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Abstract - The importance of the Internet of Things (IoT) devices is rising in this digital age. However, the high energy 
consumption of these devices limits their long-term functioning and efficiency. Task offloading technique in IoT is often used to 

address energy optimization. Conventional task offloading strategies lead to shorter lifespans and inefficient use of devices. 

Energy-aware task offloading is critical in IoT edge networks within the Mobile Edge Computing (MEC) environments to 

enhance resource utilization and reduce latency. This paper proposes an optimized Convolutional Neural Network (CNN) for 

efficient task offloading. The method efficiently predicts optimal offloading decisions using a comprehensive dataset that 

includes network characteristics, user behavior and resource utilization features. The optimized CNN architecture achieved 

notable performance with 91.075% accuracy, 91.82% precision, 91.07% recall, and 90.74% F1 score. These results showed 

that the model ensures efficient resource allocation and extends the operational life of IoT devices. The key findings highlight 

the potential of Deep Learning (DL) models in contributing to the energy-aware task offloading field in real-time adaptive 

decision making within the MEC environments. 

Keywords - Internet of Things, Energy optimization, Mobile Edge Computing, Deep Learning, Convolutional Neural Network.

1. Introduction 
The revolution of IoT transforms the interaction of devices 

with each other and the digital world. This interconnected 

network comprises numerous smart devices, sensors and 

actuators that constantly generate, process and transmit data 

[1]. As the scale and complexity of IoT grows, the traditional 

cloud computing solutions that transfer data to centralized 
servers for processing face several challenges, including high 

latency, bandwidth constraints and energy inefficiency. Edge 

computing extends the data source to computational resources, 

reducing latency and minimizing network congestion. The 

MEC expands the concept by providing computing resources 

at the edge of the mobile network infrastructure, like base 

stations or access points.  

An important strategy of MEC is task offloading, which 

involves transferring computationally demanding tasks from 

IoT devices to edge servers or cloud resources. The process 

minimizes energy consumption and maximizes resource 

utilization to enhance the system’s performance. Thus, IoT 
devices enable faster data processing and real-time analytics by 

utilizing MEC to offload computationally demanding jobs to 

adjacent edge servers [2]. This decentralized method enhances 

data security and privacy without compromising latency by 

keeping sensitive data closer to its source. By carefully 
selecting which task should executed locally and which should 

be offloaded, task offloading achieved a balance between 

resource usage, energy efficiency and user satisfaction. 

However, there are significant challenges to effective task 

offloading due to the dynamic nature of networks, 

unpredictable task demands and varying device capabilities.  

In the context of IoT, energy efficiency is crucial, 

especially for battery-powered devices, which have high 

energy consumption and lead to shorter battery life [3]. For the 

widespread adoption of IoT, prolonged operations without 

battery replacement and recharging are essential. So, 
optimization of energy consumption is essential during task 

offloading. The application of energy-aware task offloading 

strategies makes IoT deployments more sustainable and cost-

effective by extending the operational lifetime of IoT devices. 

The task offloading methods use Machine Learning (ML), 

optimization algorithms and network analytics to make 

intelligent decisions based on task execution and placement 

[4].  

In order to choose the best offloading technique, network 

congestion, device capabilities, energy consumption, and user 
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preferences are considered. The availability of real-time data 

about the network and device condition is critical for 

effectively designing a task-offloading strategy and ensuring 

efficient resource utilization. While effective in certain aspects, 

conventional methods face tasks adjusting to dynamic network 

conditions, optimizing energy usage, and ensuring low latency 
in MEC environments. These methods often rely on static 

decision-making frameworks that fail to respond to real-time 

changes in network characteristics and user demands. This 

study addresses these gaps by proposing an optimized deep 

learning model for energy-aware task offloading in IoT edge 

networks. The model utilizes advanced techniques like dropout 

regularization and batch normalization to improve the 

robustness and adaptability of task offloading decisions. This 

novel approach links the gap between existing static models 

and the need for real-time, energy-efficient offloading 

solutions in dynamic IoT ecosystems. The novelty of this work 

lies in the optimized design and application of the DL model 
specifically for task offloading in MEC environments. The 

main contributions of the suggested study are as follows: 

 To develop a novel DL model for optimizing task 

offloading decisions in IoT edge networks. 

 To develop a real-time adaptive offloading mechanism 

that dynamically adjusts with network and device changes. 

 To predict the offloading types based on the input values. 

The remaining section of this paper is structured as 

follows: Section 2 provides related work on task offloading in 

IoT edge networks, emphasizing the advantages and 

limitations of various methods and the identified research gaps. 
Section 3 describes the proposed methodology, including the 

optimization process. Section 4 gives experimental results and 

discussions demonstrating the efficiency of the proposed 

model. Finally, Section 5 concludes the major findings of the 

study. 

2. Literature Review 
Sada et al. [5] proposed a Lightweight Inference Task 

Offloading and Sever Selection (LITOSS) framework with 

two stage approach employing a lightweight genetic 

algorithm, considering both the local and server side for task 

scheduling and Reinforcement Learning (RL) for edge server 

selection. LITOSS surpassed other meta-heuristic methods in 

accuracy and speed but had limitations in server load and 

energy cost estimation.  

Pradeep et al. [6] employed the Energy Prediction and 

Task Optimization (EPTO) algorithm, including LSTM-based 

energy prediction, dynamic distribution of resources and 

advanced offloading policies. Results showcased efficient 
energy enhancement with reduced task completion time, 

extended device lifespan, and challenges involved with 

potential energy prediction inaccuracies and computational 

overhead. 

Baker et al. [7] focused on Software-Defined Networks 

(SDN) and Deep Reinforcement Transfer Learning (DRTL) in 

edge computing environments for dynamic task offloading by 

employing Long Short-Term Memory Network (LSTM)-

based trust score prediction. Results demonstrated improved 

latency and energy efficiency with limitations in security risks 
and adjustments across various IoT contexts. Abdullaev et al. 

[8] developed a Deep Belief Network (DBN) and Seagull 

Optimization (SGO) for parameter tuning in task offloading. 

An objective function with latency and resource constraints 

minimizes energy consumption. Simulations showed that the 

model outperformed conventional models with a maximum 

reward of 89.67% by holding limitations regarding the 

optimization of makespan. 

Almuseelem [9] proposed an energy-aware task 

offloading with load balancing for Edge-Cloud Computing 

(ECC) as an integer problem based on an advanced encryption 

method. According to location, user and data rate, the mobile 
devices are redistributed with an edge because of the load-

balancing algorithm. The results showed remarkable energy 

saving with an increase of 20.3%. However, limitations 

included handling mobile device mobility and automating 

security decisions. Sellami et al. [10] addressed a Deep 

Reinforcement Learning (DRL) method based on blockchain. 

The Proof-of-Authority Blockchain consensus was coupled 

with the Asynchronous Actor-Critic Agent (A3C) policy for 

network validation. The model outperformed consensus 

algorithms by 50% better energy efficiency. Challenges 

included the interoperability between distributed ledgers and 
non-independent data distribution in distributed agents. 

Sellami et al. [11] investigated energy-aware and low-

latency task scheduling using a Deep Q-learning process as 

energy-constrained. Results outperformed A3C algorithms, 

achieving 87% better energy savings and 50% faster task 

assignments with data ownership and privacy challenges. 

Mahapatra et al. [12] proposed Proximal Policy Optimization 

(PPO) for optimizing energy consumption in edge servers by 

analyzing the current environment to select the optimum 

location incorporating both server and link transmission 

energy consumption. The simulation used Dijkstra’s 

algorithm and achieved an average energy saving of 22.69%, 
yet was limited by the variability and complexity of the edge 

environment. 

Zhao et al. [13] investigated Orthogonal Frequency 

Division Multiple Access (OFDMA), considering latency 

requirements to minimize the energy consumption based on 

offloading ratio selection, subcarrier and computing resource 

allocation and transmission power optimization. The results 

demonstrated that the model can save 20-40% energy by 

comparing conventional algorithms. Naouri et al. [2] proposed 

a three-layer framework with device, cloudlet, and cloud 

layers for task offloading to differentiate tasks based on 
computing and communication costs. A greedy task graph 
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partition offloading algorithm was employed to reduce the 

costs. The main limitation included issues of highly variable 

network conditions and potential inefficiencies. 

Bi et al. [14] focused on Particle swarm optimization 

based on Genetic Learning (PGL) and formulation and 

derivation of analytical solutions. Outcomes showed 
improved energy efficiency within the deadlines by neglecting 

mobile device energy consumption. Wang et al. [15] used 

energy beam forming for wireless power transfer employing 

convex optimization techniques for energy-efficient task 

offloading in MEC systems, showing minimization compared 

to both local computing and full offloading with challenges 

over dynamic networks and nonlinear energy models. Tu et al. 

[16] developed an Online Predictive Offloading (OPO) 

algorithm by joining DRL and LSTM to reduce the cost by 

optimizing task latency, energy consumption, and discard rate 

for edge computing in IoT. 

Developing real-world implementation of an intelligent 
task offloading solution with real-time data accuracy is 

crucial. The dynamic network conditions affect the prediction 

of server loads and energy consumption. Metaheuristic 

algorithms show promising results, yet the real-world 

efficiency is not verified. Security, privacy, and handling 

mobility in dynamic networks remain significant issues. 

Moreover, reliance on simulated data fails to capture real-

world complexities. For instance, while LITOSS demonstrates 

efficiency through lightweight inference, its limitations in 

handling server-side constraints must be discussed. Similarly, 

EPTO achieves dynamic energy optimization but faces 

computational overhead challenges. Methods like DBN and 

SGO provide high accuracy but lack adaptability in variable 

network environments. 

3. Materials and Methods 
The growing demand for reliable and efficient IoT by 

managing energy consumption, minimizing latency and 

maximizing resource utilization is crucial. This study explores 

energy aware task offloading using an optimized 

Convolutional Neural Network, ensuring effective operation in 

resource constrained environments by predicting the types of 
offloading based on the input values. The collected dataset is 

preprocessed to transform the data to input into an optimized 

CNN for testing and prediction. The detailed process flow is 

illustrated in Figure 1. 

3.1. Dataset  

In the context of task offloading assessment, certain 

features were chosen from the dataset with prevalence impact 

and potential for the decision-making process. The dataset 

consists of details about network characteristics like Location 

Area Code (LAC), a unique number that identifies a location 

area within a cellular network, and Cell Identity (CI), which 
identifies a cell in the network.

 

 

 

 

 

 

 

 

 

Fig. 1 Block diagram of the workflow 

Radio Access Type (RAT) and network traffic information 

(such as downlink and uplink traffic) with respect to MEC. 

User behavior features such as end time and duration and user 

agent highlighting user activities and usage patterns enable the 

offloading strategy to adapt to dynamic user demands and 

preferences. Resource utilization features, like the availability 

of computing resources in the edge cloud, influence the balance 

between the loads and optimize resource allocation. The 

characteristics related to latency, such as network latency and 

Round-Trip Time (RTT), are crucial metrics affecting user 
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experience for task offloading evaluation. Additionally, the 

duration of the data transfer, throughput, and data transmission 

rate are important. These features collectively enable reliable 

analysis of task offloading decisions, ensuring network 

conditions, user activities, resource availability, and latency. 

The sample data is illustrated in Figure 2. Thus, the dataset 
used in this study is highly relevant to task offloading scenarios 

in MEC environments, as it incorporates features critical for 

analyzing real-world IoT systems. Key attributes provide 

comprehensive insights into the factors influencing offloading 

decisions. The dataset’s large size of 204,823 instances ensures 

robust training and testing of the model, allowing it to 

generalize well across diverse scenarios. Furthermore, 

including dynamic user activity data, such as session durations 

and traffic patterns, alongside network characteristics like RTT 

and downlink/uplink traffic, makes the dataset suitable for 

capturing the variability inherent in IoT ecosystems. This 

diversity helps address challenges like class imbalance and 
identifies the most influential features for decision-making. By 

enabling the development of adaptable offloading strategies, 

the dataset effectively supports the study’s goal of optimizing 

energy efficiency and resource allocation in MEC 

environments. The data type and the statistical analysis are 

given in Figures 3, and 4, respectively. 

 
Fig. 2 Sample dataset

 
Fig. 3 Data type 

The data visualization provides a comprehensive 

understanding of the characteristics of the task offloading 
dataset. With count plots, histograms, and correlation analysis, 

significant insights were observed regarding the distribution of 

offloading decisions, the range and variation of feature values, 

and the relationships between features and the target variable. 

Figure 5 plots the number of tasks offloading cases categorized 

by the offloading decision: Mobile Device and Edge Cloud. 

The plot displays a higher count of tasks executed by mobile 
devices than edge count, highlighting the class imbalance to 

understand the distribution of task offloading decisions, which 

is crucial for developing and evaluating offloading strategies in 

MEC environments. 

Histograms provided insights into the distributions of 

individual features such as latency, throughput and traffic 

patterns, revealing their ranges and identifying potential 

imbalances. This will ensure the data quality and effective 

preprocessing to improve the accuracy of task offloading. The 

distribution of eight features is given in Figure 6. The 

correlation analysis given in Figure 7 explains the relationships 

between features and offloading types. The plot indicated that 
throughput has the highest positive correlation with the 

offloading type, indicating it is the most influencing feature 

regarding the offloading decision between mobile devices and 

edge cloud. These visualizations help optimize task offloading 

in MEC environments by identifying the most important 

factors affecting decision-making. 
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Fig. 4 Statistical analysis of the dataset 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 5 Count of offloading decision 

The correlation analysis given in Figure 7 explains the 

relationships between features and offloading types. The plot 

indicated that throughput has the highest positive correlation 

with the offloading type, indicating it is the most influencing 

feature regarding the offloading decision between mobile 

devices and edge cloud.  

These visualizations help optimizing the task offloading in 

MEC environments by identifying the most important factor 

affecting the decision making. Additionally, the heatmap 

facilitated the identification of multicollinearity among 

features by detecting highly correlated feature pairs. 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Feature distribution of the dataset 
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By highlighting strong and weak correlations, as in Figure 

8, the heatmap helps identify the most influential factors in 

offloading decisions, guiding the optimization of resource 

allocation and improving the performance of the optimized 

CNN model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Correlation of features with offloading type 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 8 Heat map of the data 

3.2. Data Preprocessing 
Data is preprocessed using data normalization and min-

max scaling. Data normalization is organizing data in a 

database to remove redundancy and improve data integrity. 

The process involves structuring tables and recognizing 

relationships between them, which implies simplified data 

management across all records and fields to ensure the 

streamlining and consistency of the stored data.  

The main aim of data normalization is to create a uniform 

data format across the system, making it more reliable for 

users to interact with queries and analyze the data effectively 

[17]. The process reduces duplication with great data quality 
and more effective retrieval processes. Min-Max scaling 

scales and transforms each feature individually to a range 

typically between 0 and 1. The process is an alternative to zero 

mean, unit variance scaling. Mathematically, (1) represents 

min-max scaling, 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
     (1) 

Where x is the original value of a feature xmin is the 

minimum, and xmax is the feature’s maximum value in the 

dataset.  

By maintaining the relative relationship between the other 

values, the min max scaler scaled linearly by preserving the 

effect of outliers, where the maximum value is represented by 

the largest data point that occurs, and the minimum value is 
represented by the smallest one. 

3.3. Proposed Optimized Convolutional Neural Network 

In the context of a massive IoT network, the paper 

proposed an optimized CNN for accurate and efficient task 

offloading in an MEC environment. This optimized CNN 

makes intelligent decisions regarding offloading 

computational tasks from a mobile to an edge cloud. CNN or 

ConvNet are specialized deep neural networks widely used to 

analyze visual imagery [18].  

The basic architecture of the CNN is provided in Figure 

9. The input layer of CNN is designed to adapt to the feature 
set of datasets, where each feature represents information 

about the network characteristics, user behavior, and resource 

utilization.   

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9 Architecture of CNN 

Unlike conventional methods that rely on matrix 

multiplication, CNN employs convolution, which involves a 

mathematical operation on two functions to create a third 

function that illustrates how one’s shape is altered by the 

other. This is achieved by applying a filter or kernel (3×3 

matrix) to the input image to extract convoluted features, 

which are then passed on to the next layer. Figure 10 
represents the convolution operation. 
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Fig. 10 Convolution operation 

Max pooling, another major operation in CNN, chooses 

the maximum elements from the area of the feature map 

enclosed by the filter, effectively retaining the most important 

features of the earlier feature map and minimizing the spatial 
dimension of the feature maps [19].  

The visualization of the max pooling operation is given in 

Figure 11. The max pooling operation is applied after the 

convolutional layer in the proposed optimized CNN, which 

helps maintain a balance between model efficacy and 

performance, ensuring that the network captures the most 

relevant features to prevent overfitting while being 

computationally feasible. 

 

 

 

 

 

 

 

 

 
Fig. 11 Visualization of max pooling operation 

The activation function, Rectified Linear Unit (ReLU), is 

mostly used in CNNs because it introduces non-linearity to the 

model by returning to zero for any negative input. For 𝑓(𝑥) =
 𝑚𝑎𝑥 (0, 𝑥), the function returns that value for any positive 

value x. The ReLU function is shown in Figure 12.  

3.3.1. Optimized Dropout  

In CNN, the dropout regularization technique prevents 

overfitting, which happens when a model learns to remember 

the training data instead of generalizing from it. It randomly 

sets a proportion of neurons to zero during training, which 

enables the network to learn more important features. The 

application of dropout regularization is defined by percentage: 

the standard neural network and network after dropout 

regularization are given in Figure 13. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 12 ReLU function 

 
                      (a)                                                                  (b) 

Fig. 13(a) Standard neural network, and (b) After applying dropout. 

3.3.2. Optimized Batch Normalization 

Batch normalization is crucial in CNN, which addresses 
internal covariate shifts by normalizing mini-batch 

activations. The normalization process involves the 

computation of the mean as given in (2). 

Mean, 𝜇
𝐵=
1
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  (2) 

The variance is calculated by (3), 

Variance 𝜎𝐵
2 =
1

𝑥
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𝑥�̂� =
𝑚𝑖−𝜇𝐵

√𝜎𝐵
2+𝜖

       (4)                                                      

During the training process, batch normalization 

standardizes the activation of each layer by subtracting the 

mean and dividing by the standard deviation of the activations 

within the mini-batch, ensuring the input layer stays within a 

similar scale throughout training.  

After normalization, the batch normalization introduces 

two learnable parameters per feature map as scale (𝛾) and shift 

(𝛽). These parameters allow the model to adaptively scale and 

shift the normalized activations, giving the network more 

flexibility in learning the optimal representation for the data. 

The output after batch normalization is given by (5) 

𝑦𝑖 = 𝛾𝑥�̂� + 𝛽             (5) 

3.3.3. Optimized Activity Regularizer 

Regularization techniques like activity regularization 

enhance the generalization of neural networks and prevent 

overfitting problems by adding a penalty term to the output of 

a layer based on its activations, discouraging large activation 
values, and promoting more generalized feature learning. The 

most common types of regularization using activity 

regularizer include L1 regularization, L2 regularization, and a 

combination of both, defined as elastic net regularization. L1 

regularization adds a penalty equivalent to the absolute value 

of the magnitude of coefficients as defined by (6). 

𝐿1 = 𝜆∑ |𝑎𝑖|𝑖   (6) 

Where 𝜆 represents regularization parameters for 

governing the strength of the penalty and 𝑎𝑖represents the 

activations. L2 regularizations add a penalty equal to the 
square of magnitude of the coefficients, defined by (7). 

𝐿2 = 𝜆∑ 𝑎𝑖
2

𝑖       (7) 

The L1 and L2 regularization combines for an elastic net, 

balancing the two as defined by (8). 

𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝑛𝑒𝑡 = 𝛼𝐿1 + (1 − 𝛼)𝐿2    (8) 

Where the parameter that controls the mix between L1 

and L2 regularization is 𝛼. The optimizer will minimize the 

loss function where the regularization terms are added. The 

total loss with regularization can be given by (9), 

𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑜𝑠𝑠𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + 𝜆𝑅(𝑎)    (9) 

Where 𝑅(𝑎)is the regularization term. The choice of the 

type and strength of regularization depends on factors such as 

the intricacy of the task, the architecture of the CNN, and the 

volume of available training data. L1 regularization is 

effective for feature selection, promoting sparsity by driving 

less important feature weights to zero. L2 regularization, on 

the other hand, tends to spread out the weight values more 

evenly. Elastic Net provides a balanced approach, leveraging 

the strengths of both L1 and L2 regularization. 

3.3.4. Optimized Bias Regularizer 
Regularizing the bias terms, in addition to the weights, 

helps achieve this goal by penalizing large bias values. Bias 

terms represent the intercept in a linear equation and add 

additional parameters to each neuron in a layer.  

The bias regularization penalizes the bias terms to prevent 

them from becoming too large. L1, L2 and elastic net 

regularization are used for this purpose. A penalty equal to the 

absolute value of the magnitude of the bias terms is added by 

L1 regularization. The L1 regularization term for the biases 

𝑏 b can be defined by (10). 

𝐿1𝑏𝑖𝑎𝑠 = 𝜆∑ |𝑏𝑗|𝑗    (10) 

Where 𝜆  represents the regularization parameter that 

controls the strength of the penalty, and 𝑏 𝑗  represents the bias 

terms. L1 regularization encourages sparsity, potentially 

driving some of the bias terms to zero, which can simplify the 
model and enhance its interpretability. A penalty equal to the 

square of the magnitude of the bias terms is added by L2 

regularization. The L2 regularization term for the biases 𝑏  is 

given by (11). 

𝐿2𝑏𝑖𝑎𝑠 = 𝜆∑ 𝑏𝑗
2

𝑗       (11) 

L2 regularization discourages large bias values without 

necessarily driving them to zero, promoting smaller, more 

evenly distributed bias terms. The Elastic Net regularization 

term for the biases 𝑏  given by (12) 

𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝑛𝑒𝑡 = 𝛼𝜆∑ |𝑏𝑗|𝑗 + (1 − 𝛼)𝜆∑ 𝑏𝑗
2

𝑗    (12) 

Regularizing the bias terms and weights makes the neural 

network less likely to overfit the training data, leading to better 
performance on unseen data. 

Now, in a fully connected layer, the fundamental building 

of a neural network, each neuron is connected to every neuron 

in the preceding layer to form a fully connected network, as 

shown in Figure 14. Each neuron in this layer performs a linear 

transformation on the input vector using a weights matrix, 

ensuring that every input influences every output. 

Finally, the sigmoid function, used in the output layer, 

squashes input values to a range between 0 and 1, making it 

suitable for classification tasks. At z=0, when the curve 

crosses 0.5, establish the activation function’s rules. 
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Fig. 14 Fully connected layer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15 Sigmoid activation curve 

The function outputs 1 if the value is equal to or greater 

than 0.5 and 0 otherwise, providing a probabilistic 
interpretation of the outputs. This suite of operations and 

functions collectively enhances the optimized CNN’s ability 

to learn and generalize from complex data. The sigmoid 

activation curve is shown in Figure 15. Thus, the optimized 

CNN architecture, comprising convolutional layers, max 

pooling, dropout regularization, batch normalization, and 

activity regularization, was designed to handle complex data 

patterns efficiently.  

Convolutional layers extract essential features, max 

pooling reduces spatial dimensions, dropout mitigates 

overfitting, and batch normalization standardizes activations 

to improve stability during training. A fully connected layer 
further processes the extracted features, and the sigmoid 

function in the output layer provides probabilistic task 

classification.  

Hyperparameter optimization was critical in fine-tuning 

the proposed CNN model to achieve optimal performance. 

Techniques such as grid search were employed to explore 

various combinations of parameters systematically. Batch 

sizes ranging from 128 to 1024 were evaluated to balance 

computational efficiency and convergence stability. The 
Adam optimizer was selected for its superior capability in 

minimizing loss during training, outperforming alternatives 

such as SGD and RMSProp. The learning rate was fine-tuned 

to ensure steady and efficient progress toward minimizing the 

objective function without overshooting or stagnation. 

Dropout rates were optimized to prevent overfitting while 

maintaining the model’s capacity to learn complex patterns. 

Validation techniques confirmed that the selected 

hyperparameters yielded consistent and robust results across 

the dataset. This detailed optimization process ensured a well-

calibrated model capable of making accurate and efficient 

offloading decisions in dynamic MEC environments. The 
optimized CNN architecture is illustrated in Figure 16, and the 

model summary is in Table 1. 

Table 1. Model summary of the optimized CNN 

Layer Type Output Shape Parameters 

Conv1D (None, 7, 128) 512 

Conv1D (None, 7, 128) 49280 

MaxPooling1D (None, 3, 128) 0 

Dropout (None, 3, 128) 0 

Batch 

Normalization 
(None, 3, 128) 512 

Flatten (None, 384) 0 

Dense (None, 512) 197120 

Dropout (None, 512) 0 

Dense (None, 1) 513 

Total Parameters:  247937 

Trainable 

parameters: 
 247681 

Non-trainable 

parameters: 
 256 

  

3.3.5. Hardware and Software Setup 

A comprehensive setup is used for this study to ensure a 

well-equipped environment to handle the demand of neural 

network training and deployment consisting of NVIDIA 

GeForce GTX 1080Ti GPU, an Intel Core i7 processor, 32GB 
of RAM, and the Python-based Keras library integrated with 

the TensorFlow framework. Keras’s intuitive interface and 

Google Colab’s vast computational capabilities made 

developing models easier and more assured. The dataset was 

split into testing and training sets for the efficient training of 

the model. Hyperparameters are the adjustable parameters in 

a deep learning model that govern the training process and 

influence the model’s performance. 

Flattening 
Class 1 

Class 2 

1.0 

0.5 

0.0 

σ
(z

) 

𝑧 =   𝑊𝑗𝑋𝑗 + 𝑏𝑖𝑎𝑠 

Sigmoid Function σ(z) = 1/ 1+e
-z 
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Fig. 16 Optimized CNN architecture 

Tuning these parameters is crucial for optimizing the 

model’s accuracy and efficiency. Table 2 mentions the 

hyperparameters of the proposed model. 

4. Results and Discussions 
4.1. Performance Evaluation 

Performance evaluation of the model was conducted to 

ensure a comprehensive understanding of its effectiveness 

using a variety of metrics. The primary metrics in Table 3 

highlight different aspects of the model’s performance. 

Table 2. Hyperparameter specifications 

Hyperparameters Values 

Batch size 128,256,512,1024 

Iterations 300 

Optimizer Adam, RMSProp, SGD, ADAGrad 

Callback 80,85,91 

 
Table 3. Evaluation metrics 

Performance Metrics Equations 

Accuracy (TP+TN)/(TP+TN+FP+FN) 

Precision TP/(TP+FP) 

Recall TP/(TP+FN) 

F1 Score 
2*(Precision*Recall) / 

(Precision+Recall) 

Where, TP-True Positives, FP-False Positives, TN-True 

Negatives, and FN-False Negatives 

 

With the help of the evaluation metrics, the offloading 

type is predicted to be a mobile device or edge cloud. The 

classification report of the proposed model is illustrated in 
Table 4. 

Table 4. Classification report 

Evaluation Parameters Results (%) 

Accuracy 91.075 

Precision 91.82 

Recall 91.07 

F1-Score 90.74 

 

The classification report summarizes that the 

classification model predicts the type of offloading based on 

the dataset. With an accuracy of 91.075 %, the efficiency of 

the proposed model is demonstrated. A precision of 91.82% 

indicated the model’s efficiency in minimizing false positives. 
Recall of 91.07 measures the model’s ability to identify the 

most positive instances. The F1-score, which harmonizes 

precision and recall, was 90.74%, indicating a strong balance 

between the two and highlighting the model’s overall 

robustness in predicting task offloading decisions accurately 

and reliably. The obtained miss classification score is 8.9244. 

The study’s accuracy and loss plots were crucial for 

assessing the model’s performance throughout training. The 

accuracy plot indicated how well the model was learning, with 

training accuracy steadily improving and validation accuracy 

closely following, reflecting good generalization. The loss 
plot showed a consistent decrease in training and validation 

loss, suggesting effective learning and error minimization. No 

significant divergence between training and validation metrics 

was observed, indicating the absence of overfitting. As in 

Figure 17, these plots confirmed that the proposed model was 
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well-tuned, efficiently balancing learning from the training 

data and generalizing to unseen data. 

The confusion matrix for predicting offloading types, 

with the classes being Edge Cloud and Mobile Device. It 

summarizes the results of predictions made by the model by 

comparing them to the actual labels. The matrix allows us to 
visualize the model’s performance, as shown in Figure 18. 

Figure 19 represents the Receiver Operating Characteristic 

(ROC) curve, a graphical performance evaluation tool for 

binary classification models. It plots the TP rate, i.e. recall or 

sensitivity, versus the FP rate at different threshold settings. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17 Accuracy plot and loss plot of the proposed model 

TPR measures how many actual positive identifications 

in the model are correct, and FPR measures vice versa: how 

many actual negatives are misclassified as positives. The ROC 

curve describes the trade-off between sensitivity and 
specificity graphically. The Area Under the Curve (AUC) 

represents the model performance across all threshold levels, 

with a value closer to 1 representing good performance. A 

perfect classifier achieves a point in the ROC space’s top-left 

corner (0,1), reflecting high TPR and low FPR. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 18 Confusion matrix of the proposed method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 19 ROC curve of the model 

The proposed CNN model significantly reduces latency 

by utilizing real-time adaptability and efficient feature 

extraction. Comparative benchmarks with existing methods 
demonstrate the model’s superior performance, with faster 

task execution times attributed to its ability to adjust to 

network conditions and user demands dynamically. For 

instance, the CNN’s capability to prioritize throughput and 

resource utilization during task offloading results in lower 

RTT and reduced overall processing time compared to 

traditional methods like LITOSS and EPTO. The model 

enhances the user experience by ensuring minimal latency, 

enabling seamless and timely data processing. 

A key strength of the proposed CNN model is its 

adaptability and generalizability across diverse IoT scenarios. 
The model’s training on a diverse dataset, encompassing 

features such as latency metrics, user behavior, and network 

conditions, ensures robust performance in varying 
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environments. For instance, it can handle low-latency 

requirements in time-sensitive applications and optimise 

resource allocation for devices operating under constrained 

power conditions. The model’s capability to generalize to 

unseen data makes it suitable for deployment in real-world IoT 

ecosystems, where network characteristics and user demands 
are highly dynamic. This flexibility highlights the practical 

relevance of the model in scenarios like smart cities, industrial 

IoT, and connected healthcare systems, where task offloading 

efficiency and adaptability are critical. 

Dynamic network conditions play a significant role in 

influencing task offloading decisions. The proposed CNN 

model effectively addresses these variations by incorporating 

real-time data into its decision-making processes. For 

example, the model prioritizes tasks with higher data transfer 

rates in high-throughput scenarios, optimizing resource 

utilization. Conversely, in low-latency environments, it 

allocates tasks to minimize delays, ensuring timely execution. 
This adaptability enables the model to maintain performance 

and energy efficiency under varying network conditions, 

making it highly suitable for dynamic MEC environments. 

4.2. Performance Comparison 

The performance of traditional learning methods and 

models based on optimization algorithms is compared with the 

suggested model. Table 5 shows the accuracy of comparing 

the proposed model with existing methods.  

Table 5. Performance comparison 

Methodology Accuracy (%) 

LSTM [7] 89 

NB 82 

SVM 78 

DBN [8] 89.67 

LITOSS [5] 81.86 

EPTO [6] 89.0 

SGO [8] 89.67 

Proposed Method 91.075 

 

Figure 20 represents the accuracy comparison graph, 

which shows that the proposed model outperformed other 

existing methods. The accuracy comparison shows the greater 
performance of the suggested optimized CNN model, 

achieving 91.075%, surpassing all the compared 

methodologies. Traditional ML approaches, such as Naive 

Bayes (NB) and Support Vector Machine (SVM), achieved 

82% and 78% accuracy, respectively, reflecting their 

limitations in capturing the complex dependencies inherent in 

task offloading decisions. Advanced deep learning techniques 

like LSTM (89%) and, DBN and SGO, 89.67% demonstrated 

improved accuracy due to their capacity to model sequential 

and feature-rich data. 

 
Fig. 20 Accuracy comparison of the proposed method with existing 

methods 

Similarly, heuristic methods such as LITOSS (81.86%) 

and EPTO (89.0%) performed well in specific scenarios but 
lacked the adaptability and precision of the proposed CNN. 

The proposed method’s superior performance can be 

attributed to its optimized architecture, which integrates 

advanced regularization techniques, batch normalization, and 

max pooling, enabling it to extract and process features while 

avoiding overfitting effectively. These results establish the 

optimized CNN as the most effective approach for energy-

aware task offloading in MEC environments, offering robust 

accuracy and adaptability to dynamic network conditions. 

Figure 21 demonstrates the performance of the suggested 

model with existing optimization algorithms. 

 
Fig. 21 Accuracy comparison of proposed optimized CNN with other 

optimization algorithm-based models. 

The proposed model achieves the highest accuracy at 

91.075%, surpassing SGO with 89.67%, EPTO with 89%, and 

LITOSS with 81.86%. 

5. Conclusion  
MEC enhances the network performance and improves 

user experience by bringing computational capabilities closer 

to the network edge. Task offloading is crucial for the 

optimization of performance in the MEC environment. Thus, 
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an optimized CNN with layer optimization and 

hyperparameter optimization is developed and analyzed. By 

utilizing a dataset with different network characteristics, user 

behavior and resource utilization, the model accurately 

predicts the optimal offloading decisions, striking a balance 

between executing tasks locally and offloading them to edge 
servers.  

The proposed model demonstrated robust performance, 

enhanced with dropout regularization, batch normalization, 

and bias regularization. The model achieved 91.075% 

accuracy, 91.82% precision, 91.07% recall, and 90.74% F1 

score, indicating a strong balance between precision and 

recall. These results highlight the effectiveness of the 

optimized CNN in making intelligent offloading decisions, 

thereby extending the operational lifetime of IoT devices and 

ensuring efficient resource allocation. 

While the proposed study demonstrates the effectiveness 

of the optimized CNN model, certain limitations should be 
noted. Though comprehensive, reliance on a simulated dataset 

may not fully account for the complexities of diverse IoT 

ecosystems, such as variations in user behavior, device 

heterogeneity, and real-time network fluctuations. 

Additionally, the model’s performance under extreme 

variability in network conditions, such as severe congestion or 

sudden bandwidth changes, has not been thoroughly 

investigated. Future work could focus on enhancing the 
model’s ability to handle highly dynamic network parameters 

and improving its fault tolerance in adverse conditions. 

Incorporating advanced techniques, such as adaptive 

regularization methods or hybrid optimization algorithms, 

could further refine the model’s accuracy and robustness. 

Extending the approach to include optimization under 

multiple concurrent objectives, such as balancing energy 

consumption and latency simultaneously, would also be a 

valuable direction for future research. 
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