
SSRG International Journal of Electrical and Electronics Engineering Volume 11 Issue 11, 295-305, November 2024
ISSN: 2348-8379/ https://doi.org/10.14445/23488379/IJEEE-V11I11P128 © 2024 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Application Task Mapping in Real Time Network on

Chip Systems for Latency Optimization Using Bio

Inspired Greedy Firefly Algorithm

Shweta Ashtekar1, Kushal Tuckley2

1Department of Electronics Engineering, Ramrao Adik Institute of Technology, Dr. D.Y. Patil Deemed to be University,

Maharashtra, India.
2Department of Electrical Engineering, Indian Institute of Technology, Maharashtra, India.

1Corresponding Author : shweta.ashtekar@rait.ac.in

Received: 15 September 2024 Revised: 16 October 2024 Accepted: 14 November 2024 Published: 30 November 2024

Abstract - Network on Chip (NoC) provides a communication framework within multiple cores in a heterogeneous computing

ecosystem. While the execution of real time embedded applications like multimedia, data networks, and signal processing,
mapping application tasks in NoC on appropriate cores is the most crucial, affecting overall performance and latency. This

research proposes a nature-inspired metaheuristic Greedy Firefly Algorithm (GFF) for NoC, which combines the greedy

approach with the firefly algorithm for mapping tasks. It is examined against three existing algorithms: NMAP, BB and Random

algorithm using identical embedded traffic scenarios and simulation environment to establish the aptness of the suggested

algorithm. The results of the GFF algorithm prove more efficient at higher traffic loads for applications such as PIP, MWD,

CAVLC, MMS, VOPD, and E3S Consumer benchmarks and reduces average latency by almost 5 to 20% as well as increased

throughput compared to other algorithms and is significant in critical applications. The simulator's generated dataset was

subjected to an SVM ML model, which predicts how GFF is appropriate for the mentioned applications while considering

minimal latency.

Keywords - Network on chip, Application task mapping, Real time embedded applications, Metaheuristic, Nature inspired,

Greedy Firefly algorithm (GFF), Latency optimization, SVM.

1. Introduction
In recent decades, Networks on Chip (NoC) based

multicore systems have gained popularity for the execution of

real time application specific embedded systems like

multimedia, involving video and audio processing. NoC is an

emerging technology that provides an efficient and scalable

communication infrastructure for integrating various system
components on chip (SoC).

SoC provides a complete computing platform that has

application specific components like CPUs, DSPs, hardware

accelerators (GPUs), and memory on a single chip for real

time embedded applications such as Industrial, Robotics,

Communication, Autonomous driving, Internet of Things

(IoT), Multimedia, aerospace, medical. NoC replaces

traditional bus-based architectures of SoC systems with a

packet-switched network, enabling high speed transfer

amongst different Intellectual Property (IP) cores on a chip.

NoC improves performance, reduces power consumption, and
enhances scalability and flexibility in SoC designs.

Routers connect the many Processing Elements (PEs) that

make up NoC, an interconnect architecture. A PE is a node or

core, like a DSP processor, memory controller, CPU, GPU, or

Application Specific Integrated Circuit (ASIC), as shown in

Figure 1. After the Network Interface (NI) transforms the data

produced by PE into packets, communication between the

specified source and destination occurs via a network fabric

made up of routers and connection links. The data in

packets/flits will travel from source to destination within the

chip [1].

While implementing many core embedded systems in real

time situations, the execution time of a task and the total
transmission time needed to transport data between several

cores and memory are the two factors that are taken into

consideration to determine how long a task takes to process.

Numerous challenges or restrictions exist for Real Time

Network on Chip (RTNOC), including latency in computation

and communication, power consumption, dependability, and

Quality of Service (QoS). Several models are used to

implement the real-time tasks. The Directed Acyclic Graph

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Shweta Ashtekar & Kushal Tuckley / IJEEE, 11(11), 295-305, 2024

296

(DAG) model is among the most popular models. Every task

is represented by a distinct node in this model [2], with edges

joining them. Indicating the data flow that must occur between

these nodes. Multiple factors must be considered while

implementing real time applications on the NoC platform,

such as Routing, Switching, Mapping, and Scheduling [3].

Fig. 1 A typical 3×3 mesh NoC system

Application mapping is one of the crucial issues while

mapping application tasks on the platform. Any application

comprises multiple tasks and communication among them.

The effective mapping [4] of multiple tasks for any application
results in improved performance and proper utilization of

available resources of any Network on chip system.

The process of allocating or mapping application tasks or

cores to certain Processing Elements (PEs) or resources in the

NoC system is known as application mapping, as shown in

Figure 2. This stage is essential for designing and developing

systems based on NoC since it directly affects latency, energy

efficiency, and overall performance. Applications are divided

into processes or tasks, each of which may call for memory

access, communication, or computation. The PEs (such as

CPUs, GPUs, or specialized hardware cores) that the NoC
connects must have tasks mapped onto them.

Numerous tasks necessitate communication and are

interrelated. Putting highly interactive tasks adjacent to one

another reduces communication overhead during mapping.

Various factors are affected while mapping tasks, like

Latency, throughput, power and energy efficiency. By

strategically placing tasks, communication delays can be

minimized. The workloads are distributed evenly throughout

all cores for better performance. Also, reducing the power

used for network data transfer will maximize energy

efficiency. Certain limitations must be considered during

mappings, such as hardware limitations of existing NOC,

including memory bandwidth, link capacity, and the number

of PEs.Another limitation can be application restrictions with

dependencies, deadlines, and immediate needs. Other

limitations are scalability heterogeneity and runtime

variability. In contemporary multi-core and many-core
systems, optimizing the potential of NoC architectures

requires efficient application mapping.

Fig. 2 Application mapping process

The primary motivation behind this research is that even

though there are multiple mapping algorithms, a single

algorithm will not perform best for different applications like

networking and video/audio processing. So, there is a need to

develop a generic algorithm suitable for multiple applications.
In our research for Latency optimization, a nature inspired

metaheuristic Firefly algorithm [5] with a Greedy approach

has been proposed for application mapping of NoC systems

and successfully evaluated on many real time applications.

The greedy algorithm in the firefly-based application

mapping process is to iteratively refine the mapping

configuration by making locally optimal decisions based on

the attractiveness between fireflies (representing tasks or PEs)

and the light intensity (representing the objective function

value). By continuously improving the mapping through local

search and optimization, the greedy algorithm helps to achieve

better performance and efficiency in NoC based embedded
systems. The main contributions of this research are,

1. An enhanced metaheuristic task mapping has been

implemented using a bio inspired firefly algorithm for

NoC systems.

2. The incorporated greedy approach iteratively improves

the mapping configuration of the Firefly algorithm by

making local searches and optimizations.

3. The experimental analysis based on the greedy firefly

algorithm indicates that for some real time embedded

applications, there is a notable reduction in average

Source
IP IP IP

IP IP

IP IP

IP

Destination
IP

R

NI NI NI

NI NI NI

NI NI NI

R R

R R R

R R R
T0

T1 T2

T3 T4

T7 T8

T5 T6

T9 T10

T11

DSP1

DSP2

ASIC

CPU-1

Application Characterization

Graph (APCG)

NoC Architecture

Mapping

DSP ASIC

ADC CPU

Shweta Ashtekar & Kushal Tuckley / IJEEE, 11(11), 295-305, 2024

297

network latency, especially for higher traffic loads (60 %

to 100%), when compared with other existing mapping

approaches like Random, Branch and Bound (BB),

NMAP.

4. Support Vector Machine (SVM) machine learning model

is applied to the dataset generated by the simulator to
predict GFF, which proves best for which applications

considering Latency minimization.

Our proposed approach is supported in the main body of

the paper as follows: Section 2 summarizes the related work

of application mapping for the NoC system. The preliminaries

and basic concepts required for the work are discussed in

Section 3. Section 4 articulates the improved Greedy Firefly

algorithm for mapping application tasks. The results obtained

after simulating embedded applications are brought forth in

Section 5, and at last, the research work has been deduced in

Section 6.

2. Literature Review
Section II overviews different static and dynamic

application task mapping approaches used for NoC systems

and their benefits and shortcomings. Among the various

research problems related to NoC systems, application

mapping is one of the crucial issues when mapping application

tasks on the platform. Any application comprises multiple
tasks and communication, which can be effectively

represented using an Application task graph. The effective

mapping of multiple tasks of any application results in

improved performance and proper utilization of available

resources of any NoC based system. Improved throughput,

reduced power, and latency will be achieved by precisely

mapping tasks at the core. Thus, the overall network’s

performance can be enhanced.

Application mapping techniques are broadly classified [6,

7] as static/nonadaptive/design time mapping or

dynamic/adaptive/run time mapping. Also, hybrid mapping

comprising both of them can be derived. In the dynamic or
adaptive mapping approach, the allotment of tasks and their

reordering has been carried out while executing or running the

applications. These adaptive techniques are required in case of

variable traffic loads, faults, congestion, or thermal variations.

Here, the mapping depends on the current traffic conditions by

distributing the tasks on free cores; thus, there is the reliability

of packets/flits reaching the destination, but this approach may

result in additional overhead while switching between

multiple tasks [6]. This may result in further delay in

execution and an increase in energy requirements as an

algorithm needs to be re-run to obtain better results.

Considering the above contributing factors, Dynamic

mapping [6] can be further categorized, and a few of them are

discussed as,

a) Reliability aware mapping: Due to various factors such as

manufacturing defects, crosstalks, transient faults, and

core failures, the overall reliability of the NoC system

gets affected. There is a need for reliability dynamic

mapping techniques, as discussed in the paper [8], to

handle single or multiple core failures by implementing a
Kuhn Munkres efficient algorithm that has a manager tile

that remaps the tasks to nearby cores considering the

minimization of cost and overhead in case of core

failures.

b) Congestion aware mapping: The overall performance of

the NoC system gets degraded by any congestion or

contention in the network, which may occur because of

simultaneous communication inside the system and

multiple packets getting exchanged across the number of

cores. As the paper [9] mentioned, a run time mapping

algorithm maps the highest communicating tasks on the

same core to avoid congestion and reduce overhead.
c) Thermal aware mapping: Because of advancements in IC

technology, it is possible to accommodate more cores in

close space on the chip, due to which the chips are getting

exposed to thermal hazards, and performance gets

affected in terms of increased latency and decreased

throughput. Paper [10] used a neural network-based

thermal management system by migrating tasks between

neighboring cores, but it requires additional training.

d) Energy aware mapping: Reducing energy consumption &

overhead while the task communication occurs is one of

the major goals of dynamic mapping. The paper [11]uses
an approach to allocate directly communicating tasks

onto the same core to minimize energy consumption and

overhead. However, an increased number of tasks results

in deadlines, causing delays in task completion.

Dynamic mapping works well in the scenarios mentioned

above; however, this research paper mainly focuses on static

mapping techniques.

In static or nonadaptive mapping, the allotment of tasks

for an application is decided during design time only when

considering the initial underlying network infrastructure or

available resources. Deciding and developing a good solution

by efficient task assignments in the offline phase is complex
as it requires the best utilisation of available cores [7]. These

techniques mostly run only once, resulting in less overhead

and comparatively reduced latency and energy consumption,

but are less suitable in unpredictable situations. Static

mapping techniques are further classified as search based

mapping and exact mapping.

The Exact mapping involves vast mathematical

calculations with programming to arrive at the optimal

solution, so it is preferable for NoC architectures with fewer

tasks. Paper [12] analyses the network contention and, to

minimize the intertile network contention, has suggested ILP
formulation. Integer Linear Programming (ILP) is an exact

Shweta Ashtekar & Kushal Tuckley / IJEEE, 11(11), 295-305, 2024

298

application mapping proposed onto NoC systems to acquire

either optimal or closest to optimal solutions within the

bounds of computational time. A Mixed Integer Linear

Programming (MTLP) model has been implemented in [13]

paper, using hardware/software codesign for automatic

mapping on application-specific Integrating systems that
perform image and signal processing within given deadlines.

Search-based mapping is divided into a) Systematic and

Deterministic search and, b) Heuristic search.

One algorithm example of a Systematic search approach

is Branch & Bound (BB), which systematically explores the

entire search space of possible solutions by bounding

unallowable solutions and finally provides an optimal

solution. The paper [14] presented a hybrid BEMAP algorithm

that combines a BB map with an exact systematic search to

get a multi-objective solution in terms of throughput and cost.

Generally, Heuristics or metaheuristics algorithms are

either Transformative, like Genetic Algorithm (GA) [15],
Particle Swam Optimization (PCO) [16], or Constructive, like

Near optimal mapping (NMAP), which give better solutions

because they explore various possible solutions to arrive at

optimal solution compared to mathematical approximations

and are population or swarm intelligence based. They are

usually self-learning and nature inspired by emulating the

natural intelligence of troops of animals and birds. Numerous

heuristic/metaheuristic algorithms exist, such as the Whale

Optimization Algorithm [17], which uses three operators to

mimic humpback whales' bubble-net foraging behaviour,

encircling prey, and prey seeking. This study was applied to
29 distinct mathematical benchmarks to analyse the

algorithm's convergence. The paper proposes a metaheuristic

Cuckoo search via Levy flight to maximize task placement on

the Network on Chip cores [18]. A greedy approach is used

for preprocessing, and after being implemented on several

embedded systems, the method yields better cost, latency,

power consumption, and throughput results than existing

techniques.

In Paper [18], a metaheuristic Cuckoo search via Levy

flight is proposed to optimize the placement of tasks on the

Network on chip cores. For preprocessing, a greedy algorithm

is utilized, and the overall algorithm provides improved results
in terms of cost, latency, power consumption, and throughput

compared with existing algorithms after implementing

different embedded applications. An enhanced shuffled frog

leaping algorithm is formulated in the paper [19], in which

initial mapping is assorted. Because of mapping improvement

of each category search space, mapping is more powerful.

Therefore, the nodes connected with higher costs are mapped

in adjacent locations on the NoC platform to lower

communication costs. Ants naturally follow a single path in

searching for food, which inspires the Ant Colony

Optimization (ACO) technique [20], a population-based
probabilistic method.

Based on these facts for latency optimization, NoC finds

minimal and nonminimal routes within a region during run

time without any software overhead.

The hybrid mapping approach combines the benefits of

both static and dynamic mapping methods. Executing as per

static method in normal situations and switching to a dynamic
approach in case of unavoidable situations such as congestion.

A better performance can be achieved by integrating machine

learning algorithms into the hybrid mapping techniques.

This study proposes a greedy firefly algorithm inspired by

nature and compares its performance to current classical

methods like NMAP. Random and BB. The application

environments considered for comparison are Picture In Picture

(PIP), Multi Window Display (MWD), Multi Media Systems

(MMS), and E3S Consumer Benchmark. The logical

foundations of existing approaches are presented in the next

section.

3. Preliminaries
The following are basic definitions and evaluation

parameters that must be considered with NoC systems.

3.1. Definitions

Definition 1 (Directed Application task or

communication Graph (DAG)) : As every application

comprises multiple required tasks and communication
between the tasks, an application having a certain number of

n tasks as (t1,t2,t3,….tn) can be represented using the Directed

Application task graph as DAG(T, C) where T represents the

number of vertices each representing single task whereas C

represents weighted edge(Ci,j) or link between any two tasks

i and j [21]. The weight is the communication volume or

bandwidth between a set of tasks. For example, the application

Multi Window Display (MWD) has T=12 and C=13.

Definition 2 (Directed Core or architecture or topology

Graph (DCG)) : The NoC architecture comprises a certain

amount of processing cores on which the application tasks

must be efficiently mapped. The topological architecture of
NoC is represented using a directed core graph as DCG(P, E),

where P signifies a set of processing cores(p1,p2,p3,….pn). In

contrast, E symbolizes a set of edges (Ei,j) communicating

between these cores or tiles.

3.2. Evaluation Parameters

The performance or evaluation indicators represented

using mathematical models in the paper [22] need to be

analysed after implementing the proposed Greedy firefly

application mapping on NoC architecture using the

NoCTweak Simulator [22].

Communication cost: The Communication cost for NoC
based system can be derived as,

Shweta Ashtekar & Kushal Tuckley / IJEEE, 11(11), 295-305, 2024

299

 Cost = ∑ [Bti,tj × Ni,j] (1)

 i,j

Where Bti,tj denotes communication bandwidth between

any two tasks i & j. Also, Ni,j represents the Manhattan

Distance between a pair of nodes represented with coordinates

as (xi,xj) as well as (yi,yj) given as

Ni,j= |xi−xj| + |yi−yj| (2)

Average network Latency: The average network latency

or packet delay considering only packets received after warm-

up time is given by the following equation below where N

represents available cores in that architecture, Lti,j is the

Latency, for instance, packet j after Ni packets received by

core i.

𝐿𝑡𝑎𝑣 =
1

𝑁
 ∑

1

𝑁𝑖
∑

1

𝑁𝑖
𝐿𝑡𝑖,𝑗

𝑁𝑖

𝑗=1

𝑁

𝑖=1

 (3)

Network Throughput: Network throughput is the speed

with which the network efficiently accepts and delivers total

inserted packets during warmup. The following equation gives

the average network throughput

𝑇𝑎𝑣𝑔 =
1

𝑁(𝑇𝑠𝑖𝑚− 𝑇𝑤𝑎𝑟𝑚)
 ∑ 𝑁𝑖

𝑖=1..𝑁 (4)

Where, Tsim is simulation time, and twarm is warm-up time.

4. Mapping Optimization Using the Greedy

Firefly Algorithm
4.1. Optimization Problem

The optimization problem is widely used in various fields,
such as engineering, mathematics, computer science, and

autonomous robots. Optimization mentions how to arrive at a

practical solution when certain complexities, constraints or set

goals exist for a specific problem.

The optimization problem has primary considerations,

such as the objective function that needs to be optimized, the

set of constraints, a few sets of possible solutions, and the rule

for optimization, whether to minimize or maximize the values

to achieve the best possible solution. Optimization improves

performance or overall efficiency related to the problem.

Using the systematic search based optimization methods,
time convergence occurs as these algorithms need to search

the entire search space, and concurrence arises as the search

may not get completed within the assigned polynomial time

bounds.

Considering the abovementioned limitations, there is a

need for either Heuristic or meta-heuristic-based optimization

algorithms. Evolutionary Meta Heuristic algorithms are

powerful in providing general-purpose solutions or structures

instead of application-specific ones in case of a complex

problem with a huge search space or not well defined objective

function. A few characteristics of meta Heuristic mapping

algorithms are that they are efficient while solving
complicated optimized needs or defining some mathematical

models, as they require fewer parameters to be altered during

implementation.

Powerful nature or bio inspired metaheuristic approaches

are gaining popularity while solving most optimization issues.

Some metaheuristics algorithms have swum- or population-

based intelligence algorithms based on updating individuals'

positions by mimicking animal/bird behaviour, such as

finding prey, hunting, and protecting themselves while finding

an efficient optimization solution.

4.2. Firefly Behavior

One efficient bio inspired metaheuristic algorithm is
derived from the natural behavior of fireflies. Fireflies, known

as lighting bugs, are usually found before monsoon in tropical

regions. Using the process of Bioluminescence, they produce

unique flashing lights that are used as a signaling system with

which they communicate for various reasons, such as

attracting other partners, sending alert messages, or attracting

prey.

As proposed in the paper [23] for formulating a firefly

algorithm, some assumptions are made as a)all fireflies get

attracted towards each other without consideration of their

sex, b) The flashing light can be related as an Objective
function that needs to be optimized. c)The brightness of the

firefly can be derived considering the view of objective

function when it is required to articulate an optimized solution

or algorithm d) The attractivity that can be established

between different fireflies is usually related to their

Brightness. Depending on this fact, the firefly with low

brightness will always approach the firefly with more

brightness. As the distance between fireflies increases, the

brightness and, in turn, attractiveness decreases.

The basic firefly algorithm can be devised as follows [24],

𝐼(𝑟) =
𝐼0

1+𝜆𝑟2. (5)

Let Light Intensity I change according to distance r as,

Where λ is the Light Absorption Coefficient, and I0 is the
light intensity of the source.

In the same way, Attractiveness is derived as

 𝐴(𝑟) =
𝐴

1+𝜆𝑟2′ (6)

Shweta Ashtekar & Kushal Tuckley / IJEEE, 11(11), 295-305, 2024

300

Where, A0 is attractiveness at r=0

Any firefly i approaches any other firefly j, and its

movement is given by Equation (7) as,

𝑥𝑖 = 𝑥𝑖 + 𝛽0 𝑒
−𝛾𝑟𝑖𝑗

2
(𝑥𝑗 − 𝑥𝑖) + α(𝑟𝑎𝑛𝑑 − 0.5) (7)

The 1st term is the attractiveness factor by which xi gets

attracted to another brighter firefly xj, and the 2nd term is

randomization, which helps firefly xi to move randomly in

case of no brighter firefly.

 4.3. Proposed Greedy Firefly Algorithm (GFF)

The following are a few considerations when

implementing the Greedy Firefly algorithm. As per the above

terms related to firefly behavior, here

 Every firefly represents a single solution. So, a number of

solutions are available with multiple fireflies.

 Each firefly differs from another based on brightness.

 The brightest firefly is the current global better solution.

 The brightness varies with the objective function when

calculating communication costs, as given by Equation

(1).

 The algorithm is iterative based in which each iteration

gives one solution, compared with the next iteration

solution. If the next iteration is comparatively brighter,

movement towards brighter fireflies occurs, and the

solution is swapped.

 The iterative process continues until the optimal solution
is achieved or the termination criteria are reached.

At first, the algorithm starts with random positioning of

all tasks on available cores of the NoC system and then

continues through an iterative process. The greedy algorithm

in the firefly-based application mapping process iteratively

refines the mapping configuration by making locally optimal

decisions based on the attractiveness of the fireflies and the

light intensity. The greedy algorithm selects the solution in the

current phase of iteration and finds the best local solution by

exploring its search space, enhancing the probability of getting

the final best or optimal global solution iteratively.

The basic flow of the algorithm is as follows,

1. Evaluate the total cores onto which application tasks must

be mapped.

2. Generate initial solution population

3. Excecute firefly algorithm

4. To improvise the obtained solution, run the greedy

algorithm

5. Terminate when the optimized results are achieved.

The following Pseudo code summarizes the program's

flow for the Greedy Firefly Algorithm.

Pseudo code for Greedy Firefly algorithm (GFF):

Algorithm: Greedy Firefly Algorithm(GFF)

Input: DAG(T,C) ,DCG(P,E)

Output: Optimized mapping /Firefly solution

Begin

Initialise parameters, Set max ← max Iteration

Generate initial solution F0 population

While (iteration <max) Do
 Calculate Brightness(Communication cost)to find

a new Firefly F1

 Estimate distance & attractiveness between

fireflies

 If F1>F0 Then

 Execute a Greedy approach for local search

optimisation

Swap the solution by moving F0 towards F1

 Else

 F1=F0

 End If

 ++Max
 Return Optimized Firefly

End While

 Calculate Average Latency Ltav & Calculate

Throughput Tavg

End

5. Evaluation
The Evaluation section elaborates on implementing the

proposed Greedy Firefly algorithm (GFF) to verify its efficacy

when compared with other mapping algorithms for various

real time embedded traffic.

The system configurations utilized to implement the

algorithm with Intel core I7 Quad-core Processor with

operating frequency 3.2 GHz and 8 GB RAM. The evaluation

indicators are Average Latency, Throughput and Power

estimated on a 65nm cell library model in NoCTweak

Simulator [22].

NoCTweak is a popular cyclic accurate system C/C++
simulator that incorporates multiple random and embedded

traffics to perform various algorithms of NoC-based systems

precisely. Taking advantage of this highly parameterizable

NoCTweak Simulator, the proposed Greedy Firefly algorithm

has been implemented to analyze and check its aptness against

existing mapping algorithms under identical experimental

environments and traffic conditions.

5.1. Simulation Environment / Experimental Setup &

Embedded Applications

NoCTweak simulator offers distinct parameter options

for setting synthetic and embedded traffic situations in various
routing techniques to realize the proposed GFF mapping

algorithm on embedded applications. The following system

configurations were availed, as indicated in Table 1.

Shweta Ashtekar & Kushal Tuckley / IJEEE, 11(11), 295-305, 2024

301

Table 1. Platform specifications for simulation environment

Platform Parameters Description

Network Topology : 2D Mesh

Type of Platform : Real Time Embedded

Distribution of Packet : As Exponential

Length of Packet : Fixed 10 Flits

Offered Load or Traffic (Flit
Injection Rate)

0.1 to 1.0
(flits/cycle/node)

Router Type:
Pipelined, Wormhole

Switching

Selected Routing Algorithm : Xy Ordered

Output Channel Selection: Round Robin

Embedded Task Mapping
Algorithms:

Random, NMAP, BB,
GFF

Size of Buffer : 8 (Flits)

Length between Routers : 1000 (um)

Type of Pipeline : 5

Clock Frequency (Input): 1000 MHz

Clock Frequency (Operating) : 1000 MHz

Time Taken for Warmup : 20000 Cycles

Here, six representative real-time embedded applications

and benchmarks are selected from multimedia and

communication scenarios, such as PIP, MWD, CAVLC,

MMS, VOPD, and E3S Consumer benchmarks, as mentioned

in Table 2. Those applications outperformed the proposed
GFF algorithm and comparatively showed significant latency

reduction, especially at higher traffic loads, between 60 % and

100%.

Table 2. Embedded benchmarks selected for implementation

Applications Description
No. of

Tasks

No. of

Edges

MWD
Multi Window

Display
12 13

PIP Picture In Picture 8 8

CAVLC

Context-Adaptive

Variable-Length

Coder

16 23

MMS Multi Media System 25 33

VOPD
Video Object Planar

Decoder
16 21

E3S

Consumer

Benchmark

Consumer

Application
12 12

The suggested results of this Metaheuristic GFF

algorithm are contrasted against the NMAP algorithm, a

constructive heuristic search approach, the BB algorithm, a

Systematic Search approach, the SA Self adaptive algorithm
and the Random algorithm. The Random and NMAP are

already part of the simulator. The BB algorithm has been

implemented additionally for comparison. The basic workings

of BB and NMAP algorithms have been explained in the

literature survey. The proposed Greedy Firefly algorithm has

been successfully implemented in the simulator.

5.1.1. Task Mapping on Cores Using GFF Algorithm on MWD
Application

Figure 3 (a) shows the Directed Application Task or

communication Graph (DAG) for the Multi Window Display

(MWD) application [25], where 12 nodes are communicating

with each other using 13 edges. Each directed edge has

communication volume bandwidth written on it.

Fig. 3 (a) Directed Application task or communication Graph (DAG),

and b) Core mapping on 4 × 3 mesh using GFF algorithm for Multi

Window Display (MWD) application.

5.2. Latency and Throughput

Latency is important for analysing the algorithm's
workings and ensuring improved performance. The average

Latency of an application is the delay produced by all tasks

when total packets travel from source to destination.

5.2.1. Application : Multi Window Display (MWD)

The detailed results of the simulator of average latency

value comparison for the MWD application are indicated in

Table 3, and the graph is shown in Figure 4. The observation

shows that for lower traffic loads, almost all algorithms

perform equally; however, the proposed algorithm GFF gives

better latency reduction values for higher traffic loads above

0.7. This is due to the Greedy approach integrated with the
Firefly algorithm, which explores more search space in local

searches and gives optimal global solutions. The percentage

in nr mem
1

mem
2

mem
3

vs hs hvs

jug
1

jug
2

se blen

d

64 128

96 128

64
64

96

96
96 96

96

96

T0

T3

T6

T7

T1

T2

T5

T10

T8

T9

T4

T11

(a)

(b)

Shweta Ashtekar & Kushal Tuckley / IJEEE, 11(11), 295-305, 2024

302

improvement in latency reduction for the proposed GFF

algorithm is 16.3 % against Random mapping, 1.7 % against

NMAP and 14 % against the BB mapping algorithm.

Table 3. Average latency comparisons

Average Latency (ns)

Fir Random NMAP SA GFF BB

0.1 12.242 8.636 8.014 10.163 11.41

0.2 12.556 8.798 8.299 10.333 11.704

0.3 13.385 9.054 8.703 10.617 12.211

0.4 19.618 9.507 9.492 11.067 13.655

0.5 2741 10.566 11.354 12.069 724.755

0.6 4461.672 17.876 27.01 18.149 2652.96

0.7 7277.772 2032.577 4877.33 2079.017 6012.064

0.8 9397.886 4482.09 10296.01 4337.568 9130.324

0.9 10515.27 6325.818 15451.31 6275.664 11980.25

1 12160.58 7646.411 19524.92 7611.291 14552.27

Fig. 4 Graph of average latency vs traffic load (Fir)

In the same way, for all other remaining applications, the

Average latency for higher loads, e.g. 0.8, shown in Table 4

Table 4. Comparative analysis for average network latency

Embedded

Application

Average Latency (ns) at Fir= 0.8

Application Mapping Algorithm

 Random NMAP BB GFF

PIP 5752 4425 4329 3614

CAVLC 3257 13 3733 12

MMS 4876 4201 4973 4368

VOPD 6071 2671 2608 2587

E3S

Consumer
5631 6854 5333 5331

5.2.2. Throughput

The maximum traffic accepted and delivered by the

network in a unit of time is given as Throughput [18]. The

overall performance is improved by efficient mapping of tasks

on available cores. A detailed analysis of the MWD

application is shown. The proposed GFF algorithm provides

similar results to NMAP and outperforms other mapping

algorithms, as shown in Table 5 and the graph in Figure 5.

Table 5. Throughput (cycles/pkt) comparison for MWD application

Fir Random NMAP SA GFF BB

0.1 0.074 0.074 0.04 0.074 0.074

0.2 0.151 0.151 0.081 0.151 0.151

0.3 0.229 0.229 0.124 0.229 0.229

0.4 0.307 0.307 0.167 0.307 0.307

0.5 0.366 0.387 0.21 0.387 0.382

0.6 0.421 0.466 0.253 0.466 0.438

0.7 0.46 0.524 0.271 0.523 0.475

0.8 0.493 0.56 0.278 0.57 0.504

0.9 0.527 0.61 0.278 0.628 0.524

1 0.554 0.649 0.278 0.649 0.539

Fig. 5 Graph of throughput vs traffic load (Fir)

In the same way, the throughput comparison is shown for

the remaining applications, as indicated in Table 6.

Table 6. Comparative analysis for average throughput

Embedded

Application

Throughput (cycles/packet) at Fir= 0.8

Application Mapping Algorithm

 Random NMAP BB GFF

PIP 0.204 0.218 0.218 0,223

CAVLC 0.229 0.247 0.221 0.247

MMS 0.089 0.092 0.088 0.175

VOPD 0.347 0.37 0.37 0.37

E3S

Consumer
0.379 0.377 0.388 0.388

5.3. Support Vector Machine (SVM) Machine Learning

Model Implementation

The dataset was generated by running the different

application mapping algorithms, Random, NMAP, BB, and

0

5000

10000

15000

20000

25000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Random NMAP SA GFA BB

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Random NMAP SA

GFA BB

Shweta Ashtekar & Kushal Tuckley / IJEEE, 11(11), 295-305, 2024

303

GFF, on 12 different embedded applications. Four parameters,

Latency, Throughput, Energy and power, are considered while

running on a simulator. To reverify and validate the results of

the proposed GFF algorithm, the SVM machine learning

model has been implemented on the generated data set from

the NoCTweak simulator. SVM ML model will predict how
GFF is suitable considering minimal latency. Since the dataset

is small to medium, SVM is preferred over other ML

algorithms, such as random forest or decision tree. The test

size for training and testing is selected as 0.8. By

implementing this model, the metric Mean Squared Error

(MSE) is calculated for each specific application, giving an

average squared difference between the predicted values from

the model and actual target values from the generated dataset.

Also, the mean value for latency was examined for each

application, as shown in Table 7. For the mentioned

applications, such as PIP, CAVLC, MMS, VOPD, MWD, and

E3S Consumer benchmark from 12 different applications, the
Mean values for Latency are minimal compared with other

mapping algorithms. The proposed Greedy FireFly (GFF)

algorithm has been predicted as the best mapping algorithm

considering minimal Latency for the mentioned applications.

Table 7. MSE and Mean value for latency using the SVM model

Embedded

Application

MSE Using

SVM
Mean value Latency in ns

 Random NMAP BB GFF

PIP 0.003739 2713 2138 1975 1695

CAVLC 0.0021114 1637 283 1874 277

MMS 0.0016874 2586 1868 2445 2432

VOPD 0.00739234 2845 1202 1170 1163

E3S

Consumer
0.0058282 3411 4048 2848 2824

MWD 0.00634626 4661 2055 4510 2047

5.4. Result Analysis

Some of the mentioned parameters impacting Latency

and throughput must be considered while executing these

algorithms. To obtain the network latency, throughput, and

power consumption data for comparison, w the Flit Injection

Rate (fir) or the load has been altered that is applied to the
system for each run. The rate at which packets or flits are

injected into the router is indicated by Fir. The latency impacts

the network's total performance, which is sensitive to fir.

Saturation eventually sets in, and the average delay is

impacted by congestion. The buffer depth specifies the

number of flits/cycles. Network performance is enhanced by

increasing buffer depth.

Also, based on the packet size, the network saturates at

different loads. In general, larger packet length results in lower

average latency and high saturation load. Another factor to

consider while mapping is the bandwidth requirement
between the number of tasks in that application. The

observations indicated in the result part show that the

proposed Greedy Firefly algorithm is most suited for

multimedia applications. So, the results for high-end

signal/video processing applications like VOPD, PiP, MMS,

CAVLC and MWD applications indicate that GFF algorithms

outperform existing algorithms.

The various tasks involved in these applications are
audio/video compression/decompression, encoding/decoding,

quantization, filtering, etc. Also, it requires the storage of large

volumes of converted data in the memory. In these scenarios,

GFF performs a local search using a greedy approach that

provides a locally optimal solution by mapping the tasks of the

application on nearby cores and then using the firefly

algorithm, and a global search is done in order to get optimal

firefly by comparing it with an earlier solution in each

iteration. This results in reduced latency and increased overall

throughput. In contrast, in systematic search-based

optimization methods like the BB algorithm, time

convergence occurs as these algorithms need to search the
entire search space, and concurrence arises as the search may

get delayed and latency increases.

6. Conclusion and Future Scope
Motivated by high performance implementation of on

chip multicore interconnection NoC systems and satisfying

today’s rising demands of real time Multimedia & Networking
applications, through this paper, a metaheuristic nature

inspired Greedy Firefly algorithm was proposed and evaluated

using the NoCTweak simulator as a small contribution to this

field.

Different static mapping techniques such as Random,

NMAP, BB, and proposed Greedy Firefly are analyzed and

implemented using various real-time embedded benchmarks.

After evaluation, the results of the proposed GFF mapping

proved more efficient for PIP, MWD, CAVLC, MMS, VOPD,

and E3S Consumer benchmarks. There is a significant latency

reduction from 5 to 20 %. It is 16.3 % compared with

Random, 1.7 % with NMAP, and 14% with BB algorithms
for MWD application, an example of significantly higher

traffic loads (60 % to 100%). There are certain limitations of

GFF for large scale or complicated tasks, such as the

computing complexity of the GFF algorithm may become

unfeasible as the number of fireflies increases or the algorithm

may converge too soon.

An SVM machine learning model has been implemented

on the generated dataset from the simulator that predicts the

GFF as the best mapping algorithm compared with existing

algorithms for the mentioned applications. Continuing this

work, we plan to implement a congestion-aware adaptive or
hybrid mapping technique [26] incorporating a machine

learning algorithm. This approach will help make proper

application mapping decisions when combined with static

approach.

Shweta Ashtekar & Kushal Tuckley / IJEEE, 11(11), 295-305, 2024

304

References
[1] K. Paramasivam, “Network On-Chip and Its Research Challenges,” ICTACT Journal on Microelectronics, vol. 1, no. 2, pp. 83-87, 2015.

[CrossRef] [Google Scholar] [Publisher Link]

[2] Chawki Benchehida et al., “Memory-Processor Co-Scheduling for Real-Time Tasks on Network-On-Chip Manycore Architectures,”

International Journal of High Performance Systems Architecture, vol. 11, no. 1, pp. 1-11, 2022. [CrossRef] [Google Scholar] [Publisher

Link]

[3] Djalila Belkebir, and Fateh Boutekkouk, “Two-Steps into Energy Consumption Optimisation Due to the Mapping of Multimedia

Application to Network on Chip Architecture,” International Journal of Intelligent Systems Technologies and Applications, vol. 15, no.

4, pp. 353-378, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[4] Coskun Celik, and Cuneyt F. Bazlamacci, “Effect of Application Mapping on Network-on-Chip Performance,” 2012 20th Euromicro

International Conference on Parallel, Distributed and Network-Based Processing, Munich, Germany, pp. 465-472, 2012. [CrossRef]

[Google Scholar] [Publisher Link]

[5] Xin-She Yang, Nature-Inspired Metaheuristic Algorithm, 2nd ed., Luniver Press, Beckington, UK, 2010. [Google Scholar] [Publisher

Link]

[6] Sharoon Saleem et al., “A Survey on Dynamic Application Mapping Approaches for Real-Time Network-On-Chip-Based Platforms,”

IEEE Acces, vol. 11, pp. 122694-122721, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[7] Pradip Kumar Sahu, and Santanu Chattopadhyay, “A Survey on Application Mapping Strategies for Network-on-Chip Design,” Journal

of Systems Architecture, vol. 59, pp. 60-76, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[8] Cristinel Ababei, and Rajendra Katti, “Achieving Network on Chip Fault Tolerance by Adaptive Remapping,” 2009 IEEE International

Symposium on Parallel & Distributed Processing, Rome, Italy, pp. 1-4, 2009. [CrossRef] [Google Scholar] [Publisher Link]

[9] Amit Kumar Singh et al., “Run-Time Mapping of Multiple Communicating Tasks on MPSoC Platforms,” Procedia Computer Science,

vol. 1, no. 1, pp. 1019-1026, 2010. [CrossRef] [Google Scholar] [Publisher Link]

[10] Yang Ge, Qinru Qiu, and Qing Wu, “A Multi-Agent Framework for Thermal Aware Task Migration in Many-Core Systems,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20, no. 10, pp. 1758-1771, 2012. [CrossRef] [Google Scholar]

[Publisher Link]

[11] Amit Kumar Singh et al., “Communication Aware Heuristics for Run-Time Task Mapping on NoC-Based MPSoC Platforms,” Journal of

Systems Architecture, vol. 56, no. 7, pp. 242-255, 2010. [CrossRef] [Google Scholar] [Publisher Link]

[12] Chen-Ling Chou, and Radu Marculescu, “Contention-Aware Application Mapping for Network-on-Chip Communication Architectures,”

2008 IEEE International Conference on Computer Design, Lake Tahoe, CA, pp. 164-169, 2008. [CrossRef] [Google Scholar] [Publisher

Link]

[13] A. Bender, “MILP Based Task Mapping for Heterogeneous Multiprocessor Systems,” Proceedings EURO-DAC '96. European Design

Automation Conference with EURO-VHDL '96 and Exhibition, Geneva, Switzerland, pp. 190-197, 1996. [CrossRef] [Google Scholar]

[Publisher Link]

[14] Sarzamin Khan et al., “An Efficient Algorithm for Mapping Real Time Embedded Applications on NoC Architecture,” IEEE Access, vol.

6, pp. 16324-16335, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[15] Sourabh Katoch, Sumit Singh Chauhan, and Vijay Kumar, “A Review on Genetic Algorithm: Past, Present, and Future,” Multimedia

Tools and Applications, vol. 80, pp. 8091-8126, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[16] J. Kennedy, and R. Eberhart, “Particle Swarm Optimisation,” Proceedings of ICNN'95 - International Conference on Neural Networks,

Perth, WA, Australia, vol. 4, pp. 1942-1948, 1995. [CrossRef] [Google Scholar] [Publisher Link]

[17] Seyedali Mirjalili, and Andrew Lewis, “The Whale Optimisation Algorithm,” Advances in Engineering Software, vol. 95, pp. 51-67, 2016.

[CrossRef] [Google Scholar] [Publisher Link]

[18] Muhammad Junaid Mohiz et al., “Application Mapping Using Cuckoo Search Optimisation with Lévy Flight for NoC-Based System,”

IEEE Access, vol. 9, pp. 141778-141789, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[19] Bahador Boroumand, Elham Yaghoubi, and Behrang Barekatain, “An Enhanced Cost‑Aware Mapping Algorithm Based on Improved

Shuffled Frog Leaping in Network on Chips,” The Journal of Supercomputing, vol. 77, pp. 498-522, 2021. [CrossRef] [Google Scholar]

[Publisher Link]

[20] Nidhi Anantharajaiah, Felix Knopf, and Juergen Becker, “Ant Colony Optimisation Based NoCs for Flexible Spatial Isolation in Mixed

Criticality Systems,” 2021 IEEE 34th International System-on-Chip Conference (SOCC), Las Vegas, NV, USA, pp. 248-253, 2021.

[CrossRef] [Google Scholar] [Publisher Link]

[21] Jingcao Hu, and R. Marculescu, “Energy-Aware Mapping for Tile-Based NoC Architectures under Performance Constraints,”

Proceedings of the 2003 Asia and South Pacific Design Automation Conference, Kitakyushu, Japan, pp. 233-239, 2003. [CrossRef]

[Google Scholar] [Publisher Link]

http://doi.org/10.21917/ijme.2015.0015
https://scholar.google.com/scholar?q=Network+on-chip+and+its+research+challenges&hl=en&as_sdt=0,5
https://ictactjournals.in/ArticleDetails.aspx?id=1946
https://doi.org/10.1504/IJHPSA.2022.121877
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Memory-processor+co-scheduling+for+real-time+tasks+on+network-on-chip+many+core+architectures&btnG=
https://www.inderscienceonline.com/doi/abs/10.1504/IJHPSA.2022.121877
https://www.inderscienceonline.com/doi/abs/10.1504/IJHPSA.2022.121877
https://doi.org/10.1504/IJISTA.2016.080107
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Two-steps+into+energy+consumption+optimisation+due+to+the+mapping+of+multimedia+application+to+network+on+chip+architecture&btnG=
https://dl.acm.org/doi/abs/10.1504/IJISTA.2016.080107
https://doi.org/10.1109/PDP.2012.48
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Effect+of+application+mapping+on+network-on-chip+performance&btnG=
https://ieeexplore.ieee.org/document/6169623
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=XS+Yang%2C+Nature-Inspired+Metaheuristic+Algorithm%2C+Luniver+Press&btnG=
https://dl.acm.org/doi/10.5555/1628847
https://dl.acm.org/doi/10.5555/1628847
https://doi.org/10.1109/ACCESS.2023.3329233
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=a+survey+on+dynamic+application+mapping+approaches+for+real-time+network-on-chip-based+platforms&btnG=
https://ieeexplore.ieee.org/document/10304115
https://doi.org/10.1016/j.sysarc.2012.10.004
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+survey+on+application+mapping+strategies+for+Network-on-Chip+design&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1383762112000902
https://doi.org/10.1109/IPDPS.2009.5161202
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Achieving+network+on+chip+fault+tolerance+by+adaptive+remapping&btnG=
https://ieeexplore.ieee.org/document/5161202
https://doi.org/10.1016/j.procs.2010.04.113
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Run-time+mapping+of+multiple+communicating+tasks+on+MPSoC+platforms&btnG=
https://www.sciencedirect.com/science/article/pii/S1877050910001146
https://doi.org/10.1109/TVLSI.2011.2162348
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+multi-agent+framework+for+thermal+aware+task+migration+in+many-core+systems&btnG=
https://ieeexplore.ieee.org/document/6004860
https://doi.org/10.1016/j.sysarc.2010.04.007
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Communication+aware+heuristics+for+run-time+task+mapping+on+NoC-based+MPSoC+platforms&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1383762110000330
https://doi.org/10.1109/ICCD.2008.4751856
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Contention-aware+application+mapping+for+Network-on-Chip+communication+architectures&btnG=
https://ieeexplore.ieee.org/document/4751856
https://ieeexplore.ieee.org/document/4751856
https://doi.org/10.1109/EURDAC.1996.558204
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=MILP+based+task+mapping+for+heterogeneous+multiprocessor+systems&btnG=
https://ieeexplore.ieee.org/document/558204
https://doi.org/10.1109/ACCESS.2018.2811716
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Efficient+Algorithm+for+Mapping+Real+Time+Embedded+Applications+on+NoC+Architecture&btnG=
https://ieeexplore.ieee.org/document/8306371
https://doi.org/10.1007/s11042-020-10139-6
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+review+on+genetic+algorithm%3A+past%2C+present%2C+and+future&btnG=
https://link.springer.com/article/10.1007/s11042-020-10139-6
https://doi.org/10.1109/ICNN.1995.488968
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=J+Kennedy%2C+R.Eberhart%2C%E2%80%9DParticle+swarm+optimisation&btnG=
https://ieeexplore.ieee.org/document/488968
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Lewis%2C+The+whale+optimisation+algorithm&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0965997816300163
https://doi.org/10.1109/ACCESS.2021.3120079
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Application+Mapping+Using+Cuckoo+Search+Optimisation+With+L%C3%A9vy+Flight+for+NoC-Based+System&btnG=
https://ieeexplore.ieee.org/document/9570345
https://doi.org/10.1007/s11227-020-03271-5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+enhanced+cost%E2%80%91aware+mapping+algorithm+based+on+improved+shuffled+frog+leaping+in+network+on+chips&btnG=
https://link.springer.com/article/10.1007/s11227-020-03271-5
https://doi.org/10.1109/SOCC52499.2021.9739596
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Ant+Colony+Optimisation+Based+NoCs+for+Flexible+Spatial+Isolation+in+Mixed+Criticality+Systems&btnG=
https://ieeexplore.ieee.org/document/9739596
https://doi.org/10.1109/ASPDAC.2003.1195022
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Energy-aware+mapping+for+tile-based+NoC+architectures+under+performance+constraints&btnG=
https://ieeexplore.ieee.org/abstract/document/1195022

Shweta Ashtekar & Kushal Tuckley / IJEEE, 11(11), 295-305, 2024

305

[22] Anh T. Tran, and Bevan M. Baas, “Noctweak: A Highly Parameterizable Simulator for Early Exploration of Performance and Energy of

Networks On-Chip,” Technical Report, VLSI Computation Lab, ECE Department, University of California, 2012. [Google Scholar]

[Publisher Link]

[23] Xin-She Yang, “Firefly Algorithm, Levy Flights and Global Optimization,” Research and Development in Intelligent Systems XXVI, pp.

209-218, 2010. [CrossRef] [Google Scholar] [Publisher Link]

[24] Surafel Luleseged Tilahun, and Hong Choon Ong, “Modified Firefly Algorithm,” Journal of Applied Mathematics, 2012. [CrossRef]

[Google Scholar] [Publisher Link]

[25] Débora Matos et al., “Reconfigurable Routers for Low Power andHigh Performance,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 19, no. 11, pp. 2045-2057, 2011. [CrossRef] [Google Scholar] [Publisher Link]

[26] Waqar Amin et al., “HyDra: Hybrid Task Mapping Application Framework for NoC-Based MPSoCs,” IEEE Access, vol. 11, pp. 52309-

52326, 2023. [CrossRef] [Google Scholar] [Publisher Link]

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=AT+Tran%2C+Noctweak%3A+A+Highly+Parameterizable+Simulator+for+Early+Exploration+of+performance+and+Energy+of+Networks+on-Chip&btnG=
http://vcl.ece.ucdavis.edu/pubs/2012.07.techreport.noctweak/
https://doi.org/10.1007/978-1-84882-983-1_15
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Firefly+algorithm%2C+L%C2%B4evy+flights+and+global+op-timization&btnG=
https://link.springer.com/chapter/10.1007/978-1-84882-983-1_15
https://doi.org/10.1155/2012/467631
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Surafel+Luleseged+Tilahun+%2C+Hong+Choon+Ong%2C+Modified+Firefly+Algorithm&btnG=
https://onlinelibrary.wiley.com/doi/10.1155/2012/467631
https://doi.org/10.1109/TVLSI.2010.2068064
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Recon%EF%AC%81gurable+Routers+for+Low+Power+andHigh+Performance&btnG=
https://ieeexplore.ieee.org/document/5585851
https://doi.org/10.1109/ACCESS.2023.3279501
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=HyDra%3A+Hybrid+task+mapping+application+framework+for+NoC-based+MPSoCs&btnG=
https://ieeexplore.ieee.org/document/10132481

