presents the coordination control. 

Consideration of 

volitional muscle activity 

lowers the energy 

consumption by PAFO 

and FES. 

Ettefagh et 

al. [70] 
3D CNN 

Online dataset of 30 

healthy people 

Lower limb 

like knee, hip. 

Analyzed people completing 

seven lower limb rehabilitation 

activities. 

Identifies the exercises 

with an accuracy of 

95.71%, Precision of 

95.83%, recall of 95.71% 

and F1 score of 95.74%. 

Alazeb et al. 

[71] 

PCA and a 
Reweighted 

Genetic 

Algorithm 

mRI and 

MHEALTH 

Parkinson's 

sufferer 

The system employs RGB, 
inertial, and depth sensor data, 

with features computed using a 

notch filter. 

An average accuracy of 

97% is achieved. 

Yu Jing et al. 

[73] 

BiLSTM 

SVM 

Provided by the 

Institute of 

Software, Chinese 

Academy of 

Sciences 

NDD Patients 

Extracted stride speed, step, 

cadence, left and right swing to 

diagnose NDD. 

Used Kinect technology and 

machine learning for diagnosis. 

For BiLSTM: 

Accuracy-93.2% 

For SVM: 

Accuracy-77.5% 

Mennella et 

al.  [76] 

LSTM, GRU, 

MLP 

Data collected from 

the SensFloor and 

IMU sensors 

 

Patients 

suffering from 

physical 

impairments or 

disabilities 
 

Speed, average number of steps, 

and other information are 

analyzed to recognize 

asymmetric and unstable gait 

patterns. The system incorporates 

a range of motion categorization 
and compensating pattern 

recognition. 

Achieved mean 

accuracies of 89% for 

ROM-class assessment 

and 98% for 

compensatory pattern 

categorization. 
 

 

Michael 

Tschuggnall 

et al. [78] 

RF regressor 

and classifier, 

Extra trees 

Algorithms 

Anonymized real-

world dataset of the 

Vamed 

Rehabilitation 

Center Kitzbühel 

Knee, Hip, 

Foot injuries 

Predict the success of patients' 

rehab based on their health status 

at the start of the treatment. 

Weighted F1 scores from 

40% to over 65% are 

achieved. 
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3.3.3. DL and Wearables in Gait Analysis 

The study by Khan et al. aims to improve DL models for 

human gait analysis. It highlights feature selection to enhance 

CNN model performance. Using the KELM, the study 

achieved the highest recognition accuracy for the CASIA Gait 

Database, ensuring a significant improvement over previous 
systems with 96.50% and 96.90% accuracy. Innovative gait 

classifiers now classify data from various sensors, further 

advancing the field. 

This study presents a DL-based gait classification method 

that employs multiple sensor arrays and a smart insole [64]. 

The device measures gait data using pressure and acceleration 

sensor arrays and a gyro sensor integrated into the insole. A 

deep convolutional neural network extracts features with more 

than 90% classification accuracy. 

Two promising technologies, namely non-invasive 

wearable sensors and DL algorithms, were chosen from a 

wide range of technologies for inclusion in this study due to 
their crucial importance in modern gait analysis [60]. This 

technique assesses gait issues based on individual symptoms, 

regardless of additional neuromuscular movement disorders 

that the patients may have. Here, the researcher monitored the 

in-shoe pressure of twelve healthy volunteers while subjected 

to eight artificially generated gait modifications with 

underside shoe alterations. 

Using the LSTM network, this approach achieves 82% 

precision with test data of 96,000 samples in classifying the 

person’s gait. While reviewing the study, it was discovered 

that the data set used here was of small volume and had limited 
computational power and poor power efficiency. 

This study collects gait data using smartphone inertial 

sensors, which is practical and cost-effective [61]. Features 

are retrieved using CNN and RNN, followed by modelling 

with a hybrid Deep Neural Network. Smartphone sensor data 

revealed user identification and authentication accuracy.  

Traditional therapy encounters problems that 

rehabilitation robots help resolve. Machine learning is 

revolutionizing therapy and result prediction, yet it faces 

challenges such as model interpretability, costs, and 

restrictions. Zhang et al. [65] investigate the relationship 

between ML using various models, datasets, and applications. 
They emphasize prospective applications, such as virtual 

reality and DL, in rehabilitation training. 

Yoo et al. [66] created a deep-learning model to predict 

gait recovery following severe concussion (SCI) after release 

from acute rehab. They analyzed data from 405 patients at 

Korea University Anam Hospital from 2008 to 2022. Using 

71 independent variables from the literature, including patient 

demographics, SCI scores, and neurological characteristics, 

they discovered that the RNN outperformed the linear 

regression, Ridge, and Lasso algorithms. Lower-extremity 

motor strength and the severity of neurological impairment 

were also significant predictors. 

From 2019 to 2023, Mizuguchi et al. [67] investigated 

417 older people with CHF at seven different sites. They 

discovered that a higher predicted CFS, estimated using 
smartphone camera body-tracking data and Light-GBM 

models, was independently associated with an elevated all-

cause mortality risk. The Light-GBM models demonstrated 

significant accuracy in predicting CFS levels, underlining its 

potential in clinical prognosis. 

Jung et al. [68] provide a unique gait rehabilitation 

strategy that employs a hybrid system of PAFO and foot-

elbow splints with coordinated control. PAFO alters joint 

angles and impedance profiles using biomechanical models, 

whereas FES patterns are derived from electromyograms of 

healthy persons. A CNN-based prediction algorithm 

calculates voluntary joint torque using patient 
electromyograms. Healthy subjects walking on a treadmill 

revealed lower energy expenditure and adjustable ankle 

motion by including voluntary muscular action. This system 

offers assist-as-needed therapy, which improves gait 

rehabilitation outcomes with active patient participation. 

Ramli et al. [69] utilized an iPhone accelerometer to 

measure gait in 15 normally developing (TD) and 15 DMD 

children aged 3 to 16. Participants undertook various walking 

and running exercises, and temporospectral gait 

characteristics were recorded. These measures revealed 

variations such as shorter steps and greater mediolateral 
power, indicating a Trendelenberg-like gait in DMD. The 

study found that machine learning applied to smartphone 

accelerometer data may accurately detect gait features linked 

with DMD throughout a wide age range, from toddlers to 

teenagers. 

Ettefagh et al. [70] examined depth videos and body 

pressure data from an online dataset of 30 healthy individuals 

participating in seven lower limb rehabilitation activities. 

Three DL models were built to identify the data: depth movies, 

pressure data frames, and a combination of the two. The 

models' performance was assessed using cross-validation 

procedures that removed one or more subjects. The model 
trained on depth and pressure data fusion achieved the highest 

accuracy and stability, rating 95.74% on the F1 scale. This 

emphasizes data fusion's need to identify lower limb 

rehabilitation exercises appropriately. 

Alazeb et al. [71] created an AI-powered system to guide 

Parkinson's disease treatment based on RGB, inertial, and 

depth sensor data. They used a notch filter to extract features 

from the sensors, focusing on silhouette analysis and four 

important movement characteristics: principal component 

analysis and a reweighted genetic algorithm combined and 
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classified features. Cross-validation on the MRI and 

MHEALTH datasets produced high recognition accuracies of 

97.29% and 97.94%, respectively. The work emphasizes the 

necessity of extending datasets to better rehabilitation using 

multi-modal sensor-based human activity detection. 

Lan et al. [72] studied the application of DL and 3D gait 
analysis data to evaluate gait abnormalities in children. They 

analyzed data from 371 children and 6400 gait cycles to 

determine the accuracy of DL models. The study discovered 

that these models had high diagnostic accuracy when 

discriminating between healthy and pathological gait, 

recognizing specific gait problems, and calculating the time of 

gait anomalies. Overall, their LSTM model performed well, 

demonstrating the possibility of 3D gait analysis to provide 

deep pathological insights for diagnostic purposes. 

Jing et al. [73] used motion data from 41 people aged 25 

to 85 to characterize gait styles using SVMs and Bi-

LSTM classifiers. They trained these classifiers on 
spatiotemporal characteristics and used 10-fold cross-

validation to achieve the best generalization performance. The 

Bi-LSTM classifier outperformed a heuristic technique, with 

average accuracy, recall, and F1-score of 90.54%, 90.41%, 

and 90.38%, respectively, whereas SVM achieved 86.99%, 

86.62%, and 86.67%. The Bi-LSTM technique also performed 

well in gait segmentation evaluation, with 93.2% accuracy 

versus 77.5% for SVM. 

Monge et al. [74] proposed a non-intrusive smart sensing 

system for improving health monitoring in hospitals and 

rehabilitation facilities. Their system combines a SensFloor 
smart carpet with an IMU wearable sensor on the user's back. 

Machine learning algorithms analyze real-time data stored in 

the cloud, available to physical therapists and patients. This 

strategy allows for more personalized training regimens and 

better rehabilitation outcomes by leveraging modern sensing 

technologies. 

Maskeliūnas et al. [75] created Biomac VR, a virtual 

reality rehabilitation system that combines physical training 

monitoring with upper-limb rehabilitation technology. The 

system uses the CPM, a DL motion detection model, to 

properly track important body parts in conjunction with depth 

sensors. It assesses the efficacy of physical exercise in various 
circumstances, offering real-time analysis with an average 

reaction time of 23ms. The system's algorithmic skeletal traits 

identify healthy persons and those suffering from lower back 

pain, allowing for the study of physiotherapy activities, 

tracking rehabilitation progress, and rating treatment success. 

Mennella et al. [76] describe a novel approach to real-

time monitoring and assessment of rehabilitation activities 

that employ machine learning and motion capture technology. 

The system accurately assesses workout performance by 

identifying deviations and categorizing ROM and 

compensatory tendencies. It performed quite well, with mean 

accuracies of 89% for ROM classification and 98% for 

compensatory pattern recognition. This sophisticated method 

improves standard rehabilitation assessments and outcomes in 

home-based rehabilitation programs. 

Galasso et al. [77] use kinematic gait data from 37 healthy 
persons to estimate physical activity levels using the IPAQ. 

They use ML techniques to process complex time series data 

efficiently. Using NCA on the statistical feature space 

improved accuracy by up to 20% for models such as K-

Nearest Neighbours, RF, and Rough-Set-Exploration-System 

Library. 

Michael Tschuggnall [78] used an anonymized real-world 

dataset of the Vamed Rehabilitation Center Kitzbühel. Using 

Random Forest regressor and classifier, Extra trees 

Algorithms Predicted the success of the rehab of knee, hip and 

ankle injured patients based on their health status at the start 

of the treatment and achieved the weighted F1 score from 40 
% to 65%. 

Chandrasen Pandey [82] used ground reaction force 

patterns to classify healthy control and Gait disorders. A deep 

learning-based architecture, GaitRec-Net, is proposed for this 

classification. 

4. Deep Learning - Based Methods 
The machine learning uses two different categories of 

algorithms: Supervised and unsupervised. The supervised 

algorithm uses labelled data in classification techniques such 

as Logistic Regression, Random Forest, Neural Networks, 

Support Vector Machines (SVM), CatBoost, K-Nearest 

Neighbors (KNN) and Decision Trees. The unlabeled data is 

used in unsupervised algorithms such as Principal Component 

Analysis (PCA) and Linear Discriminant Analysis (LDA). 

Conventional machine learning methods cannot effectively 

retrieve the hierarchical or higher-level features. However, 

deep learning is a category of ML technique that creates 

numerous layers that can recognize specific properties of the 
dataset using ordered layers of neural networks.  

The various present deep learning methods are CNN, 3D 

CNN, LSTM, Bi-LSTM, and Multilayer Perceptron (MLP). 

This part defines the architecture of CNN and LSTM deep 

learning methods for gait analysis, gait classification and 

rehabilitation. The architecture of Long Short-Term Memory 

(LSTM) and Bidirectional Long Short-Term Memory (Bi-

LSTM) is quite similar, with only one difference: Bi-LSTM 

processes data in forward and backward direction, while a 

standard LSTM processes data in only forward direction. The 

CNN architecture with 1D CNNs is used for sequential or 
time-series data. 2D CNNs are used for image data. 3D CNNs 

are used for volumetric or temporal-spatial data. 
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4.1. Convolutional Neural Networks (CNN) 

The CNN network consisted of several convolutional 

layers placed alternately between pooling and normalization 

layers. Each convolutional layer calculates the convolution 

between the inputs and sets of filters. The training was 

performed in a supervised manner. The structure of CNN 
consists of a Convolutional Layer, Batch Normalization 

Layer, Rectifier Linear Units (ReLU), Pooling Layer and 

Fully Connected Layer.  The NN architecture model is shown 

in Figure 4. 

 

 

 

 

 

 

Fig. 4 CNN architecture model 

The CNN architecture used in this study was designed 

with five convolutional layers and three fully connected 

layers. However, the final implementation consisted of only 

four convolutional layers and a single fully connected layer.  

Batch normalization, ReLU activation, and pooling layers 

were strategically placed between the convolutional layers to 

enhance the model's performance. The CNN structure 

alternates convolutional layers with pooling and 

normalization layers. Each convolutional layer computes the 
convolution between the input data and a set of filters. The 

model was trained in a supervised fashion. 

For gait analysis, each walking sequence was mapped to 

its corresponding subject and reshaped into a 60x26 three-

dimensional array, with columns representing joint points at a 

specific time frame and rows representing joint data over time. 

After reshaping, the gait data was randomly split into training 

and testing datasets, with a 50:50 ratio to promote better 

generalization. 

4.2. Recurrent Neural Network (RNN) 

A Recurrent Neural Network (RNN) [79] is a specialized 

type of Artificial Neural Network (ANN) designed to handle 
sequential data or time-series data. Unlike conventional feed-

forward neural networks, which assume data points are 

independent, RNNs are built to process sequences where each 

data point depends on its predecessors. This is achieved by 

incorporating a form of "memory" that allows the network to 

store and use information from previous inputs to influence 

the current output in the sequence. In an RNN, this is 

facilitated by a feedback loop that allows information to 

persist across time steps. When an RNN is processed over 

multiple time steps, it can be "unrolled" for a specific number 

of steps (e.g., kkk steps) to compute the output at each step. 

This unrolled structure mirrors a feed-forward neural network, 
where each time step is treated as a separate layer. The RNN 

architecture model is shown in Figure 5. 

 

 

 

 

 

 

Fig. 5 RNN architecture model [80] 

4.3. Long Short-Term Memory (LSTM) 

Long Short-Term Memory (LSTM) is a specialized type 

of Recurrent Neural Network (RNN) designed to handle 

sequential data, such as time series, speech, and text. LSTM 

was introduced to address the limitations of traditional RNNs, 

particularly the vanishing gradient problem, which makes it 

difficult for RNNs to capture long-range dependencies in 

sequences. 

 

 

 

 

 

 

Fig. 6 LSTM architecture model [81] 

The LSTM architecture consists of a cell state and three 

primary gates: the input gate, forget gate, and output gate, as 
shown in Figure 6. 

1. Cell State: The cell state is the "memory" of the LSTM 

unit, carrying information across time steps. It enables the 

network to maintain context from previous steps and 

helps learn long-term dependencies. 
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2. Forget Gate: This gate decides what information from the 

cell state should be discarded or "forgotten." It takes the 

previous hidden state and the current input to output 

values between 0 and 1, representing the degree to which 

each value in the cell state should be forgotten. 

3. Input Gate: The input gate controls what new information 
should be added to the cell state. It uses a tanh activation 

function to generate candidate values and a sigmoid 

activation to decide which of them should be updated. 

4. Output Gate: The output gate determines the next hidden 

state based on the cell state and the input, providing the 

final output of the LSTM for the current time step. 

LSTMs are widely used in applications like speech 

recognition, language modelling, and time-series forecasting, 

where long-range dependencies are important.  

4.4. Methodological Framework for Gait Analysis Using 

Deep Learning 

A comprehensive methodological framework for gait 
analysis using deep learning techniques, focusing on their 

applications in rehabilitation settings. A comparison of 

different deep learning approaches—such as Convolutional 

Neural Networks (CNNs), Recurrent Neural Networks 

(RNNs), Long Short-Term Memory (LSTM) networks, and 

others are discussed in Table 3. 

Table 3. Comparison of different deep learning approaches

Algorithm Advantages Limitations Best Use Case 

CNN 

Excellent at spatial feature 

extraction from images and 

videos. 

Struggles with sequential data 

(time dependencies). 

Video-based gait classification 

(e.g., detecting falls). 

RNN 
Model’s temporal dependencies in 

sequential data. 

Cannot capture long-range 

dependencies effectively. 

Time-series analysis for gait 

cycle prediction. 

LSTM 
Captures long-range dependencies 

and is good with sequential data. 

Computationally expensive, 

especially with long sequences. 

Personalized rehabilitation, 

phase detection. 

3D-CNN 
Captures both spatial and temporal 

patterns in video or motion data. 

Requires large datasets and high 

computational power. 

Video or 3D motion capture data 

for gait analysis. 

1D-CNN 

CNNs can automatically learn 

spatial or temporal features from 

raw input data, reducing the need 
for manual feature extraction. 

Cannot model long-range 

dependencies well with a single 

convolution layer. 

Time series classification, 

speech/audio recognition, text 

classification. 

Bi-LSTM 

Bi-LSTMs are designed to capture 

both short-term and long-term 

dependencies, essential for 

sequential data where context 

from both the past and future is 

needed. 

Due to the sequential nature and 

memory handling, training Bi-

LSTMs typically takes longer 

training time, especially with large 

datasets. 

Medical time series, where 

future context can significantly 

influence prediction. 

 

5. Datasets 
The different datasets used for gait analysis and 

rehabilitation are CASIA gait Database, GaitRec, GaitRecNet, 

mHealth, and TUM Gait Dataset. 

5.1. CASIA Gait Database 

The dataset is one of the most commonly used resources 

for gait recognition research, featuring walking sequences 

from 124 subjects across various conditions. These conditions 

include normal walking, walking with bags, and walking in 

different types of clothing, as well as gait sequences captured 

from multiple viewpoints. It is primarily used for gait 

recognition and person identification tasks but also has 
applications in gait classification, particularly in rehabilitation 

settings. The dataset includes a range of data types such as 

video recordings, 2D/3D gait data, silhouette images, and 

motion capture data, making it versatile for various gait 

analysis applications [55, 56]. 

5.2. mHealth Dataset 
The MHealth Dataset contains two sets of data: one with 

healthy subjects and another with elderly subjects. It consists 
of time-series data recorded from smartphones equipped with 

accelerometers and gyroscopes. The dataset includes data 

from 10 subjects (5 male, 5 female), each performing 12 

distinct activities, such as walking, running, sitting, standing, 

and cycling. The data is sampled at 50 Hz (50 samples per 

second), yielding high-resolution measurements of 3D 

accelerometer and gyroscope readings for each axis (X, Y, Z). 

Each subject performs the activities under controlled 

conditions, either holding the smartphone in their hand or 

placing it in their pocket. In terms of size, the dataset includes 

around 5 hours of data, with each activity's duration varying, 

totalling approximately 2.9 million data points. The data is 
provided in CSV format for easy access and use in machine 

learning, making it ideal for tasks like activity recognition, 

gait classification, and fall detection [71]. 
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5.3. GaitRec Dataset 

The GaitRec dataset is a comprehensive, open-source 

resource widely used in gait research, particularly for 

analyzing Ground Reaction Forces (GRF). It includes walking 

trials from 2084 patients with various musculoskeletal 

impairments and data from 211 healthy controls. The dataset 
captures information from patients undergoing treatment for 

conditions such as joint replacements, fractures, ligament 

ruptures, and other disorders affecting the hip, knee, ankle, or 

calcaneus during their rehabilitation at the Austrian Workers 

Compensation Board’s (AUVA) rehabilitation centre.  

The primary value of this dataset lies in its ability to 

differentiate between healthy and pathological gait patterns. It 

is divided into five major classes: (1) Healthy Controls (HC), 

(2) GD-Hip, (3) GD-Knee, (4) GD-Ankle, and (5) GD-

Calcaneus, with each gait disorder further categorized into a 

dual-level hierarchy. For example, disorders in the Hip, Knee, 

and Ankle classes include primary disorders and more 
complex combinations of impairments, such as Pelvis (P) and 

Coxa (C) issues in the Hip category. This detailed 

classification enables a nuanced understanding of gait 

disorders, focusing on precisely identifying the 27 derived 

classes for improved gait diagnosis. The GaitRec dataset is 

instrumental in distinguishing between healthy and 

pathological gait, evaluating therapy progress, and predicting 

individualized treatment outcomes [83]. 

5.4. GaitRecNet Database 

The GaitRecNet dataset is a comprehensive resource for 

analyzing human gait, focusing on classifying gait disorders 
through the use of Ground Reaction Force (GRF) data [82]. 

This dataset is extensively used in research related to gait 

analysis, rehabilitation, and clinical applications. Also, this 

dataset is widely used in research focused on improving gait 

analysis methodologies, developing predictive models for 

rehabilitation, and enhancing clinical decision-making in 

musculoskeletal therapy.  It includes bilateral GRF walking 

trials from a large group of patients with various 

musculoskeletal impairments, such as hip, knee, ankle, and 

calcaneus disorders, alongside data from healthy controls for 
comparative analysis. By leveraging GRF data, the 

GaitRecNet dataset supports a deeper understanding of how 

musculoskeletal impairments affect gait and aids in 

developing more accurate, individualized treatment plans for 

patients. 

5.5. TUM Gait Dataset 

The TUM Gait Dataset, created by the Technical 

University of Munich (TUM), is a widely used resource for 

gait analysis and recognition. It contains data from 10 subjects 

(8 males and 2 females). It features gait recordings under four 

walking conditions: normal walking, walking with a bag, 

walking in casual clothing, and walking in formal attire. These 
conditions help explore how external factors influence gait 

patterns.  

The data was collected using a camera-based system with 

controlled lighting, capturing 3D motion data from multiple 

viewpoints to accurately represent each subject's gait. 

Additionally, the dataset includes silhouette images to support 

gait analysis and identification. With multiple walking 

sequences for each subject, the dataset enables detailed 

analysis of gait features such as stride length, speed, and joint 

movement. It is valuable for applications in gait recognition, 

biomechanical analysis, human identification, and 
rehabilitation, particularly for monitoring progress and 

diagnosing movement disorders. The comparison of 

characteristics, sources and limitations of different gait 

datasets is shown in Table 4. 

Table 4. Comparison of characteristics, sources and limitations of different gait datasets 

Dataset Characteristics Sources Limitations 

TUM Gait 

Dataset 

3D motion capture, silhouette 

images, different walking 

conditions (normal, walking 

with a bag, casual/formal 

clothing) 

Technical University of 

Munich, camera-based 

system, 10 subjects (8 male, 

2 female) 

Small sample size (10 

subjects), controlled lab 

environment, limited real-

world applicability 

CASIA Gait 

Dataset 

Video recordings of walking 

styles under various conditions 

(normal, obstacles, different 

clothes) 

Chinese Academy of 

Sciences, multi-view video 

setup, 74 subjects 

Limited diversity (mainly 

male, Asian subjects), lab-

based, lacks environmental 

variability 

mHealth 

Dataset 

IMU sensor data (accelerometer, 

gyroscope), real-world walking 

tasks with mobile sensors 

University of California, 

Irvine (UCI), smartphone 

sensors, 10 subjects (healthy) 

Small sample size, limited 

variety of gait conditions, less 

suitable for biomechanical 
analysis 

GaitRecNet 

GRF data, 3D motion capture, 

data from patients with 

musculoskeletal impairments 

and healthy controls 

Austrian Workers 

Compensation Board 

(AUVA), clinical data, 2084 

patients, 211 healthy controls 

Limited generalization to 

broader populations, clinical 

setting, not publicly available 
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6. Applications of Gait Rehabilitation 
Gait rehabilitation is a multidisciplinary field crucial in 

improving mobility, preventing falls, and enhancing the 

quality of life for patients with various conditions. The 

applications of gait rehabilitation span neurological, 

musculoskeletal, and orthopaedic domains and often involve 

a combination of physical therapy, assistive technologies, 

prosthetics, and cognitive techniques. The ultimate goal is to 

help individuals regain or maintain the ability to walk safely 

and efficiently, regardless of the underlying cause of their gait 

disturbance. 

Gait rehabilitation aims to restore or improve walking 

ability, enhance mobility, reduce fall risk, and increase 
independence in daily activities. Real-world applications in 

rehabilitation are crucial for helping individuals recover from 

injury, illness, or surgery, and they span various settings like 

hospitals, outpatient clinics, and even home-based care. Here 

are some practical examples: 

6.1. Stroke Rehabilitation 

Telehealth and virtual therapy have become vital tools in 

stroke rehabilitation, enabling patients to continue their 

recovery from home through video sessions. These platforms 

facilitate motor exercises, cognitive training, and speech 

therapy, providing patients with the flexibility and 
convenience of remote care. Additionally, wearable devices 

that track movement, muscle activity, and overall 

rehabilitation progress are being integrated into treatment 

plans. These devices offer real-time feedback, allowing both 

patients and clinicians to monitor improvements in motor 

skills and adjust therapies as needed, enhancing the 

effectiveness of rehabilitation and promoting better outcomes. 

Stroke remains a major global health challenge, requiring 

comprehensive rehabilitation strategies to improve recovery 

outcomes. The various rehabilitation approaches, including 

physical, occupational, speech, and cognitive therapies, 

highlight the importance of early identification of 
rehabilitation needs [85]. It emphasizes the role of 

technological innovations, such as neurostimulation and 

assistive technologies, in enhancing stroke recovery. The 

manuscript also examines future directions, including 

personalized rehabilitation, neuroplasticity, and emerging 

assistive devices, potentially transforming stroke 

rehabilitation. By addressing these critical aspects, the paper 

aims to offer valuable insights for optimizing stroke recovery 

and improving survivors’ quality of life. 

6.2. Orthopedic Rehabilitation 

After joint replacement or fracture surgery, patients 
typically follow a rehabilitation program focused on restoring 

strength, mobility, and flexibility. Physical therapy is key in 

rebuilding muscle strength and improving joint function, 

particularly after hip or knee replacements. In addition to 

traditional exercises, aquatic therapy offers significant 

benefits, as the buoyancy of water reduces stress on the joints 

while providing resistance to help strengthen muscles. This 

water-based approach is especially effective for individuals 

recovering from major surgeries, as it allows for safe, low-

impact movement that accelerates recovery while minimizing 
the risk of further injury. 

6.3. Neurological Disorder Rehabilitation 

Rehabilitation for Parkinson’s disease [71] emphasizes 

exercise routines designed to enhance gait, flexibility, and 

posture, which are crucial for maintaining mobility and 

coordination. In recent years, alternative therapies like dance 

and boxing have gained popularity, offering dynamic ways to 

support movement and improve balance.  

For individuals with Multiple Sclerosis (MS), therapy 

typically includes physical exercises to address symptoms 

such as fatigue and muscle weakness. At the same time, 

speech therapy and cognitive training are integral components 
of a holistic care plan. Together, these therapeutic approaches 

help manage MS symptoms and improve overall function and 

quality of life. 

7. Challenges in the Clinical Settings 
Gait analysis in clinical settings encounters multiple 

challenges, including patient variability, technology 
limitations, and difficulties integrating new systems into 

existing workflows. Patients at various stages of recovery, 

such as those recovering from stroke or surgery, may display 

inconsistent gait patterns, making data interpretation more 

complex. For instance, patients using assistive devices may 

exhibit altered movement dynamics that traditional systems 

struggle to capture accurately.  

Moreover, advanced technologies like motion capture 

systems and wearable sensors can be expensive and require 

specialized expertise, limiting their widespread adoption. 

More affordable, portable options, such as smartphone 

applications and wearable sensors, could be developed to 
overcome these challenges. Simplifying data collection and 

implementing automated systems can also facilitate smoother 

integration into clinical routines, reducing the burden on 

healthcare providers. Additionally, training clinicians and 

standardizing gait analysis procedures can improve the 

reliability of assessments, ultimately enhancing patient care 

and outcomes. 

The PCG-based adaptive approach helps therapists by 

providing a wide range of gait exercises suitable for diverse 

patient groups and allowing for dynamic adjustments to the 

difficulty levels of various gait tasks to meet individual needs. 
The PCG-based adaptive gamified gait rehabilitation can 

effectively assist physiotherapists in delivering personalized 

treatment outcomes tailored to individual needs [86]. 
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8. Performance Metrics Used by the 

Classification Approaches in Gait Classification  
In gait classification tasks, various performance metrics 

are used to evaluate the effectiveness of classification models. 

These metrics help assess how well the model differentiates 

between various gait patterns or classes (e.g., walking, 

running, or abnormal gait). Here’s a list of key performance 

metrics commonly used in gait classification. 

8.1. Accuracy 

Accuracy is the ratio of correctly predicted instances 

(both true positives and true negatives) to the total number of 

instances. It gives an overall measure of how well the model 

is performing. 

     (1)             

Where, 
TP - True Positives (correctly predicted positive 

instances) 

TN - True Negatives (correctly predicted negative 

instances) 

FP - False Positives (incorrectly predicted positive 

instances) 

FN - False Negatives (incorrectly predicted negative 

instances) 

8.2. Precision 

Precision is the ratio of correctly predicted positive 

instances to the total predicted positive instances. It indicates 

how many of the predicted positive instances are positive. 

  (2) 

8.3. Recall  
Recall is the ratio of correctly predicted positive instances 

to all instances that are actually positive. It shows how many 

actual positive instances were captured by the model. 

  (3) 

8.4. F1 Score 

The F1 Score is the harmonic mean of Precision and 

Recall. It balances the two metrics and is especially useful 

when you need a balance between Precision and Recall or an 

uneven class distribution. 

     (4) 

The performance metrics for gait classification and 

rehabilitation of different datasets and classifiers are 

compared in Table 5. 

Table 5. Comparison of different classifiers with performance metrics of different datasets 

Research article Dataset Classifier F1 Score Recall Precision Accuracy 

Darshan Jani et. al [83] GaitRec CATBOOST 0.948 0.947 0.948 0.947 

Darshan Jani et. al [83] GaitRec 
Optimized 

CATBOOST 
0.950 - - 0.960 

Chandrasen Pandey et al. 
[82] 

GaitRecNet 1D CNN 0.92 0.99 0.96 0.916 

Nazia Ejaz et al. [84] 

Force values from left and right 

force sensors on the smart 

walker’s handlebar are collected 

Random Forest 0.95 0.95 0.95 0.954 

Ettefagh et al. [70] Multi model dataset 3D CNN 0.957 0.957 0.958 0.957 

Yu Jing et al. [73] 

Provided by the Institute of 

Software, Chinese Academy of 

Sciences 

SVM 0.866 0.866 0.869 0.775 

9. Conclusion 
This survey explores the transformative impact of 

digitalization on gait analysis, particularly the integration of 

image and video data with human activity monitoring. 

Advances in machine learning and deep learning have greatly 
enhanced the accuracy and efficiency of gait analysis, 

enabling detailed and precise assessments that were once 

challenging to achieve with traditional methods. Various 

approaches to gait recognition were examined, highlighting 

their unique advantages and applications. These 

advancements have revolutionized the field, providing more 

sophisticated tools for analyzing and understanding human 

movement. 

1. Model-Free Methods: These techniques rely on direct 

analysis of gait patterns without constructing detailed 
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human body models. They offer simplicity and 

computational efficiency, making them suitable for real-

time applications.  

2. Model-Based Methods: By creating detailed models of 

the human body, these methods provide more precise and 

robust gait analysis. They can account for individual 
anatomical differences and are less susceptible to external 

variations. The trade-off is increased computational 

complexity and the need for more sophisticated data 

acquisition systems. 

3. Wearable/Non-Wearable Based Gait Recognition: WS, 

such as accelerometers and gyroscopes, provide 

continuous and unobtrusive gait monitoring in natural 

environments. Non-wearable methods, including video 

and motion capture systems, offer high-fidelity data and 

detailed spatial-temporal analysis but require controlled 

settings and may be more intrusive. 

4. Silhouette-Based Gait Recognition: This approach uses 
the contour or outline of a person's body to analyze gait. 

It is particularly effective in recognizing individuals 

based on their walking patterns and can be applied in 

various security and surveillance applications. Silhouette-

based methods balance between model-free simplicity 

and the detailed analysis of model-based techniques. 

The convergence of digitalization, machine learning, and 

DL in gait analysis offers significant promise for rehabilitating 

fracture patients and entities with PD. Detailed insights into 

gait dynamics, these advanced techniques enable the 

development of personalized rehabilitation protocols, monitor 

recovery progress, and assess the effectiveness of 

interventions with unprecedented precision. Finally, 

combining DL and digitalization in gait analysis constitutes a 

significant step forward in both clinical and research settings. 
A survey has highlighted a current state-of-the-art method and 

its application, underscoring potential continued innovation 

and improved patient outcomes. As the field progresses, it is 

crucial to address challenges such as data standardization, 

computational requirements, and interdisciplinary 

collaboration to fully realize the benefits of these advanced 

techniques in gait analysis. 

Future research in Deep Learning (DL)-enhanced gait 

analysis will focus on improving recognition, real-time 

monitoring, and disease diagnosis through better sensor 

integration and adaptive models. Key areas include 

personalized rehabilitation systems, cross-population model 
generalization, and gait as a biometric for secure 

authentication. Interdisciplinary collaboration with 

biomechanics, neuroscience, healthcare, AI ethics, and 

cybersecurity is essential to address challenges such as data 

bias, privacy, and model interpretability, ensuring the 

technology’s reliability and fairness across diverse 

applications. 
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