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Abstract - Air pollution is a significant societal concern as it can have profound health implications, leading to illnesses and 

even fatalities among individuals. Particulate Matter (PM), a common form of air pollution, is known to be particularly harmful, 

contributing to heart and respiratory issues. This research addresses the issue of air pollution, specifically the health risks 

associated with Particulate Matter (PM2.5). The study aims to establish baseline PM2.5 concentration levels, an essential step 

toward enhancing air quality standards, particularly in developing countries. This study introduces a novel and economical 

detection approach that leverages readily accessible sensors backed by comprehensive data gathered from diverse settings in 

West Bengal. The system aims to precisely assess PM levels in different conditions using digital signal processing methods to 

reduce noise and maintain reliable calibration. This research highlights the commitment to addressing air pollution and 

demonstrates the approach's effectiveness through detailed experimental analysis. This work can significantly contribute to 

creating safer, healthier environments globally. 
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1. Introduction 
Improving quality of life has led to a growing focus on air 

quality in the twenty-first century. Numerous studies have 

shown that indoor air can be more harmful than outdoor air 

[1]. In most developing countries, 90% of rural households 

and approximately half of the world's population rely on 

unprocessed biomass for open fires and inefficient cooking 

stoves indoors. These ineffective cooking methods contribute 

to Indoor Air Pollution (IAP). They can hurt the health of 

women and young children frequently exposed to this polluted 

environment [2]. Burning biomass and coal emits a range of 

dangerous pollutants, including Particulate Matter (PM), 

Nitrogen Dioxide (NO2), Carbon Monoxide (CO), Sulphur 

Oxides, polycyclic organic matter, and formaldehyde.  

The poor Indoor-Air-Quality (I-A-Q) condition has been 

identified as the ninth-biggest global disease burden risk [3]. 

The WHO indicated that in 2012, over four million three 

hundred thousand early deaths were associated with air 

pollution inside buildings, compared to three million seven 

hundred thousand fatalities caused by environmental air 

contamination [4]. The Health Metrics and Evaluation 

Institute attributed 2.57 million early deaths to indoor air 

pollution in 2016. Asia, Africa, America, and Europe were 

responsible for 74%, 23%, 2% and 1% of these deaths, 

respectively [5]. Particulate Matter (PM) is a crucial indicator 

of Indoor Air Quality (IAQ), measuring all the solid and liquid 

particles in the air. Particulate Matter (PM) is closely 

associated with numerous severe health complications. Being 

exposed to PM can result in critical conditions like heart 

attacks, strokes, and heart failure [6]. It also affects respiratory 

problems, including asthma and Chronic-Obstructive-

Pulmonary-Disease (COPD). 

Additionally, research has revealed that tiny particles 

measuring less than 200 nanometers can penetrate deep into 

the brain, raising concerns about their potential role in 

neurodegenerative diseases like Alzheimer's disease. This 

alarming capability of particulate matter to invade vital organs 

underscores the urgent need to address air quality and its 

impact on public health [7, 8]. According to a 2014 report 

from the WHO, 4.3 million individuals and 3.7 million 

individuals die due to inadequate indoor and outdoor air 

pollution, respectively [4, 9]. 

Air pollution from Particulate Matter (PM), including 

golden dust and tiny particles, is deteriorating each year in 

numerous countries in Asia, Africa, the Middle East, and 

Europe. This type of pollution originates from factors such as 

automobiles, coal combustion, and cooking indoors. As the 
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quality of life improves, so does the understanding of 

particulate air pollution, which drives the creation of 

technologies such as air purifiers and monitoring systems. 

Nevertheless, a majority of these systems depend on low-cost 

sensors, leading to a reduction in accuracy and effectiveness. 

[10-12].  

Low-cost sensors are known for their compact size and 

their capability to link up with microcontrollers to build small, 

adaptable measurement tools. Their high level of portability 

and minimal energy usage are also distinguishing features. 

They can be utilized in diverse scenarios, establish 

measurement networks using various concepts, and serve a 

multitude of other functions. 

Atmospheric PM is typically assessed using two primary 

criteria: particle mass concentration, which indicates the mass 

of a particle within a specific volume (usually measured in 

μg/m3), and particle number concentration, which represents 

the quantity of particles within a specific volume (measured in 

particles/m3). Even so, additional metrics offer vital insights 

into the characteristics of airborne particulate matter. Another 

important aspect of PM is the Particle Size Distribution (PSD), 

which denotes the particle concentration (either mass or 

number) measured across various particle sizes.  

A range of techniques have been proposed for measuring 

particulates, such as the gravimetric method, a technique for 

measurement that relies on beta radiation, a resonance-

frequency measurement technique, and a method utilizing 

light scattering. [13-21]. The gravimetric method [22] is 

accepted as a standard approach due to its high precision; 

however, it tends to be costly and extensive, rendering it 

impractical for I-o-T devices or household appliances. The 

Beta-ray Absorption Method (BAM) [23] involves: 

 The collection of particulates on filter paper. 

 The emission of beta-rays. 

 The measurement of concentration is based on the 

difference between the absorbed and transmitted beta-

rays. 

Although this method offers lower accuracy than the 

gravimetric technique, it is generally more affordable and 

compact. Tapered Element Oscillates Microbalance (TEOM) 

[24] and detects changes in resonance frequency to measure 

particulate concentration. Finally, the light scattering method 

assesses particle concentration by examining the intensity of 

scattered light when exposed to a laser or infrared LED. 

Inexpensive light-scattering methods are mainly used in IoT 

devices or air purification systems. External factors like 

temperature and humidity greatly affect the light scattering 

technique and may lack accuracy and stability when 

responding to particle sizes and shapes [25]. Research studies 

have also been carried out on assessing particulate matter in 

outdoor settings [26-28]. This investigation seeks to create a 

precise and cost-efficient system for monitoring outdoor air 

quality by utilizing various low-cost sensors to obtain accurate 

data from less accurate sensors. The monitoring system for 

PM sensors is established using an optical sensing and 

scattering approach.  

The PM detection and monitoring system has been 

evaluated in various outdoor environments to measure PM 2.5 

levels in micrograms per cubic meter. This evaluation includes 

high-traffic roads in Kolkata, West Bengal, India, and 

Bankura, which are located in the western region of West 

Bengal. The system was also tested in the renowned industrial 

city of Kharagpur, situated in the West-Medinipur District in 

West Bengal, and in Darjeeling, the highest-altitude town in 

the northern region of West Bengal, located in the Eastern 

Himalayas with an average elevation of 6,709 feet. The 

collected data has been used to calculate the average PM2.5 

values in µg/m3. In-depth graphical analyses have been 

conducted to evaluate the performance of the PM2.5 sensor 

monitoring system.  

The document is organized into distinct sections: Section 

2 provides a summary of relevant literature, while Section 3 

examines a sensor-driven system designed for detecting 

particulate matter in outdoor environments. Section 4 outlines 

the method for precisely measuring PM2.5. Section 5 assesses 

the system's performance, highlighting its reliability and 

precision through visual representation. Finally, Section 6 will 

summarize the content and propose avenues for future 

research. 

2. Related Works 
Several studies have explored the application of 

calibrations for inexpensive sensors. Zaidan et al. [28] 

suggested a virtual sensor system utilizing machine learning. 

This approach involves gathering precise air quality data (such 

as PM2.5 and CO2) from a reliable instrument and utilizing 

artificial intelligence to forecast air quality based on low-cost 

sensors in real-world settings.  

Due to the use of machine learning to rectify differences 

between the reference instrument and low-cost sensors, their 

system can produce more precise results. They also 

demonstrated an enhancement in the accuracy of the low-cost 

sensor while compensating for differences with the reference 

instrument. An analogy was drawn between the estimated 

mean daily concentration levels and the reference 

measurements and the hourly structure outcomes delivered at 

each station to evaluate the effectiveness of data integration.  

Accurate data collection necessitates gathering 

significant data from the reference instrument and sensors. 

Challenges in on-site measurement and learning present a 

limitation to their system. Alfano et al. [13] conducted a study 
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on the measurement of acceptable dust. The study focused on 

techniques for categorizing and measuring dust particles by 

their size.  

The authors explained the core concepts of the 

gravimetric technique, tapered element oscillating 

microbalance, attenuation of beta radiation, optical-particle 

counters, and scattering of light (particularly Mie theory) as 

methods for measuring particulate matter. They also described 

various laboratory chamber setups capable of accurately 

measuring particulate matter. They underscored the 

importance of adjusting for temperature and humidity to 

improve the precision of optical sensors. Their study is 

valuable because it emphasizes the accuracy of various PM 

sensors available in the market.  

S. K. Sharma et al. conducted an analysis of the elemental 

makeup of fine Particulate Matter (PM2.5) in Delhi, India, 

spanning from January 2017 to December 2021 [29]. Their 

findings revealed that during the post-monsoon season, 

sulphur, chlorine, potassium, calcium, and iron were in the 

highest concentrations. Additionally, the elemental 

composition of PM2.5 accounted for 10% of the total PM2.5 

over the five years. Principal Component Analysis (PCA) 

identified the five main sources [crustal/soil/road dust, 

combustion (BB+FFC), Vehicular Emissions (VE), Industrial 

Emissions (IE) and mixed source (Ti, Cr and Mo rich-source)] 

of PM2.5 in Delhi, India.  

Miskell et al. [30] introduced straightforward, remote, 

and ongoing calibration methods for hierarchical networks 

involving deploying high-precision instruments (proxies) 

alongside numerous affordable sensors. To estimate the slope 

and offset, the average and standard deviation of the sensor 

readings are aligned with the values obtained from a proxy 

during the same timeframe. Rogulski et al. conducted a 

prolonged assessment of low-cost PM10 measurements and 

compared them to the findings of the reference air quality 

monitoring station under various atmospheric conditions. 

These included cold days (with a minimum temperature below 

−10°C) with high relative humidity reaching 95%, and days 

with a maximum temperature above 30 ◦C and low relative 

humidity at around 25%. They determined the correlation 

coefficients for both devices with the reference station, 

resulting in values of r = 0.91 and r = 0.94, respectively.  

The long-term percentage errors were minimized to a 

maximum of about 20%, with average percentage errors 

typically staying around 10% [31]. In their study, Cho et al. 

introduced a practical system for particulate matter sensing 

and accurate calibration utilizing low-cost commercial 

sensors, allowing noisy and imprecise PM sensors to measure 

ambient air pollution. The paper explores three types of errors 

related to the light scattering technique: short-term noise, 

variability between different parts, and influences from 

temperature and humidity [32]. The research conducted by 

Motlagh et al. [33] aimed to create a system that employed 

affordable wearable sensors to precisely gauge the daily 

exposure of public transport riders to pollutants. The level of 

exposure was evaluated by monitoring particulate matter. 

Nevertheless, the study focused solely on the differences 

between commercial sensors and did not provide details on 

sensor calibration or possible error factors. 

Conversely, Gressent et al. [34] carried out an extensive 

project aimed at tracking air pollution across the city. Due to 

the sparse and expensive nature of the reference station 

network, the researchers installed numerous low-cost sensors 

on buildings. Others were placed onto moving vehicles to 

assess the level of particulate matter in the downtown area. 

The data collected from these sensors was used to map air 

quality at an urban scale, emphasizing the potential 

advantages of these insights in creating dispersion models. 

Clements et al. [35] described their participation in a two-

day workshop where they examined the following topics:   

 Practical techniques for implementing and refining cost-

effective sensor systems   

 Initiatives focused on data standardization and the 

creation of databases   

 Progress in sensor calibration, data structuring, data 

analysis, and visualization   

 A dialogue within the community   

The discussion with community members highlighted 

improvements in knowledge and project outcomes while 

emphasizing significant questions, unresolved issues, and 

technical challenges related to inexpensive air quality 

monitors. 

To further assess how well low-cost air sensors measure 

the effects of different indoor factors and indoor PM2.5 levels, 

Bi et al. estimated infiltration factors (Finf). These factors 

represent the fraction of outdoor PM2.5 that enters indoor 

spaces and contributes to indoor PM2.5 levels, and they were 

compared to existing research. To calculate Finf, they utilized 

data from times when there were no indoor sources (e.g., 

during the middle of the night, from 11 pm to 5 am) [36]. 

Mendez et al. conducted a research study to assess the 

levels of PM2.5 pollution in four cities along the U.S.–Mexico 

border. These urban areas include Brownsville, Edinburg, 

Weslaco, and Port Isabel, located in the Lower Rio Grande 

Valley Region of South Texas. The investigation occurred 

from March 1, 2021, to March 31, 2022, involving Mendez et 

al. carrying out a research study to evaluate the levels of 

PM2.5 pollution in four cities along the U.S.-Mexico border. 

These metropolitan areas comprise Brownsville, Edinburg, 

Weslaco, and Port Isabel, situated in the Lower Rio Grande 

Valley Region of South Texas. The study took place from 

March 1, 2021, through March 31, 2022, and included a year-
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long sampling initiative. TSI BlueSky™ Air Quality Monitors 

were simultaneously deployed at 11 locations within these 

cities. The PM2.5 levels recorded by these monitors over 24 

hours were subsequently compared with the ambient PM2.5 

data collected from the Texas Commission on Environmental 

Quality (TCEQ) Continuous Ambient Monitoring Station 

(CAMS) sites. This comparison aimed to identify the spatial 

and temporal variations in pollutant levels at the local level. 

The results indicated limited to moderate variations in PM2.5 

concentrations throughout the area. The findings implied that 

low-cost sensors alongside CAMS locations could enhance 

community monitoring efforts and deliver real-time insights 

into the spatiotemporal patterns of PM2.5 pollution [37]. 

3. System for Sensing and Calibrating 

Particulate Matter 
Figure 1 includes a block diagram along with the visual 

representation of the PM sensing system. Table 1 displays the 

components utilized in the system. 

3.1. Laser Diode Principle 
The highly directed nature of a laser diode beam, also 

known as its high directionality or low divergence, can be 

explained using the principles of wave optics and the 

properties of stimulated emission in a laser, as shown in Figure 

2. In a laser diode, electrons in a semiconductor material are 

excited to a higher energy state. When they return to a lower 

energy state, they emit photons. If an existing photon triggers 

this process, the emitted photon will possess an identical 

phase, direction, and frequency as the photon that stimulated 

it. Consequently, the emitted light is highly coherent, 

indicating that the waves are in sync and maintain a consistent 

relationship between each photon's phase. This coherence 

leads to constructive interference, which produces a well-

defined and highly directed beam of light. 

Table 1. Name of different components with description 

Sl. No. Name Description 

1 Laser 650nm 

2 Photodetector 3.3V-5V 

3 Humidity Sensor DHT-11 

4 Pressure Sensor BMP-180 

5 Temperature Sensor LM35 

6 Node MCU ESP-01/3.3V 

7 Resistances 100ohm 

The laser diode contains an optical cavity or resonator 

created by two parallel polished surfaces. The resonator is set 

up between the laser diode and the photodetector. This cavity 

ensures that only the light traveling parallel to the cavity's axis 

is amplified through multiple reflections. Other directions are 

not effectively amplified and do not contribute to the output 

beam. The resonator's design ensures that the output beam is 

highly collimated (parallel), resulting in a low-divergence, 

highly directional beam. The directionality of the laser beam 

can be quantitatively described by considering the diffraction 

of light. According to the diffraction limit, a laser beam's 

divergence angle (θ) is inversely related to the size of the 

emitting aperture (or the width of the active region in the laser 

diode). 

𝜃 =


𝑤
                                            (1) 

Where, λ is the wavelength of the laser light, and w is the 

width of the emitting region (aperture). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig. 1 Block diagram along with the visual representation of the PM sensing system 
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Fig. 2 Laser diode: (a) schematic diagram, and (b) Working principle. 

The emitting region of a laser diode is small, resulting in 

a small w. The optical resonator's coherence and design help 

maintain minimal beam divergence. The output beam of a 

laser diode typically resembles a Gaussian beam, defined by 

its waist size (w0) and Rayleigh range (zr). The beam 

divergence (θ) for a Gaussian beam can be expressed as: 

𝜃 ≈


𝜋𝑤𝑜
                     (2) 

Where θ is the half-angle divergence of the beam and w0   

is the waist radius of the beam (the narrowest part of the 

beam).  

The focused nature of a laser beam, particularly its 

Gaussian shape, can be understood by applying the principles 

of Gaussian beam optics and diffraction theory. Frequently, a 

laser beam exhibits a Gaussian intensity pattern, indicating 

that the distribution of the beam's electric field on a plane 

perpendicular to its direction of movement has a Gaussian 

shape. The magnitude of the electric field E(r,z) of a Gaussian 

beam at a distance z from the beam waist can be 

mathematically represented as:  

𝐸(𝑟, 𝑧) = 𝐸𝑜
𝑤𝑜

𝑤(𝑧)
exp (−

𝑟2

𝑤(𝑧)2
) exp(−𝑖 (𝑘𝑧 +

𝑘𝑟2

𝑅(𝑧)
− (𝑧))) (3) 

Where: 

r is the radial distance from the beam axis. 

z is the distance along the propagation direction. 

E0 is the electric field amplitude at the beam waist. 

w0 is the waist radius (the smallest radius of the beam). 
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w(z) is the beam radius at a distance z, defined as: 

𝑤(𝑧) = 𝑤𝑜√1 + (
𝑧

𝑧𝑅
)
2

            (4) 

k is the wavenumber, k=2π/λ 

R(z) is the radius of curvature of the beam’s wavefronts, 

defined as: 

𝑅(𝑧) = 𝑧 (1 + (
𝑧𝑅

𝑧
)
2

)                (5) 

ψ(z) is the Gouy phase shift, defined as: 

(𝑧) = atan (
𝑧

𝑧𝑅
)                (6) 

zR is the Rayleigh range, given by: 

𝑧𝑅 =
𝜋𝑤𝑜

2

λ
     (7) 

Laser scattering happens when a laser beam interacts with 

particles, molecules, or irregularities in a medium, causing the 

beam's light to change direction from its original path. The 

scattering can reveal the particles' size, shape, and 

composition, causing the scattering.  

Rayleigh, Mie, and Raman are the three primary types of 

scattering, each governed by distinct physical principles and 

equations. Mie scattering occurs when the particles causing 

the scattering are similar in size to the wavelength of the 

incident light. This scattering is more intricate than Rayleigh 

and applies to larger particles such as dust, water droplets, and 

other aerosols. 

3.2. Mie Scattering Coefficient 
Mie scattering is described by a series of complex 

equations derived from Maxwell's equations, taking into 

account the size parameter x, which is defined as: 

𝑥 =
2𝜋𝑟′


           (8) 

Where: 

r' is the radius of the scattering particle. 

λ is the wavelength of the incident light. 

The Mie scattering coefficients an and bn are obtained   by 

solving Maxwell's equations, and the scattering efficiency Qsc 

is given by: 

𝑄𝑠𝑐 =
2

𝑥2
∑ (2𝑛 + 1)(|𝑎𝑛|

2 + |𝑏𝑛|
2)𝛼

𝑛=1          (9) 

Where, n is the mode number, and an and bn are the Mie 

coefficients, which depend on the size parameter x and the 

refractive index of the particle relative to the surrounding 

medium. The intensity distribution of scattered light depends 

on the size parameter x and the angle θ. 

3.3. Photodiode Principle 
A photodiode turns light into electric current using 

semiconducting material. It works by the photoelectric effect, 

which produces electron-hole pairs when photons hit the 

material, causing electric current flow under applied voltage. 

3.3.1. Photodiode Structure and Operation 

Figure 3(a) shows the basic structure of a photodiode 

where the p-type and n-type regions with the depletion region 

are in between, and Figure 3(b) defines its operation under 

light exposure. 
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Fig. 3 (a) Photodiode structure, and (b) Current flow in photodiode. 
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A photodiode, constructed from semiconductors such as 

silicon featuring a p-n junction, comprises P-type and N-type 

regions and a depletion region. The photodiode functions in 

photoconductive mode. Upon connection to an external 

circuit, the movement of these charge carriers gives rise to a 

photocurrent. In the case of a reverse-biased PN junction 

diode, the depletion region expands, leading to reduced 

capacitance, improved response speed, and the generation of 

reverse current. When a photon or light ray possessing energy 

more significant than the energy gap impacts the photodiode, 

it displaces an electron from it, forming an electron-hole pair. 

The resulting flow of electric charge, referred to as 

photocurrent, increases in direct proportion to the strength of 

the incoming light. 

In photodiodes, a current flow remains even in the 

absence of light sources or photons striking its junction. This 

current is referred to as dark current and is quite small, 

typically in the microampere range. It is similar to the leakage 

current observed in a standard PN junction diode. The 

unwanted current under reverse bias is directly proportional to 

temperature and needs to be minimized to enhance the 

sensitivity of the photodiode. The overall current of any 

photodiode is the combination of the photocurrent and the 

dark current, is directly proportional to temperature and needs 

to be minimized to enhance the sensitivity of the photodiode. 

The overall current of any photodiode is the combination of 

the photocurrent and the dark current. The photocurrent (Ip) 

generated in the photodiode is proportional to the incident 

light power and can be expressed as: 

𝐼𝑝 = 
𝑃𝑜𝑝

ℎ
𝑞             (10) 

Where: 

η is the quantum efficiency of the photodiode. 

Pop is the optical power of the incident light. 

h is Planck’s constant. 

ν is the frequency of the incident light. 

q is the charge of an electron. 

In reverse bias, the total current I through the photodiode 

is the sum of the dark current Id and the photocurrent Ip. The 

I-V characteristic equation of a photodiode in the reverse bias 

region is given by: 

𝐼 = 𝐼𝑑 − 𝐼𝑝               (11) 

𝐼 = 𝐼𝑠 (𝑒
𝑞𝑉

𝑘𝑇 − 1) − 𝐼𝑝     (12) 

Where: 

Is is the saturation current. 

V is the applied reverse bias voltage. 

k is Boltzmann’s constant. 

T is the absolute temperature. 

The conversion efficiency of incident light into an 

electrical signal in a photodiode is determined by its 

responsivity, represented as R. Responsivity is commonly 

expressed in A/W (amperes per watt).  

𝑅 =
𝐼𝑝

𝑃𝑜𝑝
= 

𝑞

ℎ
          (13) 

When calculating the output voltage of a photodiode 

based on the scattering of PM 2.5 particles, a common 

approach includes using a configuration where the photodiode 

detects the intensity of scattered light from a laser beam 

interacting with the particles in the air. 

3.3.2. Scattering of Light by PM 2.5 Particles 

The light scattering of a laser beam passing through air 

with PM 2.5 particles occurs in different directions. The 

amount of scattered light is determined by the size and 

concentration of the particles, and Mie scattering principles 

govern this process since PM 2.5 particles are approximately 

the same size as the wavelength of visible light.  

3.3.3. Photodiode Detection 

A photodiode is positioned at a specific angle (typically 

90° or 45° to the laser beam) to detect the scattered light. The 

intensity of the scattered light hitting the photodiode is 

converted into an electrical current proportional to the light 

intensity. 

3.3.4. Photocurrent Generation 

The photodiode generates a photocurrent (Ip) proportional 

to the intensity of the scattered light, related to the 

concentration of PM 2.5 particles in the air. 

3.3.5. Conversion to Output Voltage 

The photocurrent generated by the photodiode is typically 

converted to a voltage using a transimpedance amplifier 

(TIA). The output voltage Vo of the photodiode circuit can be 

expressed as: 

𝑉𝑜 = 𝐼𝑝𝑅𝑓             (14) 

Where: Rf is the feedback resistor in the transimpedance 

amplifier. 

The current produced by the photodiode (Ip) increases in 

direct proportion to light intensity. The photodiode detects 

scattered light (Isct) in proportion to the concentration of 

PM2.5 particles (CPM2.5).: Ip ∝ Isct ∝CPM2.5. Thus, the output 

voltage is proportional to the PM 2.5 concentration: 

𝑉𝑜 = 𝑘𝐶𝑃𝑀2.5          (15) 

Where k is a proportionality constant that depends on 

factors such as the sensitivity of the photodiode, the scattering 

angle, the laser power, and the transimpedance amplifier gain. 
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To establish the relationship between Vo and CPM2.5, 

various graphical analyses were conducted on the 

concentrations of PM 2.5 particles. This approach can be 

widely used in commercial particle sensors for air quality 

monitoring, where the output voltage is interpreted to give the 

concentration of particulate matter like PM 2.5. 

4. Operation Principle of the PM2.5 Optical 

Sensor Monitoring System 
The PM2.5 optical sensor monitoring system's source 

module is equipped with a laser diode that emits light at a 

wavelength of 650nm (red light) and operates on a 5V power 

supply. When a laser diode emits light, it generally spreads out 

as a divergent beam. This light would disperse if not 

collimated, losing its focus and intensity while traveling.  

The essential part of a collimator is the collimating lens, 

which is positioned in front of the laser diode. This lens, 

typically a convex lens (or a combination of lenses), is 

designed with a focal length that matches the characteristics 

of the laser beam. The positioning of the lens relative to the 

laser diode is crucial. The laser diode output must align with 

the focal point of the lens. As the divergent laser light travels 

through the lens, the light rays are refracted, causing them to 

align and become parallel. 

Once the divergent light rays pass through the collimating 

lens, they emerge as a parallel or nearly parallel beam. The 

precision of the lens and the alignment determine the quality 

of collimation, which refers to how parallel the beam is. A 

collimated laser beam maintains its diameter and intensity 

over a longer distance than a non-collimated beam. This 

alignment of parallel and highly focused beams is crucial as 

the laser needs to interact with particles at a specific distance 

from the source. As a result, the beam of rays is perfectly 

coherent and collimated. The emitted laser beam is aimed into 

the air chamber that contains the air sample. 

When tiny particles (PM2.5 or smaller) encounter the 

laser beam, they disperse in various directions. The sensor's 

photodetector is strategically placed to detect the dispersed 

light. The location of the photodetector is determined by the 

sensor's setup and the specific characteristics of the particles 

it intends to detect. The photodetector's surface reacts to the 

intensity and pattern of the incoming light. 

The electrical signal produced by the photodetector when 

it is hit by scattered light is directly related to the light's 

intensity. The size and concentration of the particles determine 

the intensity and pattern of the scattered light. As particles 

increase, so does the amount of light scattered. The PM 2.5 

sensor uses a laser diode to emit a focused light beam into an 

air sampling chamber. 

When light travels through the air, it comes across 

particles such as dust, pollen, or smoke (PM2.5 or smaller). 

These particles cause the light to scatter in different directions. 

PM2.5 sensors often utilize photodiodes due to their quick 

response time, sensitivity, and ability to work with low light 

levels. An electrical signal is produced when the photodetector 

converts the optical (scattered light) signal. This is typically 

accomplished using materials demonstrating the photoelectric 

effect, where incoming photons create electron-hole pairs, 

resulting in a measurable current or voltage.  

The PM2.5 sensors, because of their sensitivity, rapid 

response time, and ability to function in low light conditions. 

The sensor's internal electronics are then evaluated, and the 

electric signal produced by the photodetector is examined. 

This evaluation involves boosting the signal and reducing 

noise, and the analog signals are converted into digital 

patterns. The magnitude of the signal corresponds to the 

quantity of particles in the air. A higher number of particles 

results in greater light scattering, which generates a stronger 

signal from the photodetector.  

In PM2.5 sensors, the photodetector detects the scattered 

light produced by particulate matter in the air, converts it into 

an electrical signal, and then analyzes it to determine the 

particle concentration. The accuracy of air quality 

measurements from the sensor, particularly for small particles 

like PM2.5, depends greatly on the precision and sensitivity of 

the photodetector.  

The proposed design features a difference in diameter 

between the inlet and outlet tubes for air, which serves a 

specific purpose in air sampling and particle identification. A 

reduced diameter for the air inlet tube plays a critical role in 

controlling the airflow into the sensor's detection chamber. 

This restriction ensures that the chamber receives air at a 

controlled, slower pace, vital for accurate measurement. 

Slower airflow allows for increased interaction between 

particles and the laser beam, improving detection capabilities.  

A wider outlet tube facilitates the smoother air exit from 

the chamber, maintaining a consistent flow of air through the 

sensor and continuously replacing the sampled air with fresh 

air. The larger diameter also reduces resistance, allowing air 

to exit the chamber smoothly without affecting the air entering 

the chamber. The reduced airflow speed resulting from the 

smaller inlet tube allows particles to remain in the detection 

chamber for longer, increasing the chances of particles 

crossing the path of the laser beam and resulting in more 

detectable scattering events for the photodetector. This is 

especially important for detecting smaller particles like 

PM2.5, which present a greater challenge for detection.  

The particulate matter monitoring sensor system was 

utilized to measure the concentration of particulate matter. 

Figure 1(a) shows how the PM monitoring system works. It 

relies on tightly focused light transmission with minimal 

diffusion. A red 650 nm Laser source emits a highly directed, 
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intense light beam into a measurement chamber. When dust is 

present, the light scatters off the particles and the scattered 

light is detected by the internal photodetector (photodiode). 

Submicron dust particles near 1 μm are nearly spherical, 

causing the scattering light to have the most significant value, 

especially at low angles. The test chamber's inlet and outlet 

tubes are positioned through optical windows to allow 

accurate data collection. The lower part of the inlet tube 

contains a smaller nozzle with an inner diameter of 2 mm. 

In comparison, the outlet has an extended inner diameter 

of about 8 mm and an overall diameter of 12 mm. Both tubes 

are vertically secured with ring clamps on a support stand 

fixed on the chamber, and their central axis is carefully 

adjusted to be at a right angle with the laser beam. The laser 

beam is 7 mm away from the lower end of the inlet tube and 8 

mm away from the upper end of the outlet tube. The inlet 

tube's reduced nozzle and the larger diameter of the outlet tube 

are designed to minimize diffusion loss. The outlet tube's flow 

rate is four times that of the inlet.  

The PM concentration was recorded at various volumes 

and under multiple scenarios across different geographical 

locations in West Bengal. The sensing system generated 

output in the form of voltage values, which were then used to 

determine the concentration of particles through signal 

processing techniques. The Butterworth digital filter is 

recognized for its consistent frequency response. It has no 

variations in the passband or the stopband, effectively 

reducing high-frequency noise while maintaining a seamless 

shift from passband to stopband.  

Due to its consistent frequency response in the passband, 

it maintains the magnitude of the signal's low-frequency 

components. While not a linear-phase filter, the Butterworth 

filter introduces relatively minimal phase distortion compared 

to other filter types. The filter aids in diminishing noise and 

creating smoother, more understandable data. Therefore, 

using a low-pass Butterworth digital filter to standardize data 

can strike a balance between reducing noise and preserving the 

signal, ensuring that the data remains valuable and accurate 

for further analysis or processing.  

The detected output signal is processed using a low-pass 

Butterworth digital filter, followed by a moving average block 

to obtain a smoothed signal suitable for further processing. 

This smoothed data is then used to calibrate and estimate 

PM2.5 values. The data is again passed through the above 

stages for re-estimation and better results. A block diagram for 

the signal processing pipeline is shown in Figure 4.  

The moving average is a robust and versatile smoothing 

technique that balances noise reduction, computational 

efficiency, and ease of implementation. While more 

sophisticated methods are available, the moving average 

remains a popular choice due to its straightforward approach 

and reliable performance in a wide range of scenarios. The 

moving average is often the preferred method for applications 

where simplicity and real-time performance are critical. 

Calibrating voltage values to PM2.5 concentration 

involves fitting a polynomial equation (in this case, a quadratic 

equation) based on known reference data points. The general 

form of a quadratic calibration equation is:  

PM2. 5 = a.V2 + b.V+ C,  

Where V is the voltage, and a, b, and c are the coefficients 

to be determined. It seems that three conditions were taken 

into account during the calculation of the coefficients for the 

quadratic model. 

The first set of values represents the hot and humid 

conditions during the months of April, May, and June. The 

second set of values indicates the monsoon conditions in the 

months of July and August. The last set of readings is taken 

for the winter months of November and December. The yearly 

averages of the data have been depicted, utilizing three 

separate curve fitting values, which were averaged for 

calibration purposes. 

Step-by-Step Calibration Process 

1. Collect Reference Data: It is understood that a definitive 

set of voltage values exists alongside their corresponding 

PM2.5 concentrations. This data is typically sourced from 

a reliable reference. 

2. Fit a Quadratic Model: It was noted that a quadratic model 

was fitted using the reference data. 

3. Apply the Model: The fitted quadratic model converted 

the voltage readings into PM2.5 values. 

A set of values for a, b, and c has been obtained. The 

average values are utilized for subsequent processing. Table 2 

presents the obtained values. 

 

 

 
 

Fig. 4 A block diagram for the signal processing pipeline
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Table 2. Set of values for a, b, c 

SL. No. Values Obtained 

1 

a = 1.4026827100679333, 

b = 0.999031344146858, 

c = 0.9673428813078239 

2 

a =  7.990988084571653, 

b = 6.552790467657304, 

c =  13.148583188293428 

3 

a =  4.676957884225419, 

b = 35.674031191617665, 

c =  32.18827001994484 

Kalman filtering is a sophisticated estimation technique 

that outperforms simpler methods like moving averages when 

it comes to systems with known dynamics and noisy 

measurements. Its ability to optimally integrate predictions 

and new data makes it a cornerstone in fields ranging from 

robotics to finance. When accurate real-time estimation is 

critical, and the system model and noise characteristics are 

well understood, Kalman filtering is often the method of 

choice. Kalman filtering operates by iteratively updating 

estimates of the system's state using a two-step process: 

 Prediction Step: The filter uses the current state estimate 

and a mathematical model of the system's dynamics to 

predict the next state. 

 Update Step: The predicted state is then updated using the 

new measurement, considering both the predicted 

uncertainty and the measurement uncertainty. 

This combination of prediction and correction allows 

Kalman filtering to provide more accurate estimates than 

simply relying on raw measurements. The parameters of the 

Kalman filter, such as the initial state and covariance, 

transition matrices, and observation matrices, are adjusted 

based on the data characteristics.  

5. Results and Discussion 
Figure 5(a) suggests that the PM2.5 concentrations are 

less sensitive to changes in volume at higher temperatures, 

maintaining near-constant values. However, at moderate 

temperatures (T2), the PM2.5 concentration increases more 

noticeably with volume. This could imply that, at certain 

temperature ranges, the air's capacity to hold particulate matter 

varies, possibly due to changes in air density or the chemical 

properties of the particulates at different temperatures. The 

humidity (71%) and pressure (99437.44 Pa) remain constant, 

indicating that these factors are not influencing the variations 

observed. 

Figure 5(b) shows the yearly average PM2.5 levels across 

four cities in West Bengal: Darjeeling, Bankura, Kharagpur, 

and Kolkata. The data reveals a stark contrast in air quality 

across these cities. The substantial variation in PM2.5 levels 

among these cities suggests differences in urbanization, 

industrial activities, and local environmental policies.  

Kolkata, being a major urban center with high traffic 

density and industrial activity, exhibits the highest pollution 

levels, which raises public health concerns. Kharagpur, also 

an industrial town, displays elevated levels but to a lesser 

extent. In contrast, with its higher elevation and possibly 

stricter pollution control due to its tourist appeal, Darjeeling 

demonstrates the lowest PM2.5 levels, indicating better air 

quality. These findings underscore the need for targeted air 

quality management strategies in highly polluted cities like 

Kolkata and Kharagpur. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 

(b)

Fig. 5(a) PM2.5 concentration v/s Volume at different temperatures, and (b) Yearly average of PM2.5 levels in different cities of West Bengal. 
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Figure 6(a) provides a comparative analysis of the yearly 

average PM2.5 levels across various cities in West Bengal 

under different humidity conditions. The cities considered are 

Manebhanjan, Darjeeling, Puri, Purulia, and Kolkata. The key 

observations are stated below: 

 Humidity's Impact on PM2.5 Levels: The graph illustrates 

that PM2.5 levels vary significantly with changes in 

humidity. Higher humidity levels tend to correlate with 

higher PM2.5 concentrations. For example, Kolkata, 

which experiences the highest humidity at 91%, shows 

the highest PM2.5 levels. 

 City-wise PM2.5 Distribution: Manebhanjan: With a 

humidity level of 47%, this city shows the lowest average 

PM2.5 levels, indicating a possible inverse relationship 

between PM2.5 concentration and humidity levels at 

lower thresholds. Darjeeling: At 52% humidity, 

Darjeeling's PM2.5 levels are higher than Manebhanjan 

but lower than the other cities, demonstrating a moderate 

increase. Puri: Exhibits PM2.5 levels at 77% humidity, 

indicating a significant rise in pollution levels compared 

to Darjeeling. Purulia: With 88% humidity, Purulia shows 

a further increase in PM2.5 concentration, reflecting the 

escalating impact of humidity. Kolkata: Records the 

highest PM2.5 levels with 91% humidity, underlining the 

strong correlation between high humidity and elevated 

pollution levels.  

 Trend Analysis: The graph shows a clear positive trend 

where cities with higher humidity percentages tend to 

have higher PM2.5 levels. This trend suggests that 

moisture in the air might contribute to the persistence and 

concentration of particulate matter or that areas with high 

humidity also suffer from other factors that elevate PM2.5 

levels. 

Figure 6(b) explores how PM2.5 levels fluctuate with 

varying air volumes measured in millilitres. The air volumes 

assessed are 240ml, 180ml, 120ml, and 60ml. The key 

Observations: 

 PM2.5 Concentration and Air Volume: The data 

demonstrates an inverse relationship between air volume 

and PM2.5 concentrations. As the air volume decreases, 

the concentration of PM2.5 also tends to decrease. 

 Air Volume Analysis: 240ml: At the highest air volume, 

PM2.5 values peak at 43.11. This suggests that larger air 

volumes may carry more particulate matter, leading to 

higher PM2.5 measurements. 180ml: Shows a slight 

decrease in PM2.5 levels (42.80), though the change is 

not substantial, indicating that the reduction in air volume 

does not linearly translate to significant changes in PM2.5 

values. 120ml: A further decrease in air volume results in 

a noticeable drop in PM2.5 concentrations to 42.24, 

supporting the observation that smaller air volumes have 

lower PM2.5 values.60ml: The lowest air volume yields 

the lowest PM2.5 concentrations at 41.82, confirming the 

inverse relationship between air volume and PM2.5 

levels.  

 Implications: The findings suggest that larger air volumes 

can collect more particulate matter, leading to higher 

recorded PM2.5 values. This is an important 

consideration for air quality monitoring, as the volume of 

air sampled can significantly affect the measurement of 

pollutant levels. These results highlight the need for 

standardized air volume measurements when comparing 

PM2.5 levels across different studies or locations. 

 

(a) 

 

(b) 

Fig. 6 (a) Yearly average of PM2.5 levels in different cities based on 

varying humidity levels, and (b) Variation of PM2.5 values with varying 

air volumes. 
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The analyses of Figures 6(a) and 6(b) underscore the 

complexity of factors influencing PM2.5 levels in the 

atmosphere. Humidity and air volume are critical 

determinants of particulate matter concentration, with higher 

humidity and larger air volumes leading to increased PM2.5 

levels. These findings emphasize the importance of 

considering environmental conditions and methodological 

consistency in air quality assessments. Table 3 presents the 

PM2.5 concentration levels (µg/m³) along with the 

corresponding percentage error for four cities in West Bengal: 

Kolkata, Kharagpur, Bankura, and Darjeeling, during three 

distinct seasons: summer, monsoon, and winter. 

Table 3. Comparison of the data from different environments (different 

places with different seasons) 

Location Season 

Adjusted 

PM2.5 

Value 

(µg/m³) 

Yearly 

Average 

Actual 

(µg/m³) 

Percent

age 

Error 

(%) 

Kolkata Summer 95 85 11.76 

 Monsoon 60 70 14.29 

 Winter 85 90 5.56 

Average  74.33 81.67 5.56 

Kharagpur Summer 65 55 18.18 

 Monsoon 40 45 11.11 

 Winter 55 60 8.33 

Average  46.53 53.33 10.85 

Bankura Summer 30 28 7.14 

 Monsoon 15 22 31.82 

 Winter 25 26 3.85 

Average  23.33 25.33 7.92 

Darjeeling Summer 15 12 20.00 

 Monsoon 10 13 23.08 

 Winter 20 15 33.33 

Average  12.75 13.33 4.35 

Kolkata: Being a major urban center with heavy traffic 

and industrial activities, PM2.5 concentrations in Kolkata are 

often high throughout the year, especially in winter when 

atmospheric inversions trap pollutants. The annual average for 

Kolkata typically ranges between 60 to 100 µg/m³ in many 

studies.  

Kharagpur: A moderately industrial town, but with more 

greenery and less heavy traffic than Kolkata, Kharagpur 

would have a moderate PM2.5 average, likely around 40 to 60 

µg/m³, depending on seasonal changes and industrial 

activities.  

Bankura: A relatively rural area with lower industrial 

activity, so the PM2.5 concentrations should be much lower.   

Darjeeling: A high-altitude region with minimal pollution 

sources, especially in comparison to cities, but still impacted 

by regional air quality. The average here is likely low, around 

10 to 15 µg/m³.  

Table 4 presents a comparative analysis of essential 

aspects, including reported accuracy, precision, 

environmental adaptability, calibration methods, and 

notes/findings, in a tabular format for various particulate 

matter sensor monitoring systems [38-42] (shown below). The 

evaluation focuses on the techniques used to assess particulate 

matter. The proposed system is presented as a more 

advantageous option compared to the others evaluated. 

Comparative Insights 

1. Accuracy: The accuracy of the proposed system (±5–

10%) meets or exceeds the performance of other low-cost 

sensors under real-world conditions. 

2. Environmental Robustness: External systems like 

HybridLSTM show a level of adaptability. In contrast, the 

performance evaluation of the system across varying 

climates in West Bengal, including high humidity 

conditions in Kolkata and the dry air found in Darjeeling, 

suggests a degree of contextual reliability. 

3. Cost-Effectiveness: The system utilizes low-cost 

components along with efficient calibration techniques to 

achieve a balance between performance and affordability. 

This creates a potential advantage over more advanced 

models, such as HybridLSTM. 

6. Conclusion 
This study investigated the influence of environmental 

factors-temperature, humidity, and air volume - on PM2.5 

concentrations across different cities in West Bengal. The 

analysis revealed that PM2.5 levels are significantly higher in 

urban areas, such as Kolkata and Kharagpur, compared to 

rural or highland regions like Darjeeling. Temperature was 

found to affect particulate matter dispersion, with lower 

temperatures maintaining higher PM2.5 concentrations. 

Additionally, higher humidity levels were associated with 

increased PM2.5 concentrations, suggesting a strong 

relationship between moisture and particulate matter retention 

in the air. Lastly, varying air volumes slightly influenced 

PM2.5 measurements, with larger volumes capturing more 

particulate matter. 

Overall, the study highlights the complex interplay 

between environmental conditions and urbanization in 

shaping air quality. These findings underscore the importance 
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of developing targeted air quality management strategies that 

consider local climatic conditions and urban characteristics to 

effectively mitigate pollution and protect public health in West 

Bengal.  

The novelty of the proposed monitoring system lies in 

several key aspects that differentiate it from existing research 

in the field of Particulate Matter (PM2.5) monitoring systems: 

1. Low-Cost Sensor System: The approach in this research 

study leverages low-cost sensors combined with robust 

calibration techniques, making them more accessible for 

real-world applications. While accurate, many existing 

systems are costly and require high-maintenance 

equipment. The affordability of this proposed system and 

ease of deployment are significant improvements over 

expensive reference-grade instruments like Tapered 

Element Oscillating Microbalances (TEOM) or Beta 

Attenuation Monitors (BAM), which are often not 

portable and difficult to scale for large deployments. 

2. Multi-Environmental Testing: The research study 

encompassed thorough evaluations of the sensor system 

conducted in a variety of settings, each characterized by 

distinct environmental challenges. This included bustling 

urban centers with their complex pollution sources, heavy 

industrial zones marked by emissions from various 

manufacturing processes, and high-altitude regions such 

as the scenic locales of Kolkata, Kharagpur, Bankura, and 

Darjeeling. Through the implementation of this multi-

location approach, the research intended to thoroughly 

evaluate the system's reliability and accuracy in the 

context of diverse pollutant sources and fluctuating 

environmental conditions, thereby providing in-depth 

insights into its performance across various settings. 

3. Seasonal Adaptability: By incorporating seasonal 

variations (summer, monsoon, and winter) in the 

calibration process, the proposed system can adapt to 

changing environmental factors like humidity, 
temperature, and air volume. This adaptability is a key 

strength, as many current systems do not adjust 

dynamically to such fluctuations. 

4. Real-Time Calibration and Processing: The use of 

sophisticated calibration techniques (such as machine 

learning-based methods) for real-time data processing 

and error correction improves the accuracy of low-cost 

sensors, addressing a significant challenge in many 

existing sensor systems 

5. Practical Implementation in Public Health: The system’s 

potential to contribute to public health monitoring by 

providing a low-cost, high-accuracy solution for PM2.5 

monitoring in real-time makes it a valuable tool for 

governmental and health organizations looking to 

implement large-scale air quality monitoring systems 

without incurring high costs 

The features of this research work contribute to the field 

by providing an effective solution for air quality monitoring, 

particularly in resource-constrained environments. 

Governments and regulatory authorities can utilize the 

information from this PM 2.5 sensor system to enhance the 

enforcement of air quality standards, potentially resulting in 

more stringent emissions regulations.
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Appendix 
Table 4. A comparative analysis with existing air quality monitoring systems 

Sensor/System 
Reported 

Accuracy/Precision 

Environmental 

Adaptability 

Calibration 

Method 
Notes/Findings 

Proposed System 

in this research 

study 

±5–10% error; strong 

calibration model 

Handles varying 

humidity, 

temperature, and air 

volumes 

Polynomial 

regression and 

Kalman filter 

Demonstrated reliability across 

diverse West Bengal regions; 

cost-effective with robust 

performance under various 

conditions. 

AirBeam2 [38] 
±15–20% error in 

urban environments 

Declines in high 

humidity; performs 

well in urban dry 

areas 

Random Forest 

machine learning 

Moderate accuracy under 

varied conditions; strong 

correlation (R² ~ 0.85) with 

reference-grade instruments 

PurpleAir PA-II-

SD [39] 

±10% compared to 

reference systems 

Effective for ambient 

outdoor air 

monitoring 

Factory-calibrated 

High reliability in standard 

conditions; limited by extreme 

humidity or temperature 

variations 

HybridLSTM 

Model [40] 

RMSE reduced by 41–

60% 

Adapts dynamically 

to industrial and 

urban conditions 

Neural network 

(HybridLSTM) 

Achieved R² of 93%, 

outperforming traditional 

linear models and uncalibrated 

sensor outputs 

Alphasense OPC- 

N3 [41] 

±5–10% for PM2.5 

and PM10 

Robust across wide 

airflow and particle 

size distributions 

Polynomial 

regression 

Effective in detecting a broad 

range of particle sizes in both 

indoor and outdoor conditions 

Plantower PMS 

1003 [42] 

Deviations up to 46% 

in foggy conditions 

Affected by high 

humidity/fog; high 

linearity otherwise 

Light-scattering 

model adjustments 

Overestimates concentrations 

under extreme environmental 

conditions; high linearity (R² > 

0.89) 
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