
SSRG International Journal of Electrical and Electronics Engineering Volume 11 Issue 11, 424-437, November 2024
ISSN: 2348-8379/ https://doi.org/10.14445/23488379/IJEEE-V11I11P139 © 2024 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Energy-Aware Task Offloading in Massive IoT Edge

Network Using Optimized Convolutional Neural

Network

Shoukath Cherukat1, J. Benita2

1,2Department of Electronics and Communication Engineering, Noorul Islam Centre for Higher Education, Tamilnadu, India.

1Corresponding Author : shoukathniche@gmail.com

Received: 22 September 2024 Revised: 23 October 2024 Accepted: 21 November 2024 Published: 30 November 2024

Abstract - The importance of the Internet of Things (IoT) devices is rising in this digital age. However, the high energy
consumption of these devices limits their long-term functioning and efficiency. Task offloading technique in IoT is often used to

address energy optimization. Conventional task offloading strategies lead to shorter lifespans and inefficient use of devices.

Energy-aware task offloading is critical in IoT edge networks within the Mobile Edge Computing (MEC) environments to

enhance resource utilization and reduce latency. This paper proposes an optimized Convolutional Neural Network (CNN) for

efficient task offloading. The method efficiently predicts optimal offloading decisions using a comprehensive dataset that

includes network characteristics, user behavior and resource utilization features. The optimized CNN architecture achieved

notable performance with 91.075% accuracy, 91.82% precision, 91.07% recall, and 90.74% F1 score. These results showed

that the model ensures efficient resource allocation and extends the operational life of IoT devices. The key findings highlight

the potential of Deep Learning (DL) models in contributing to the energy-aware task offloading field in real-time adaptive

decision making within the MEC environments.

Keywords - Internet of Things, Energy optimization, Mobile Edge Computing, Deep Learning, Convolutional Neural Network.

1. Introduction
The revolution of IoT transforms the interaction of devices

with each other and the digital world. This interconnected

network comprises numerous smart devices, sensors and

actuators that constantly generate, process and transmit data

[1]. As the scale and complexity of IoT grows, the traditional

cloud computing solutions that transfer data to centralized
servers for processing face several challenges, including high

latency, bandwidth constraints and energy inefficiency. Edge

computing extends the data source to computational resources,

reducing latency and minimizing network congestion. The

MEC expands the concept by providing computing resources

at the edge of the mobile network infrastructure, like base

stations or access points.

An important strategy of MEC is task offloading, which

involves transferring computationally demanding tasks from

IoT devices to edge servers or cloud resources. The process

minimizes energy consumption and maximizes resource

utilization to enhance the system’s performance. Thus, IoT
devices enable faster data processing and real-time analytics by

utilizing MEC to offload computationally demanding jobs to

adjacent edge servers [2]. This decentralized method enhances

data security and privacy without compromising latency by

keeping sensitive data closer to its source. By carefully
selecting which task should executed locally and which should

be offloaded, task offloading achieved a balance between

resource usage, energy efficiency and user satisfaction.

However, there are significant challenges to effective task

offloading due to the dynamic nature of networks,

unpredictable task demands and varying device capabilities.

In the context of IoT, energy efficiency is crucial,

especially for battery-powered devices, which have high

energy consumption and lead to shorter battery life [3]. For the

widespread adoption of IoT, prolonged operations without

battery replacement and recharging are essential. So,
optimization of energy consumption is essential during task

offloading. The application of energy-aware task offloading

strategies makes IoT deployments more sustainable and cost-

effective by extending the operational lifetime of IoT devices.

The task offloading methods use Machine Learning (ML),

optimization algorithms and network analytics to make

intelligent decisions based on task execution and placement

[4].

In order to choose the best offloading technique, network

congestion, device capabilities, energy consumption, and user

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Shoukath Cherukat & J. Benita / IJEEE, 11(11), 424-437, 2024

425

preferences are considered. The availability of real-time data

about the network and device condition is critical for

effectively designing a task-offloading strategy and ensuring

efficient resource utilization. While effective in certain aspects,

conventional methods face tasks adjusting to dynamic network

conditions, optimizing energy usage, and ensuring low latency
in MEC environments. These methods often rely on static

decision-making frameworks that fail to respond to real-time

changes in network characteristics and user demands. This

study addresses these gaps by proposing an optimized deep

learning model for energy-aware task offloading in IoT edge

networks. The model utilizes advanced techniques like dropout

regularization and batch normalization to improve the

robustness and adaptability of task offloading decisions. This

novel approach links the gap between existing static models

and the need for real-time, energy-efficient offloading

solutions in dynamic IoT ecosystems. The novelty of this work

lies in the optimized design and application of the DL model
specifically for task offloading in MEC environments. The

main contributions of the suggested study are as follows:

 To develop a novel DL model for optimizing task

offloading decisions in IoT edge networks.

 To develop a real-time adaptive offloading mechanism

that dynamically adjusts with network and device changes.

 To predict the offloading types based on the input values.

The remaining section of this paper is structured as

follows: Section 2 provides related work on task offloading in

IoT edge networks, emphasizing the advantages and

limitations of various methods and the identified research gaps.
Section 3 describes the proposed methodology, including the

optimization process. Section 4 gives experimental results and

discussions demonstrating the efficiency of the proposed

model. Finally, Section 5 concludes the major findings of the

study.

2. Literature Review
Sada et al. [5] proposed a Lightweight Inference Task

Offloading and Sever Selection (LITOSS) framework with

two stage approach employing a lightweight genetic

algorithm, considering both the local and server side for task

scheduling and Reinforcement Learning (RL) for edge server

selection. LITOSS surpassed other meta-heuristic methods in

accuracy and speed but had limitations in server load and

energy cost estimation.

Pradeep et al. [6] employed the Energy Prediction and

Task Optimization (EPTO) algorithm, including LSTM-based

energy prediction, dynamic distribution of resources and

advanced offloading policies. Results showcased efficient
energy enhancement with reduced task completion time,

extended device lifespan, and challenges involved with

potential energy prediction inaccuracies and computational

overhead.

Baker et al. [7] focused on Software-Defined Networks

(SDN) and Deep Reinforcement Transfer Learning (DRTL) in

edge computing environments for dynamic task offloading by

employing Long Short-Term Memory Network (LSTM)-

based trust score prediction. Results demonstrated improved

latency and energy efficiency with limitations in security risks
and adjustments across various IoT contexts. Abdullaev et al.

[8] developed a Deep Belief Network (DBN) and Seagull

Optimization (SGO) for parameter tuning in task offloading.

An objective function with latency and resource constraints

minimizes energy consumption. Simulations showed that the

model outperformed conventional models with a maximum

reward of 89.67% by holding limitations regarding the

optimization of makespan.

Almuseelem [9] proposed an energy-aware task

offloading with load balancing for Edge-Cloud Computing

(ECC) as an integer problem based on an advanced encryption

method. According to location, user and data rate, the mobile
devices are redistributed with an edge because of the load-

balancing algorithm. The results showed remarkable energy

saving with an increase of 20.3%. However, limitations

included handling mobile device mobility and automating

security decisions. Sellami et al. [10] addressed a Deep

Reinforcement Learning (DRL) method based on blockchain.

The Proof-of-Authority Blockchain consensus was coupled

with the Asynchronous Actor-Critic Agent (A3C) policy for

network validation. The model outperformed consensus

algorithms by 50% better energy efficiency. Challenges

included the interoperability between distributed ledgers and
non-independent data distribution in distributed agents.

Sellami et al. [11] investigated energy-aware and low-

latency task scheduling using a Deep Q-learning process as

energy-constrained. Results outperformed A3C algorithms,

achieving 87% better energy savings and 50% faster task

assignments with data ownership and privacy challenges.

Mahapatra et al. [12] proposed Proximal Policy Optimization

(PPO) for optimizing energy consumption in edge servers by

analyzing the current environment to select the optimum

location incorporating both server and link transmission

energy consumption. The simulation used Dijkstra’s

algorithm and achieved an average energy saving of 22.69%,
yet was limited by the variability and complexity of the edge

environment.

Zhao et al. [13] investigated Orthogonal Frequency

Division Multiple Access (OFDMA), considering latency

requirements to minimize the energy consumption based on

offloading ratio selection, subcarrier and computing resource

allocation and transmission power optimization. The results

demonstrated that the model can save 20-40% energy by

comparing conventional algorithms. Naouri et al. [2] proposed

a three-layer framework with device, cloudlet, and cloud

layers for task offloading to differentiate tasks based on
computing and communication costs. A greedy task graph

Shoukath Cherukat & J. Benita / IJEEE, 11(11), 424-437, 2024

426

partition offloading algorithm was employed to reduce the

costs. The main limitation included issues of highly variable

network conditions and potential inefficiencies.

Bi et al. [14] focused on Particle swarm optimization

based on Genetic Learning (PGL) and formulation and

derivation of analytical solutions. Outcomes showed
improved energy efficiency within the deadlines by neglecting

mobile device energy consumption. Wang et al. [15] used

energy beam forming for wireless power transfer employing

convex optimization techniques for energy-efficient task

offloading in MEC systems, showing minimization compared

to both local computing and full offloading with challenges

over dynamic networks and nonlinear energy models. Tu et al.

[16] developed an Online Predictive Offloading (OPO)

algorithm by joining DRL and LSTM to reduce the cost by

optimizing task latency, energy consumption, and discard rate

for edge computing in IoT.

Developing real-world implementation of an intelligent
task offloading solution with real-time data accuracy is

crucial. The dynamic network conditions affect the prediction

of server loads and energy consumption. Metaheuristic

algorithms show promising results, yet the real-world

efficiency is not verified. Security, privacy, and handling

mobility in dynamic networks remain significant issues.

Moreover, reliance on simulated data fails to capture real-

world complexities. For instance, while LITOSS demonstrates

efficiency through lightweight inference, its limitations in

handling server-side constraints must be discussed. Similarly,

EPTO achieves dynamic energy optimization but faces

computational overhead challenges. Methods like DBN and

SGO provide high accuracy but lack adaptability in variable

network environments.

3. Materials and Methods
The growing demand for reliable and efficient IoT by

managing energy consumption, minimizing latency and

maximizing resource utilization is crucial. This study explores

energy aware task offloading using an optimized

Convolutional Neural Network, ensuring effective operation in

resource constrained environments by predicting the types of
offloading based on the input values. The collected dataset is

preprocessed to transform the data to input into an optimized

CNN for testing and prediction. The detailed process flow is

illustrated in Figure 1.

3.1. Dataset

In the context of task offloading assessment, certain

features were chosen from the dataset with prevalence impact

and potential for the decision-making process. The dataset

consists of details about network characteristics like Location

Area Code (LAC), a unique number that identifies a location

area within a cellular network, and Cell Identity (CI), which
identifies a cell in the network.

Fig. 1 Block diagram of the workflow

Radio Access Type (RAT) and network traffic information

(such as downlink and uplink traffic) with respect to MEC.

User behavior features such as end time and duration and user

agent highlighting user activities and usage patterns enable the

offloading strategy to adapt to dynamic user demands and

preferences. Resource utilization features, like the availability

of computing resources in the edge cloud, influence the balance

between the loads and optimize resource allocation. The

characteristics related to latency, such as network latency and

Round-Trip Time (RTT), are crucial metrics affecting user

Dataset

Data Preprocessing

Data Normalization

Min/Max Scaling
Train/Test Splitting

Transform Data

Classification Model

Convolutional Neural
Network Layer Optimization

Hyper parameter Optimization

Loss/Accuracy Plot
Classification Report

Confusion Matrix

ROC AUC

Model Evaluation

Testing/Prediction

Shoukath Cherukat & J. Benita / IJEEE, 11(11), 424-437, 2024

427

experience for task offloading evaluation. Additionally, the

duration of the data transfer, throughput, and data transmission

rate are important. These features collectively enable reliable

analysis of task offloading decisions, ensuring network

conditions, user activities, resource availability, and latency.

The sample data is illustrated in Figure 2. Thus, the dataset
used in this study is highly relevant to task offloading scenarios

in MEC environments, as it incorporates features critical for

analyzing real-world IoT systems. Key attributes provide

comprehensive insights into the factors influencing offloading

decisions. The dataset’s large size of 204,823 instances ensures

robust training and testing of the model, allowing it to

generalize well across diverse scenarios. Furthermore,

including dynamic user activity data, such as session durations

and traffic patterns, alongside network characteristics like RTT

and downlink/uplink traffic, makes the dataset suitable for

capturing the variability inherent in IoT ecosystems. This

diversity helps address challenges like class imbalance and
identifies the most influential features for decision-making. By

enabling the development of adaptable offloading strategies,

the dataset effectively supports the study’s goal of optimizing

energy efficiency and resource allocation in MEC

environments. The data type and the statistical analysis are

given in Figures 3, and 4, respectively.

Fig. 2 Sample dataset

Fig. 3 Data type

The data visualization provides a comprehensive

understanding of the characteristics of the task offloading
dataset. With count plots, histograms, and correlation analysis,

significant insights were observed regarding the distribution of

offloading decisions, the range and variation of feature values,

and the relationships between features and the target variable.

Figure 5 plots the number of tasks offloading cases categorized

by the offloading decision: Mobile Device and Edge Cloud.

The plot displays a higher count of tasks executed by mobile
devices than edge count, highlighting the class imbalance to

understand the distribution of task offloading decisions, which

is crucial for developing and evaluating offloading strategies in

MEC environments.

Histograms provided insights into the distributions of

individual features such as latency, throughput and traffic

patterns, revealing their ranges and identifying potential

imbalances. This will ensure the data quality and effective

preprocessing to improve the accuracy of task offloading. The

distribution of eight features is given in Figure 6. The

correlation analysis given in Figure 7 explains the relationships

between features and offloading types. The plot indicated that
throughput has the highest positive correlation with the

offloading type, indicating it is the most influencing feature

regarding the offloading decision between mobile devices and

edge cloud. These visualizations help optimize task offloading

in MEC environments by identifying the most important

factors affecting decision-making.

Shoukath Cherukat & J. Benita / IJEEE, 11(11), 424-437, 2024

428

Fig. 4 Statistical analysis of the dataset

Fig. 5 Count of offloading decision

The correlation analysis given in Figure 7 explains the

relationships between features and offloading types. The plot

indicated that throughput has the highest positive correlation

with the offloading type, indicating it is the most influencing

feature regarding the offloading decision between mobile

devices and edge cloud.

These visualizations help optimizing the task offloading in

MEC environments by identifying the most important factor

affecting the decision making. Additionally, the heatmap

facilitated the identification of multicollinearity among

features by detecting highly correlated feature pairs.

Fig. 6 Feature distribution of the dataset

140000

120000

100000

80000

60000

40000

20000

0

C
o

u
n

t

Offloading_Decision Mobile Device Edge Cloud

Number of Different Types of Cases

160000

120000
100000
80000
60000
40000
20000

0
0 10000 20000 30000 40000 50000 60000

Cell_Idendity (CI)

140000
200000

150000
125000
100000
75000
50000
25000

0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

1.6

Downlink_Traffic

175000

le6 0 20000 40000 60000 80000

200000

150000
125000
100000
75000
50000
25000

0

175000

1.0 1.2 1.4 1.6 1.8 2.0

160000

120000
100000
80000
60000
40000
20000

0

PAT

140000

0 20000 40000 60000 80000

200000

150000
125000
100000
75000
50000
25000

0

175000

Latency

0.0 0.2 0.4 0.6 0.8 1.0

120000

100000

80000

60000

40000

20000

0

Throughput
140000

le6

Shoukath Cherukat & J. Benita / IJEEE, 11(11), 424-437, 2024

429

By highlighting strong and weak correlations, as in Figure

8, the heatmap helps identify the most influential factors in

offloading decisions, guiding the optimization of resource

allocation and improving the performance of the optimized

CNN model.

Fig. 7 Correlation of features with offloading type

Fig. 8 Heat map of the data

3.2. Data Preprocessing
Data is preprocessed using data normalization and min-

max scaling. Data normalization is organizing data in a

database to remove redundancy and improve data integrity.

The process involves structuring tables and recognizing

relationships between them, which implies simplified data

management across all records and fields to ensure the

streamlining and consistency of the stored data.

The main aim of data normalization is to create a uniform

data format across the system, making it more reliable for

users to interact with queries and analyze the data effectively

[17]. The process reduces duplication with great data quality
and more effective retrieval processes. Min-Max scaling

scales and transforms each feature individually to a range

typically between 0 and 1. The process is an alternative to zero

mean, unit variance scaling. Mathematically, (1) represents

min-max scaling,

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
 (1)

Where x is the original value of a feature xmin is the

minimum, and xmax is the feature’s maximum value in the

dataset.

By maintaining the relative relationship between the other

values, the min max scaler scaled linearly by preserving the

effect of outliers, where the maximum value is represented by

the largest data point that occurs, and the minimum value is
represented by the smallest one.

3.3. Proposed Optimized Convolutional Neural Network

In the context of a massive IoT network, the paper

proposed an optimized CNN for accurate and efficient task

offloading in an MEC environment. This optimized CNN

makes intelligent decisions regarding offloading

computational tasks from a mobile to an edge cloud. CNN or

ConvNet are specialized deep neural networks widely used to

analyze visual imagery [18].

The basic architecture of the CNN is provided in Figure

9. The input layer of CNN is designed to adapt to the feature
set of datasets, where each feature represents information

about the network characteristics, user behavior, and resource

utilization.

Fig. 9 Architecture of CNN

Unlike conventional methods that rely on matrix

multiplication, CNN employs convolution, which involves a

mathematical operation on two functions to create a third

function that illustrates how one’s shape is altered by the

other. This is achieved by applying a filter or kernel (3×3

matrix) to the input image to extract convoluted features,

which are then passed on to the next layer. Figure 10
represents the convolution operation.

0.5

0.4

0.3

0.2

0.1

0.0

C
o

rr
el

at
io

n

Features

T
h

ro
u
g

h
p

u
t

Correlation with Offloading Type

R
A

T

D
u

ra
ti

o
n

U
p

li
n

k
_

T
ra

ff
ic

L
at

en
cy

D
o

w
n

li
n
k

_
T

ra
ff

ic

L
A

C

0.75

0.50

0.25

0.00

-0.25

-0.50

M
o
b
il
e
 D

e
v
ic

e
_
1
_
E

d
g
e
 C

lo
u
d
_
0

 T
h
ro

u
g
h
p
u
t

L

a
te

n
c
y

 U

p
li

n
k
_
T

ra
ff

ic

 R

A
T

D

u
ra

ti
o

n

L

A
C

D

o
u
n
li

n
k
_
T

ra
ff

ic

Downlink_Traffic LA C Duration RAT Uplink_Traffic Latency Throughpu t Mob ile Device_1_Edge Cloud_0
-0.034 -0.057 -0.0047 0.059 -0.0072 -0.0073 0.52

-0.011 0.071 -0.051 -0.069 -0.011 -0.052

0.0023 -0.0021 1 0.0016 0.0062

0.28 0.0046 0.0064 -0.0045

-0.0085 -0.96 0.002

0.0032 -0.0027

0.0085

-0.75

Conv Pool Conv Pool FC FC Softmax

Input

a

Shoukath Cherukat & J. Benita / IJEEE, 11(11), 424-437, 2024

430

Fig. 10 Convolution operation

Max pooling, another major operation in CNN, chooses

the maximum elements from the area of the feature map

enclosed by the filter, effectively retaining the most important

features of the earlier feature map and minimizing the spatial
dimension of the feature maps [19].

The visualization of the max pooling operation is given in

Figure 11. The max pooling operation is applied after the

convolutional layer in the proposed optimized CNN, which

helps maintain a balance between model efficacy and

performance, ensuring that the network captures the most

relevant features to prevent overfitting while being

computationally feasible.

Fig. 11 Visualization of max pooling operation

The activation function, Rectified Linear Unit (ReLU), is

mostly used in CNNs because it introduces non-linearity to the

model by returning to zero for any negative input. For 𝑓(𝑥) =
 𝑚𝑎𝑥 (0, 𝑥), the function returns that value for any positive

value x. The ReLU function is shown in Figure 12.

3.3.1. Optimized Dropout

In CNN, the dropout regularization technique prevents

overfitting, which happens when a model learns to remember

the training data instead of generalizing from it. It randomly

sets a proportion of neurons to zero during training, which

enables the network to learn more important features. The

application of dropout regularization is defined by percentage:

the standard neural network and network after dropout

regularization are given in Figure 13.

Fig. 12 ReLU function

 (a) (b)

Fig. 13(a) Standard neural network, and (b) After applying dropout.

3.3.2. Optimized Batch Normalization

Batch normalization is crucial in CNN, which addresses
internal covariate shifts by normalizing mini-batch

activations. The normalization process involves the

computation of the mean as given in (2).

Mean, 𝜇
𝐵=
1

𝑥
∑ 𝑚𝑖
𝑥
𝑖=1

 (2)

The variance is calculated by (3),

Variance 𝜎𝐵
2 =
1

𝑥
∑ (𝑚𝑖 − 𝜇𝐵)

2𝑥
𝑖=1 (3)

Now, the activations are normalized as given by (4),

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

0 0 1 1 0

0 1 1 0 0

4 3 4

1*1=1
1*0=0
1*1=1
0*0=0
1*1=1
1*0=0
0*1=0
0*0=0
1*1=1

+
4

1 0 1

0 1 0

1 0 1

Input Data

Kernel
Convoluted Feature

2 2 7 3

9 4 6 1

8 5 2 4

3 1 2 6

9 7

8 6

Max Pool

Filter – (2x2)
Stride – (2, 2)

10

8

6

4

2

-10 -5 5 10

Shoukath Cherukat & J. Benita / IJEEE, 11(11), 424-437, 2024

431

𝑥�̂� =
𝑚𝑖−𝜇𝐵

√𝜎𝐵
2+𝜖

 (4)

During the training process, batch normalization

standardizes the activation of each layer by subtracting the

mean and dividing by the standard deviation of the activations

within the mini-batch, ensuring the input layer stays within a

similar scale throughout training.

After normalization, the batch normalization introduces

two learnable parameters per feature map as scale (𝛾) and shift

(𝛽). These parameters allow the model to adaptively scale and

shift the normalized activations, giving the network more

flexibility in learning the optimal representation for the data.

The output after batch normalization is given by (5)

𝑦𝑖 = 𝛾𝑥�̂� + 𝛽 (5)

3.3.3. Optimized Activity Regularizer

Regularization techniques like activity regularization

enhance the generalization of neural networks and prevent

overfitting problems by adding a penalty term to the output of

a layer based on its activations, discouraging large activation
values, and promoting more generalized feature learning. The

most common types of regularization using activity

regularizer include L1 regularization, L2 regularization, and a

combination of both, defined as elastic net regularization. L1

regularization adds a penalty equivalent to the absolute value

of the magnitude of coefficients as defined by (6).

𝐿1 = 𝜆∑ |𝑎𝑖|𝑖 (6)

Where 𝜆 represents regularization parameters for

governing the strength of the penalty and 𝑎𝑖represents the

activations. L2 regularizations add a penalty equal to the
square of magnitude of the coefficients, defined by (7).

𝐿2 = 𝜆∑ 𝑎𝑖
2

𝑖 (7)

The L1 and L2 regularization combines for an elastic net,

balancing the two as defined by (8).

𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝑛𝑒𝑡 = 𝛼𝐿1 + (1 − 𝛼)𝐿2 (8)

Where the parameter that controls the mix between L1

and L2 regularization is 𝛼. The optimizer will minimize the

loss function where the regularization terms are added. The

total loss with regularization can be given by (9),

𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑜𝑠𝑠𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + 𝜆𝑅(𝑎) (9)

Where 𝑅(𝑎)is the regularization term. The choice of the

type and strength of regularization depends on factors such as

the intricacy of the task, the architecture of the CNN, and the

volume of available training data. L1 regularization is

effective for feature selection, promoting sparsity by driving

less important feature weights to zero. L2 regularization, on

the other hand, tends to spread out the weight values more

evenly. Elastic Net provides a balanced approach, leveraging

the strengths of both L1 and L2 regularization.

3.3.4. Optimized Bias Regularizer
Regularizing the bias terms, in addition to the weights,

helps achieve this goal by penalizing large bias values. Bias

terms represent the intercept in a linear equation and add

additional parameters to each neuron in a layer.

The bias regularization penalizes the bias terms to prevent

them from becoming too large. L1, L2 and elastic net

regularization are used for this purpose. A penalty equal to the

absolute value of the magnitude of the bias terms is added by

L1 regularization. The L1 regularization term for the biases

𝑏 b can be defined by (10).

𝐿1𝑏𝑖𝑎𝑠 = 𝜆∑ |𝑏𝑗|𝑗 (10)

Where 𝜆 represents the regularization parameter that

controls the strength of the penalty, and 𝑏 𝑗 represents the bias

terms. L1 regularization encourages sparsity, potentially

driving some of the bias terms to zero, which can simplify the
model and enhance its interpretability. A penalty equal to the

square of the magnitude of the bias terms is added by L2

regularization. The L2 regularization term for the biases 𝑏 is

given by (11).

𝐿2𝑏𝑖𝑎𝑠 = 𝜆∑ 𝑏𝑗
2

𝑗 (11)

L2 regularization discourages large bias values without

necessarily driving them to zero, promoting smaller, more

evenly distributed bias terms. The Elastic Net regularization

term for the biases 𝑏 given by (12)

𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝑛𝑒𝑡 = 𝛼𝜆∑ |𝑏𝑗|𝑗 + (1 − 𝛼)𝜆∑ 𝑏𝑗
2

𝑗 (12)

Regularizing the bias terms and weights makes the neural

network less likely to overfit the training data, leading to better
performance on unseen data.

Now, in a fully connected layer, the fundamental building

of a neural network, each neuron is connected to every neuron

in the preceding layer to form a fully connected network, as

shown in Figure 14. Each neuron in this layer performs a linear

transformation on the input vector using a weights matrix,

ensuring that every input influences every output.

Finally, the sigmoid function, used in the output layer,

squashes input values to a range between 0 and 1, making it

suitable for classification tasks. At z=0, when the curve

crosses 0.5, establish the activation function’s rules.

Shoukath Cherukat & J. Benita / IJEEE, 11(11), 424-437, 2024

432

Fig. 14 Fully connected layer

Fig. 15 Sigmoid activation curve

The function outputs 1 if the value is equal to or greater

than 0.5 and 0 otherwise, providing a probabilistic
interpretation of the outputs. This suite of operations and

functions collectively enhances the optimized CNN’s ability

to learn and generalize from complex data. The sigmoid

activation curve is shown in Figure 15. Thus, the optimized

CNN architecture, comprising convolutional layers, max

pooling, dropout regularization, batch normalization, and

activity regularization, was designed to handle complex data

patterns efficiently.

Convolutional layers extract essential features, max

pooling reduces spatial dimensions, dropout mitigates

overfitting, and batch normalization standardizes activations

to improve stability during training. A fully connected layer
further processes the extracted features, and the sigmoid

function in the output layer provides probabilistic task

classification.

Hyperparameter optimization was critical in fine-tuning

the proposed CNN model to achieve optimal performance.

Techniques such as grid search were employed to explore

various combinations of parameters systematically. Batch

sizes ranging from 128 to 1024 were evaluated to balance

computational efficiency and convergence stability. The
Adam optimizer was selected for its superior capability in

minimizing loss during training, outperforming alternatives

such as SGD and RMSProp. The learning rate was fine-tuned

to ensure steady and efficient progress toward minimizing the

objective function without overshooting or stagnation.

Dropout rates were optimized to prevent overfitting while

maintaining the model’s capacity to learn complex patterns.

Validation techniques confirmed that the selected

hyperparameters yielded consistent and robust results across

the dataset. This detailed optimization process ensured a well-

calibrated model capable of making accurate and efficient

offloading decisions in dynamic MEC environments. The
optimized CNN architecture is illustrated in Figure 16, and the

model summary is in Table 1.

Table 1. Model summary of the optimized CNN

Layer Type Output Shape Parameters

Conv1D (None, 7, 128) 512

Conv1D (None, 7, 128) 49280

MaxPooling1D (None, 3, 128) 0

Dropout (None, 3, 128) 0

Batch

Normalization
(None, 3, 128) 512

Flatten (None, 384) 0

Dense (None, 512) 197120

Dropout (None, 512) 0

Dense (None, 1) 513

Total Parameters: 247937

Trainable

parameters:
 247681

Non-trainable

parameters:
 256

3.3.5. Hardware and Software Setup

A comprehensive setup is used for this study to ensure a

well-equipped environment to handle the demand of neural

network training and deployment consisting of NVIDIA

GeForce GTX 1080Ti GPU, an Intel Core i7 processor, 32GB
of RAM, and the Python-based Keras library integrated with

the TensorFlow framework. Keras’s intuitive interface and

Google Colab’s vast computational capabilities made

developing models easier and more assured. The dataset was

split into testing and training sets for the efficient training of

the model. Hyperparameters are the adjustable parameters in

a deep learning model that govern the training process and

influence the model’s performance.

Flattening
Class 1

Class 2

1.0

0.5

0.0

σ
(z

)

𝑧 = 𝑊𝑗𝑋𝑗 + 𝑏𝑖𝑎𝑠

Sigmoid Function σ(z) = 1/ 1+e
-z

-10 -5 0 5 10

Shoukath Cherukat & J. Benita / IJEEE, 11(11), 424-437, 2024

433

Fig. 16 Optimized CNN architecture

Tuning these parameters is crucial for optimizing the

model’s accuracy and efficiency. Table 2 mentions the

hyperparameters of the proposed model.

4. Results and Discussions
4.1. Performance Evaluation

Performance evaluation of the model was conducted to

ensure a comprehensive understanding of its effectiveness

using a variety of metrics. The primary metrics in Table 3

highlight different aspects of the model’s performance.

Table 2. Hyperparameter specifications

Hyperparameters Values

Batch size 128,256,512,1024

Iterations 300

Optimizer Adam, RMSProp, SGD, ADAGrad

Callback 80,85,91

Table 3. Evaluation metrics

Performance Metrics Equations

Accuracy (TP+TN)/(TP+TN+FP+FN)

Precision TP/(TP+FP)

Recall TP/(TP+FN)

F1 Score
2*(Precision*Recall) /

(Precision+Recall)

Where, TP-True Positives, FP-False Positives, TN-True

Negatives, and FN-False Negatives

With the help of the evaluation metrics, the offloading

type is predicted to be a mobile device or edge cloud. The

classification report of the proposed model is illustrated in
Table 4.

Table 4. Classification report

Evaluation Parameters Results (%)

Accuracy 91.075

Precision 91.82

Recall 91.07

F1-Score 90.74

The classification report summarizes that the

classification model predicts the type of offloading based on

the dataset. With an accuracy of 91.075 %, the efficiency of

the proposed model is demonstrated. A precision of 91.82%

indicated the model’s efficiency in minimizing false positives.
Recall of 91.07 measures the model’s ability to identify the

most positive instances. The F1-score, which harmonizes

precision and recall, was 90.74%, indicating a strong balance

between the two and highlighting the model’s overall

robustness in predicting task offloading decisions accurately

and reliably. The obtained miss classification score is 8.9244.

The study’s accuracy and loss plots were crucial for

assessing the model’s performance throughout training. The

accuracy plot indicated how well the model was learning, with

training accuracy steadily improving and validation accuracy

closely following, reflecting good generalization. The loss
plot showed a consistent decrease in training and validation

loss, suggesting effective learning and error minimization. No

significant divergence between training and validation metrics

was observed, indicating the absence of overfitting. As in

Figure 17, these plots confirmed that the proposed model was

input_1

InputLayer

input:

output:

[(None, 7, 1)]

[(None, 7, 1)]

conv1d

Conv1D

input:

output:

[(None, 7, 1)]

[(None, 7, 128)]

input:

output:

[(None, 7, 128)]

[(None, 7, 128)]

max_pooling1d input:

output:

[(None, 7, 128)]

[(None, 3, 128)]

dropout

Dropout

input:

output:

batch_normalization input:

output:

flatten

Flatten

input:

output:

[(None, 3, 128)]

[(None, 384)]

dense

Dense

input:

output:

[(None, 384)]

[(None, 512)]

input:

output:

[(None, 512)]

[(None, 512)]

input:

output:

[(None, 512)]

[(None, 1)]

conv1d

Conv1D

MaxPooling1D

[(None, 3, 128)]

[(None, 3, 128)]

BatchNormalization

[(None, 3, 128)]

[(None, 3, 128)]

dropout_1

Dropout

dense_1

Dense

Shoukath Cherukat & J. Benita / IJEEE, 11(11), 424-437, 2024

434

well-tuned, efficiently balancing learning from the training

data and generalizing to unseen data.

The confusion matrix for predicting offloading types,

with the classes being Edge Cloud and Mobile Device. It

summarizes the results of predictions made by the model by

comparing them to the actual labels. The matrix allows us to
visualize the model’s performance, as shown in Figure 18.

Figure 19 represents the Receiver Operating Characteristic

(ROC) curve, a graphical performance evaluation tool for

binary classification models. It plots the TP rate, i.e. recall or

sensitivity, versus the FP rate at different threshold settings.

Fig. 17 Accuracy plot and loss plot of the proposed model

TPR measures how many actual positive identifications

in the model are correct, and FPR measures vice versa: how

many actual negatives are misclassified as positives. The ROC

curve describes the trade-off between sensitivity and
specificity graphically. The Area Under the Curve (AUC)

represents the model performance across all threshold levels,

with a value closer to 1 representing good performance. A

perfect classifier achieves a point in the ROC space’s top-left

corner (0,1), reflecting high TPR and low FPR.

Fig. 18 Confusion matrix of the proposed method

Fig. 19 ROC curve of the model

The proposed CNN model significantly reduces latency

by utilizing real-time adaptability and efficient feature

extraction. Comparative benchmarks with existing methods
demonstrate the model’s superior performance, with faster

task execution times attributed to its ability to adjust to

network conditions and user demands dynamically. For

instance, the CNN’s capability to prioritize throughput and

resource utilization during task offloading results in lower

RTT and reduced overall processing time compared to

traditional methods like LITOSS and EPTO. The model

enhances the user experience by ensuring minimal latency,

enabling seamless and timely data processing.

A key strength of the proposed CNN model is its

adaptability and generalizability across diverse IoT scenarios.
The model’s training on a diverse dataset, encompassing

features such as latency metrics, user behavior, and network

conditions, ensures robust performance in varying

0.90

0.85

0.80

0.75

0.70

0.65

0 50 100 150 200

Training and Validation Accuracy

Number of Epochs

A
cc

u
ra

cy

Training Accuracy
Validation Accuracy

0.60

0.55

0.50

0.45

0.40

0.35

0 50 100 150 200

Training and Validation Loss

Number of Epochs

L
o

ss

Training Loss
Validation Loss

0.30

0.25

12000

10000

8000

6000

4000

M
o
b

il
e
 D

ev
ic

e

5300

2000

E
d

g
e
 C

lo
u
d

Confusion Matrix of Offloading Type Prediction

1723

105 13355

Mobile Device Edge Cloud

1.0

0.8

0.6

0.4

0.2

0.0 0.2 0.4 0.6 0.8 1.0

ROC Curve

False Positive Rate

T
ru

e
P

o
si

ti
v

e
R

at
e

Random Chances
Optimized CNN Model 0.0

Shoukath Cherukat & J. Benita / IJEEE, 11(11), 424-437, 2024

435

environments. For instance, it can handle low-latency

requirements in time-sensitive applications and optimise

resource allocation for devices operating under constrained

power conditions. The model’s capability to generalize to

unseen data makes it suitable for deployment in real-world IoT

ecosystems, where network characteristics and user demands
are highly dynamic. This flexibility highlights the practical

relevance of the model in scenarios like smart cities, industrial

IoT, and connected healthcare systems, where task offloading

efficiency and adaptability are critical.

Dynamic network conditions play a significant role in

influencing task offloading decisions. The proposed CNN

model effectively addresses these variations by incorporating

real-time data into its decision-making processes. For

example, the model prioritizes tasks with higher data transfer

rates in high-throughput scenarios, optimizing resource

utilization. Conversely, in low-latency environments, it

allocates tasks to minimize delays, ensuring timely execution.
This adaptability enables the model to maintain performance

and energy efficiency under varying network conditions,

making it highly suitable for dynamic MEC environments.

4.2. Performance Comparison

The performance of traditional learning methods and

models based on optimization algorithms is compared with the

suggested model. Table 5 shows the accuracy of comparing

the proposed model with existing methods.

Table 5. Performance comparison

Methodology Accuracy (%)

LSTM [7] 89

NB 82

SVM 78

DBN [8] 89.67

LITOSS [5] 81.86

EPTO [6] 89.0

SGO [8] 89.67

Proposed Method 91.075

Figure 20 represents the accuracy comparison graph,

which shows that the proposed model outperformed other

existing methods. The accuracy comparison shows the greater
performance of the suggested optimized CNN model,

achieving 91.075%, surpassing all the compared

methodologies. Traditional ML approaches, such as Naive

Bayes (NB) and Support Vector Machine (SVM), achieved

82% and 78% accuracy, respectively, reflecting their

limitations in capturing the complex dependencies inherent in

task offloading decisions. Advanced deep learning techniques

like LSTM (89%) and, DBN and SGO, 89.67% demonstrated

improved accuracy due to their capacity to model sequential

and feature-rich data.

Fig. 20 Accuracy comparison of the proposed method with existing

methods

Similarly, heuristic methods such as LITOSS (81.86%)

and EPTO (89.0%) performed well in specific scenarios but
lacked the adaptability and precision of the proposed CNN.

The proposed method’s superior performance can be

attributed to its optimized architecture, which integrates

advanced regularization techniques, batch normalization, and

max pooling, enabling it to extract and process features while

avoiding overfitting effectively. These results establish the

optimized CNN as the most effective approach for energy-

aware task offloading in MEC environments, offering robust

accuracy and adaptability to dynamic network conditions.

Figure 21 demonstrates the performance of the suggested

model with existing optimization algorithms.

Fig. 21 Accuracy comparison of proposed optimized CNN with other

optimization algorithm-based models.

The proposed model achieves the highest accuracy at

91.075%, surpassing SGO with 89.67%, EPTO with 89%, and

LITOSS with 81.86%.

5. Conclusion
MEC enhances the network performance and improves

user experience by bringing computational capabilities closer

to the network edge. Task offloading is crucial for the

optimization of performance in the MEC environment. Thus,

89

82

78

89.67
91.075

70

75

80

85

90

95

LSTM NB SVM DBN PROPOSED

MODEL

A
cc

u
ra

cy

81.86

89
89.67

91.075

76

78

80

82

84

86

88

90

92

LITOSS [5] EPTO [6] SGO [8] Proposed Method

Shoukath Cherukat & J. Benita / IJEEE, 11(11), 424-437, 2024

436

an optimized CNN with layer optimization and

hyperparameter optimization is developed and analyzed. By

utilizing a dataset with different network characteristics, user

behavior and resource utilization, the model accurately

predicts the optimal offloading decisions, striking a balance

between executing tasks locally and offloading them to edge
servers.

The proposed model demonstrated robust performance,

enhanced with dropout regularization, batch normalization,

and bias regularization. The model achieved 91.075%

accuracy, 91.82% precision, 91.07% recall, and 90.74% F1

score, indicating a strong balance between precision and

recall. These results highlight the effectiveness of the

optimized CNN in making intelligent offloading decisions,

thereby extending the operational lifetime of IoT devices and

ensuring efficient resource allocation.

While the proposed study demonstrates the effectiveness

of the optimized CNN model, certain limitations should be
noted. Though comprehensive, reliance on a simulated dataset

may not fully account for the complexities of diverse IoT

ecosystems, such as variations in user behavior, device

heterogeneity, and real-time network fluctuations.

Additionally, the model’s performance under extreme

variability in network conditions, such as severe congestion or

sudden bandwidth changes, has not been thoroughly

investigated. Future work could focus on enhancing the
model’s ability to handle highly dynamic network parameters

and improving its fault tolerance in adverse conditions.

Incorporating advanced techniques, such as adaptive

regularization methods or hybrid optimization algorithms,

could further refine the model’s accuracy and robustness.

Extending the approach to include optimization under

multiple concurrent objectives, such as balancing energy

consumption and latency simultaneously, would also be a

valuable direction for future research.

Acknowledgments
I want to express my sincere gratitude to all those who

contributed to completing this research paper. I extend my

heartfelt thanks to my supervisor, family, colleagues and

fellow researchers for their encouragement and understanding

during the demanding phases of this work.

References
[1] Sahil Garg et al., “Security in IoT-Driven Mobile Edge Computing: New Paradigms, Challenges, and Opportunities,” IEEE Network, vol.

35, no. 5, pp. 298-305, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[2] Abdenacer Naouri et al., “A Novel Framework for Mobile-Edge Computing by Optimizing Task Offloading,” IEEE Internet of Things

Journal, vol. 8, no. 16, pp. 13065-13076, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[3] Xuming An et al., “Joint Task Offloading and Resource Allocation for IoT Edge Computing with Sequential Task Dependency,” IEEE

Internet of Things Journal, vol. 9, no. 17, pp. 16546-16561, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[4] Zhongjin Li et al., “Energy-Aware Task Offloading with Deadline Constraint in Mobile Edge Computing,” EURASIP Journal on Wireless

Communications and Networking, vol. 2021, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[5] Abdelkarim Ben Sada et al., “Energy-Aware Selective Inference Task Offloading for Real-Time Edge Computing Applications,” IEEE

Access, vol. 12, pp. 72924-72937, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[6] G. Pradeep et al., “Energy Prediction and Task Optimization for Efficient IoT Task Offloading and Management,” International Journal

of Intelligent Systems and Applications in Engineering, vol. 12, no. 1s, pp. 411-427, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[7] Thar Baker et al., “EDITORS: Energy-Aware DynamIc Task Offloading Using Deep Reinforcement Transfer Learning in SDN-Enabled

Edge Nodes,” Internet of Things, vol. 25, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[8] Ilyоs Abdullaev et al., “Task Offloading and Resource Allocation in IoT Based Mobile Edge Computing Using Deep Learning,”

Computers, Materials & Continua, vol. 76, no. 2, pp. 1463-1477, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[9] Waleed Almuseelem, “Energy-Efficient and Security-Aware Task Offloading for Multi-Tier Edge-Cloud Computing Systems,” IEEE

Access, vol. 11, pp. 66428-66439, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[10] Bassem Sellami, Akram Hakiri, and Sadok Ben Yahia, “Deep Reinforcement Learning for Energy-Aware Task Offloading in Join SDN-

Blockchain 5G Massive IoT Edge Network,” Future Generation Computer Systems, vol. 137, pp. 363-379, 2022. [CrossRef] [Google

Scholar] [Publisher Link]

[11] Bassem Sellami et al., “Energy-Aware Task Scheduling and Offloading Using Deep Reinforcement Learning in SDN-Enabled IoT

Network,” Computer Networks, vol. 210, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[12] Abhijeet Mahapatra et al., “An Energy-Aware Task Offloading and Load Balancing for Latency-Sensitive IoT Applications in the Fog-

Cloud Continuum,” IEEE Access, vol. 12, pp. 14334-14349, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[13] Mingxiong Zhao et al., “Energy-Aware Task Offloading and Resource Allocation for Time-Sensitive Services in Mobile Edge Computing

Systems,” IEEE Transactions on Vehicular Technology, vol. 70, no. 10, pp. 10925-10940, 2021. [CrossRef] [Google Scholar] [Publisher

Link]

https://doi.org/10.1109/MNET.211.2000526
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Security+in+IoT-driven+mobile+edge+computing%3A+New+paradigms%2C+challenges%2C+and+opportunities&btnG=
https://ieeexplore.ieee.org/document/9537925
https://doi.org/10.1109/JIOT.2021.3064225
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+novel+framework+for+mobile-edge+computing+by+optimizing+task+offloading&btnG=
https://ieeexplore.ieee.org/document/9372288
https://doi.org/10.1109/JIOT.2022.3150976
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Joint+task+offloading+and+resource+allocation+for+IoT+edge+computing+with+sequential+task+dependency&btnG=
https://ieeexplore.ieee.org/document/9709889
https://doi.org/10.1186/s13638-021-01941-3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Energy-aware+task+offloading+with+deadline+constraint+in+mobile+edge+computing&btnG=
https://jwcn-eurasipjournals.springeropen.com/articles/10.1186/s13638-021-01941-3
https://doi.org/10.1109/ACCESS.2024.3404272
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Energy-Aware+Selective+Inference+Task+Offloading+for+Real-Time+Edge+Computing+Applications&btnG=
https://ieeexplore.ieee.org/document/10536887
https://doi.org/10.1109/ACCESS.2024.3404272
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Energy+Prediction+and+Task+Optimization+for+Efficient+IoT+Task+Offloading+and+Management&btnG=
https://www.ijisae.org/index.php/IJISAE/article/view/3425
https://doi.org/10.1016/j.iot.2024.101118
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Energy-aware+DynamIc+Task+Offloading+using+Deep+Reinforcement+transfer+learning+in+SDN-enabled+edge+nodes&btnG=
https://www.sciencedirect.com/science/article/pii/S254266052400060X
https://doi.org/10.32604/cmc.2023.038417
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=I+Abdullaev%2C+Task+offloading+and+resource+allocation+in+iot+based+mobile+edge+computing+using+deep+learning&btnG=
https://www.sciencedirect.com/org/science/article/pii/S154622182300187X
https://doi.org/10.1109/ACCESS.2023.3290139
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Energy-Efficient+and+Security-Aware+Task+Offloading+for+Multi-Tier+Edge-Cloud+Computing+Systems&btnG=
https://ieeexplore.ieee.org/document/10167657
https://doi.org/10.1016/j.future.2022.07.024
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+Reinforcement+Learning+for+energy-aware+task+offloading+in+join+SDN-Blockchain+5G+massive+IoT+edge+network&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+Reinforcement+Learning+for+energy-aware+task+offloading+in+join+SDN-Blockchain+5G+massive+IoT+edge+network&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167739X22002588
https://doi.org/10.1016/j.comnet.2022.108957
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Energy-aware+task+scheduling+and+offloading+using+deep+reinforcement+learning+in+SDN-enabled+IoT+network&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1389128622001359
https://doi.org/10.1109/ACCESS.2024.3357122
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+energy-aware+task+offloading+and+load+balancing+for+latency-sensitive+IoT+applications+in+the+Fog-Cloud+continuum&btnG=
https://ieeexplore.ieee.org/document/10411893
https://doi.org/10.1109/TVT.2021.3108508
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Energy-aware+task+offloading+and+resource+allocation+for+time-sensitive+services+in+mobile+edge+computing+systems&btnG=
https://ieeexplore.ieee.org/document/9525179
https://ieeexplore.ieee.org/document/9525179

Shoukath Cherukat & J. Benita / IJEEE, 11(11), 424-437, 2024

437

[14] Jing Bi et al., “Energy-Aware Task Offloading with Genetic Particle Swarm Optimization in Hybrid Edge Computing,” 2021 IEEE

International Conference on Systems, Man, and Cybernetics (SMC), Melbourne, Australia, pp. 3194-3199, 2021. [CrossRef] [Google

Scholar] [Publisher Link]

[15] Feng Wang, Jie Xu, and Shuguang Cui, “Optimal Energy Allocation and Task Offloading Policy for Wireless Powered Mobile Edge

Computing Systems,” IEEE Transactions on Wireless Communications, vol. 19, no. 4, pp. 2443-2459, 2020. [CrossRef] [Google Scholar]

[Publisher Link]

[16] Youpeng Tu et al., “Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning for Efficient Edge Computing in

IoT,” Future Internet, vol. 14, no. 2, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[17] Gözde Karataş Baydoğmuş, “The Effects of Normalization and Standardization an Internet of Things Attack Detection,” Avrupa Bilim ve

Teknoloji Dergisi, no. 29, pp. 187-192, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[18] Aleksandr Ometov, Anzhelika Mezina, and Jari Nurmi, “On Applicability of Imagery-Based CNN to Computational Offloading Location

Selection,” IEEE Access, vol. 11, pp. 2433-2444, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[19] Huang Jin Jie, and Putra Wanda, “RunPool: A Dynamic Pooling Layer for Convolution Neural Network,” International Journal of

Computational Intelligence Systems, vol. 13, no. 1, pp. 66-76, 2020. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1109/SMC52423.2021.9658678
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Energy-aware+task+offloading+with+genetic+particle+swarm+optimization+in+hybrid+edge+computing&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Energy-aware+task+offloading+with+genetic+particle+swarm+optimization+in+hybrid+edge+computing&btnG=
https://ieeexplore.ieee.org/document/9658678
https://doi.org/10.1109/TWC.2020.2964765
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimal+energy+allocation+and+task+offloading+policy+for+wireless+powered+mobile+edge+computing+systems&btnG=
https://ieeexplore.ieee.org/document/8960510
https://doi.org/10.3390/fi14020030
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Task+Offloading+Based+on+LSTM+Prediction+and+Deep+Reinforcement+Learning+for+Efficient+Edge+Computing+in+IoT&btnG=
https://www.mdpi.com/1999-5903/14/2/30
https://doi.org/10.31590/ejosat.1017427
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+effects+of+normalization+and+standardization+an+Internet+of+Things+attack+detection&btnG=
https://dergipark.org.tr/en/pub/ejosat/issue/65857/1017427
https://doi.org/10.1109/ACCESS.2022.3232469
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=On+applicability+of+imagery-based+CNN+to+computational+offloading+location+selection&btnG=
https://ieeexplore.ieee.org/document/9999423
https://doi.org/10.2991/ijcis.d.200120.002
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=RunPool%3A+A+dynamic+pooling+layer+for+convolution+neural+network&btnG=
https://link.springer.com/article/10.2991/ijcis.d.200120.002

