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Abstract - This research explores the application of Phasor Measurement Units (PMUs) and deep learning methodologies to 

predict voltage stability by enhancing the efficient operation of the power grid. The study addresses the challenges of topological 

changes and contingency labeling in power system networks. The methodology incorporates generative artificial intelligence 

and semi-supervised learning by significantly improving the predictive accuracy of the various learning models. Least Squares 

Generative Adversarial Networks (LSGANs) strategically augment the training dataset, expanding both the feature space and 

temporal domain. The enriched dataset enables more accurate classification and enhances the model's reliability under 

previously unseen dynamic time-series signatures. The Recurrent Neural Network (RNN) based Temporal Ensembling improves 

the model's ability to determine voltage stability by clustering time signatures based on signal transitions and temporal dynamics. 

The deep learning model is applied to PMU time series data, which undergoes systematic evaluation criteria using various data 

preparation stages. In addition, the study explores multiple network topologies for the model's adaptability, testing across diverse 

time windows and signal conditions. Also, Hyperparameter tuning of the nominated model optimizes the performance through 

cross-validation, and the best configurations for the best settings were ranked based on the test scores. The findings underscore 

the potential of artificial intelligence and machine learning models to enhance power system stability. Such forecasts can support 

proactive decision-making, improve power system operations, and lay the foundation for future advancements in wide-area 

power system monitoring and control. 

Keywords - Voltage stability, Phasor Measurement Units (PMUs), Deep Learning, Least Square Generative Adversarial 

Networks (LSGANs), Recurrent Neural Network (RNNs), Temporal ensembling, Data augmentation. 

1. Introduction  
Voltage instability denotes the incapacity of a power 

system to maintain stable voltage magnitudes at all bus nodes 

after perturbations. This instability can emanate from various 

factors, including abrupt load fluctuations, equipment 

malfunctions, and faults within the system.  

Understanding voltage and overall power system stability 

is essential for ensuring a reliable power supply and 

preventing catastrophic failures within the grid. To mitigate 

these risks, grid operators must monitor system conditions and 

be prepared for potential instabilities. They employ various 

techniques, such as stability analysis, dynamic simulations, 

and voltage stability assessments, to anticipate issues before 

they escalate into significant outages or equipment failures. 

Traditionally, bus voltage data from Phasor Measurement 

Units (PMUs) in conjugation with traditional data provides 

essential insights into a power system’s health. However, 

relying solely on bus voltage data might lack a comprehensive 

stability analysis because voltage levels influence voltage 

stability and depend on factors like reactive power flow, load 

variations, and network configuration.  

Voltage stability involves dynamic interactions, where 

changes in load or disturbances impact both active and 

reactive power flow. Generally, event detection systems are 

reactive and identify anomalies or disturbances after the 

occurrence. Voltage instability often develops gradually and 

is influenced by cumulative stresses like rising load demand, 

reactive power deficiencies, or system faults. When traditional 

event detection systems recognize an unstable event, there 

may be limited response time. Proactive prediction, on the 

other hand, leverages models trained to recognize early 

warning signs based on historical patterns in the power grid 
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data. Predicting the onset of voltage instability proactively, 

rather than merely detecting it in real-time, is essential for 

effective grid management because it allows operators to 

intervene before a critical failure occurs. These models can 

detect subtle trends that precede voltage instability, such as 

gradual voltage drops, phase angle shifts, or unusual reactive 

power patterns. With predictive insights, operators gain 

crucial lead time to adjust system parameters, redistribute 

loads, or activate compensatory measures, thus stabilizing the 

grid before it reaches a critical threshold. 

This paper explores the potential of deep learning models 

for voltage stability forecasting using time-series data 

obtained from PMU. The analysis of this data uncovers many 

patterns and anomalies that may indicate emerging instability. 

Our approach leverages generative artificial intelligence and 

semi-supervised clustering techniques to extract meaningful 

features from voltage measurements. This facilitates 

understanding the complex relationships between voltage 

patterns and stability margins, even when relying primarily on 

bus voltage data. The Deep learning models, particularly those 

designed for time series analysis such as Recurrent Neural 

Network (RNNs) can learn from complex, non-linear patterns 

and dependencies that may not be obvious in conventional 

analysis.  

By training for both stable and unstable scenarios, these 

models can identify early warning signs of voltage instability. 

To validate the findings, the model must undergo various 

performance checks under ambiguous circumstances 

occurring in a large power system. Due to the semi-supervised 

nature of the objective, the model needs to be verified by 

projecting diverse operational conditions, such as new faults 

and topological changes. Also, the models should be immune 

from undesirable data quality issues. Examining existing 

studies and theoretical perspectives relevant to this topic is 

essential. The following literature review explores previous 

work in this area, highlighting key findings, gaps, and insights 

that will guide the approach of this research. 

2. Literature Review 
To build a solid foundation for addressing the identified 

research problem, the paper [1] introduces a novel hybrid 

approach that leverages a combination of randomized learning 

algorithms for enhancing post-fault short-term stability 

assessments of voltage. This system integrates technologies 

such as Random Vector Functional Link networks (RVFL) 

and Extreme Learning Machines (ELM) applied to the New 

England 39-bus system, achieving a performance increase of 

27.5%-27.3% over standalone methods.  

A paper [2] demonstrates that LSTM networks can be 

utilized following semi-supervised clustering with Constraint-

partitioning (k-means) to forecast temporal dependencies 

beneficial for STVS. This study deployed an LSTM-based 

model for STVS to evaluate an IEEE 39-bus system, achieving 

superior prediction accuracy and dynamic computational 

efficiency of time series.  

Another paper [3] discusses a hybrid real-time method for 

assessing short-term voltage stability by using RNNs for both 

spatial and temporal data. The effectiveness of a hybrid model 

was evaluated on both the IEEE 9 Bus and New England 39 

Bus systems. In paper [4], SVC and SVG hybrid reactive 

power compensation was enhanced for below and above 25hz 

reactive power change using physics-informed based DL. 

Predictive control algorithms used dynamic PMU voltage 

measurement at regional nodes. Similarly, a transferable deep 

learning-based model that utilizes physics-informed 

topological features is constructed using PMU data-the model 

evaluated on the IEEE 39-bus system for STVS assessment in 

the paper [5].  

A PMU measurements-based deep transfer learning was 

also introduced in the paper [6], showing improved 

adaptability to topological changes and maintaining high 

performance under varying conditions. The model was 

evaluated on the data quality of various hyperparameters on 

the IEEE 39 bus test system. In the paper [7], topology-aware 

voltage dynamic features are based on the principle of 

deriving features that capture the essential dynamics. CNN 

model is used as a classifier to fit the rule-based features and 

STVS status.  

Another study in [8] explored the application of 

Variational Autoencoders (VAE) in voltage stability 

assessment, demonstrating enhanced accuracy across various 

IEEE standard systems by utilizing VAE to regulate latent 

variables and extract significant low-dimensional data 

representations. Further research [9] introduced a rule of 

disagreement-based learning model for voltage stability 

monitoring, achieving over 94.03% and demonstrating 

adaptability to network conditions or topology alteration with 

a transfer learning technique.  

Additionally, a method to integrate STVS evaluation with 

the reconfiguration of the distribution network was developed 

[10], employing a custom CNN to optimize distribution 

network voltage stability, confirmed by case studies on both 

modified 69-bus networks. Another advancement, like in [11], 

involved a stability-constrained based Deep Reinforcement 

Learning (DRL) method for voltage control dynamically, 

which reduced transient control costs and shortened response 

times while ensuring voltage stability.  

Research [12] addressed small transient rotor angle 

stability utilizing CNN for transient stability classification and 

LSTM to monitor oscillatory responses in stable conditions, 

with extensive simulations verifying effectiveness across 

multiple IEEE test systems. Also, introducing a transfer 

learning for STVS assessment showed high classification 

accuracy and adaptability to new grid topologies, effectively 
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capturing topological, temporal patterns post-disturbance and 

PMU errors [13]. 

A Temporal Convolutional Neural (TCN) was proposed 

for real-time STVS assessment [14], achieving high temporal 

sequence forecasting of power system parameters in an IEEE 

9-bus system. A similar convolution framework, like a Graph 

Convolution Neural (GCN) based DRL framework, was 

developed [15], showing superior performance on the IEEE-

39 bus system by enhancing the DRL agent's ability to 

recognize nodal spatial correlations like a graph-structured 

nature of power system data.  

Furthermore, a contingency control scheme based on 

DRL was developed to optimize control actions under 

emergency conditions in a test-bed New England 39-bus 

system. Considering fault as a feature to reinforce the learning 

model to devise an optimal controlling scheme [16]. Lastly, an 

adaptive online learning algorithm with momentum for 

voltage stability assessment was introduced [17], showing 

high accuracy on the NETS-NYPS 68-bus system.  

The investigation [18] analyzed various Artificial Neural 

Network (ANN) strategies for steady-state stability of power 

system networks, pinpointing the Feedforward (FFNN) and 

Cascade Forward Neural Network (CFNN) as the top 

performers. Utilizing the New Voltage Stability Pointer 

(NVSP) to refine input data, trained via a Levenberg-

Marquardt (LM) method, and evaluated using regression 

algorithms of IEEE 30-bus and Nigerian power grid.  

A related study [19] introduced a deep transfer learning 

approach for transient stability assessment, employing a CNN 

(ImageNet library). The model adapted to assess the 

correlation between disturbance intensity and transient 

stability is well suited for spatio-temporal analysis of power 

grid data. The methodology was validated using simulations 

on IEEE 39 and IEEE 118-bus models. In the research [20], 

profound learning-supported Stochastic Distribution Network 

Reconfiguration (SDNR) technique was introduced to 

enhance voltage stability. This method utilized a CNN to 

estimate voltage stability indices from network 

reconfiguration decisions, integrating these predictions into 

branch reduction algorithms to optimize the radial topology, 

thereby diminishing power losses and boosting voltage 

stability on IEEE network models. 

Therefore, the optimal methodology for voltage stability 

strongly correlates with the data type, resolution and depth of 

system information. The literature highlights different 

learning techniques in AI and how the objective strongly 

depends on the type of extracted features. Extracted features 

like space, time, and contingency types were combined with 

deep learning models for forecasting, classification and 

determining optimal operation schemes. The literature 

carefully highlighted all types of neural networks developed 

in the last five years, emphasising synchrophasor data for 

overall voltage and power system stability.  

2.1. Overview of the Paper 

 Following the literature survey, this paper delves into 

several crucial aspects of enhancing voltage stability through 

advanced deep learning. Initially, it discusses data 

preparation, emphasizing the importance of high-resolution 

data collection, understanding event impacts on the grid, and 

simulating diverse fault scenarios.  

The exploration continues by analyzing LSGANs for 

synthesizing augmented data to enrich training and train 

models on rare and variable scenarios. Subsequently, the paper 

explores the benefits of temporal ensembling using Recurrent 

Neural Networks (RNNs) to enhance prediction accuracy and 

stability in semi-supervised settings by clustering similar time 

series signatures into clusters.  

Nevertheless, this creates a base for temporal-based 

forecasting and classification. Further, the nominated models 

were evaluated based on multiple parameter configurations 

like data preparation, temporal and spatial augmentation, and 

Signal Noise Ratio (SNR). Consequently, the hyperparameter 

tuning of the best model was validated and ranked based on 

the best score of respective parameter settings. Finally, the 

conclusion summarizes the findings and emphasizes the 

effectiveness of data implementing artificial intelligence in 

improving voltage stability predictions while suggesting 

future research directions.  

3. Database Generation 
A comprehensive database capturing post-fault time 

signatures using the IEEE standard 6-Bus System was 

generated to enhance the understanding of dynamic response 

within a power system. It is commonly referenced in power 

system studies, particularly when examining voltage stability 

and contingency analysis. This database is a valuable resource 

for analyzing the system’s behavior following disturbances, 

particularly transmission line outages and variations in load 

and generation ratios.  

Several key factors, such as data quality, resolution, and 

time steps in data collection, were considered, which overall 

impacted the accuracy, requiring a balance between detail and 

practical limitations. The cause of an event may not map 

uniquely to physical phenomena, as multiple events can stem 

from common or varied underlying causes. Also, the same 

events may impact different grid locations, depending on 

specific grid characteristics.  

Time-domain simulations are crucial for understanding 

post-disturbance system behaviors. Fault simulations (line-to-

line, line-to-ground, three-phase) evaluate system responses, 

and incorporating diverse fault cases in datasets reveals 

system vulnerability and resilience. In [21, 22], the emphasis 
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is on considering diverse load scenarios in datasets, such as 

collecting transient and short-term operation data to improve 

voltage stability models' accuracy. Managing uncertainties in 

modern power grids requires advanced data analytics to 

determine recommended settings for real-time monitoring and 

autonomous control systems. Improving model generalization 

and developing systems autonomously responding to changes 

ensures continuous adaptation to evolving grid conditions. 

Figure 1 is a block diagram for clustering time series data 

using RNNs in power system analysis. It starts with an input 

data block for PMU measurements and time series data, 

followed by a data preprocessing step. The pre-processed data 

is then fed into an RNN encoding block, where features are 

extracted to capture temporal dependencies. These features 

are used in the clustering block to group similar data points. 

Cluster centers are dynamically updated based on the 

clustering output. A convergence check ensures the process 

iteratively refines until stable clusters are formed. The system 

includes blocks for model training, performance testing, and 

parameter optimization. This diagram efficiently outlines the 

workflow for applying advanced machine-learning techniques 

to enhance power system analysis.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 1 Dynamic clustering of electric grid data using Recurrent Neural Network. 
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4. Least Square Generative Adversarial 

Networks (LSGAN) 
LSGAN is a powerful class of neural networks used to 

generate synthetic data. It can be particularly useful in creating 

diverse fault scenarios for training models in voltage stability 

analysis of power networks. By augmenting PMU data with 

synthetic samples, LSGANs can help address data scarcity and 

variability. An LSGAN consists of two main components: a 

Generator (G) task, which generates new data instances from 

random noise; The generator tries to make the synthetic data 

as close as possible to the real dataset, attempting to fool the 

discriminator. Discriminator’s (D) task is to distinguish 

between instances of the actual and generated data. It is 

essentially a binary classifier. 

〖min〗_G 〖max〗_D V(D,G) = E_(x~Pdata) [logD(X)]-  
E_(Z~P_Z (Z)) [log(1-D(G(z)))] (1) 

In LSGAN training, the generator and discriminator 

improve through competition, represented by a min-max game 

value function. In standard GANs, the discriminator improves 

at distinguishing real from generated samples, but this can 

cause the generator's gradient to vanish if the discriminator 

becomes too effective. LSGANs solve this by replacing cross-

entropy loss with least squares loss, providing a more stable 

gradient for the generator. The loss of the least squares 

penalizes samples far from the decision boundary more 

heavily, improving gradient stability and reducing training 

stalls. This approach forces generated samples near the real 

data distribution boundary, reducing mode collapse. Using a 

quadratic cost for misclassified samples, LSGANs provide a 

stronger gradient signal for the generator, effectively 

addressing the vanishing gradient problem and enabling 

continuous, effective training on complex datasets. 

 

 

 

 

 

 

 
Fig. 2 Augmented data based on the original data set using LSGAN 

closely depicts probable power system fault type 

Figure 2 represents augmented data (time-augmentation) 

generated using a Least-Squares Generative Adversarial 

Network (LSGAN) based on an original power system dataset. 

Each line corresponds to a bus voltage response during a 

simulated fault, with variations in dips and oscillations 

showing probable fault types in the system. The pronounced 

voltage dips, especially in buses 5 and 6, highlight the 

LSGAN's capability to simulate severe fault conditions. 

5. Temporal Ensembling 
This technique is primarily used in semi-supervised 

learning with neural networks. This technique leverages the 

consistency of predictions by averaging a model's predictions 

for multiple training epochs over time, aiding in regularization 

and reducing overfitting for clustering time series data, such 

as PMU data for voltage stability. 

Ensemble(t+1)= β*Ensemble(t+1) +(1-β)Prediction(t) (2) 

This formula updates the ensemble prediction at each 

time step (t + 1) by combining the previous and current 

predictions. The decay factor determines how much weight is 

given to past predictions versus the current prediction. This is 

crucial for capturing the temporal dependencies in PMU data. 

L = 
1

N
∑ ωi*

i=1
N (Ensemblei - PMUi)

2          (3) 

The loss (L) calculated between the ensemble predictions 

and the actual PMU measurements guides the weight assigned 

to each measurement based on its reliability or variance, 

ensuring that more reliable measurements have a greater 

influence on the learning process. 

S= λ ∑ (Ensemble(t)-Ensemble(t-1))2 T
t=2   (4) 

This smoothness constraint (S) penalizes large 

fluctuations between consecutive ensemble predictions, 

helping to ensure that the prediction evolves smoothly over 

time. The regularization parameter controls the extent of this 

smoothing, which is important for reflecting the physical 

continuity in the electrical system. 

C = 
1

N
∑ (Predictioni

(t)
 -Ensemblei

(t)
)2N

i=1        (5) 

The dynamic consistency cost (C) encourages the current 

predictions to converge to ensemble predictions. This 

promotes consistency across time steps, essential for the stable 

clustering of PMU data. Combining these components into a 

unified learning objective with the loss function, smoothness 

constraint, and dynamic consistency cost improves the 

prediction accuracy and system response. 

6. Results and Discussion 
Evaluating model performance is crucial in data science 

and machine learning, especially when forecasting voltage 

stability in power systems through advanced methodologies. 

The primary evaluation metrics are Accuracy, Silhouette 

Coefficient, Mean Squared Error (MSE), Mean Absolute 
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Error (MAE), Root Mean Squared Error (RMSE), and Signal-

to-Noise Ratio (SNR) Performance. These are essential 

metrics for assessing various aspects of model effectiveness, 

ensuring reliable outcomes across diverse applications. 

 Accuracy: Accuracy measures true results (both true 

positives and true negatives) within the total number of 

cases examined, highlighting the model's overall 

effectiveness. It is particularly relevant in balanced 

datasets where the cost of different types of errors is 

similar. 

 Silhouette Coefficient: Used predominantly in 

unsupervised learning to assess clustering quality. This 

metric gauges how closely an object aligns with its cluster 

compared to others. A high Silhouette Coefficient 

indicates strong intra-cluster similarity and clear 

differentiation from neighboring clusters, making it 

essential for evaluating temporal ensembling techniques. 

 Mean Absolute Error (MAE): These metrics quantify 

average absolute differences between predicted and 

actual values (MAE). They are vital for regression 

analysis, providing direct error magnitude and model 

accuracy measures. 

 Root Mean Squared Error (RMSE): This metric offers a 

measure of accuracy that gives relatively high weight to 

large errors by taking the square root of the average 

squared differences between predictions and actual 

observations. 

 Signal-to-Noise Ratio (SNR) Performance: Evaluate the 

model’s robustness under various noise levels, 

maintaining accuracy across different signal-to-noise 

conditions. This is critical for models operating in 

dynamic and potentially noisy power system 

environments. 

6.1. Evaluation of the Models 

Deep learning models generally outperform traditional 

machine learning models across key performance metrics. 

Models like RNN networks achieve exceptionally low MSE 

and high accuracy for non-linear data structures like large 

power grids. In contrast, traditional models like Linear 

Regression and Decision Trees show higher error rates and 

lower overall accuracy, particularly in tasks involving 

sequential or high-dimensional data. So, comparing model 

performance intends to establish that deep learning models are 

more suitable. 

Table 1 presents the performance of Deep Learning 

Models like GRU-LSTM and Bi-LSTMT. These models 

effectively handle both short-term and long-term 

dependencies, with high accuracy rates nearing 99%. LSTM 

and GRU Models offer low MSE and high accuracy (above 

98%), which is excellent for sequential data processing. CNN 

& CNN-LSTM stands out for low MSE and high accuracy 

(above 99%), demonstrating the superior capability to extract 

complex data features.  

Table 1. Performance metrics comparison of AI models 

Model MSE MAE RMSE Accuracy 

LSTM 0.0001 0.010 0.012 0.987 

GRU 0.0001 0.012 0.013 0.986 

Bi-GRU 0.0001 0.011 0.013 0.986 

Bi-LSTM 7.649 0.007 0.008 0.991 

CNN 3.410 0.004 0.005 0.994 

CNN-LSTM 8.215 0.006 0.009 0.990 

GRU-LSTM 0.0000 0.001 0.001 0.998 

 

 

 

 

 

 

 
Fig. 3 It shows the overall trend of the forecast across the whole dataset 

Figure 3 shows the plot for a six-bus power system's 

actual and predicted voltage responses following fault events. 

The x-axis represents the time step, and the y-axis represents 

the time series value. The plot highlights areas where 

predictions diverge from actual values, offering insights into 

model performance and fault detection across the buses.  

6.2. Comparison of Clustering Performance 

Clustering methods play a pivotal role in categorizing and 

understanding different states of voltage stability based on 

temporal data when using PMUs for voltage stability analysis. 

Temporal ensembling, compared to methods like K-Nearest 

Neighbors (KNN), DBSCAN, and other clustering techniques, 

often demonstrates superior performance due to its specific 

suitability for handling the nuances of temporal data.  

Table 2. Comparison of silhouette scores for different clustering 

methods 

Methods K-Means DTW 
Temporal 

Ensembling 

Silhouette score 0.52 0.59 0.658 

Table 2 presents the Silhouette Scores of three clustering 

methods, K-Means, Dynamic Time Warping (DTW), and 

Temporal Ensembling, for clustering time series data. For K-

Means, the Silhouette Score of 0.52 indicates moderate 

clustering quality. Dynamic Time Warping (DTW) scores 
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0.59, suggesting better performance than K-Means by 

handling time series data's temporal dynamics more 

effectively. Temporal Ensembling scores 0.658, the highest 

among the three, demonstrating superior clustering quality by 

leveraging the consistency of predictions over multiple 

training epochs. Overall, RNN-based temporal ensembling 

provides the most accurate and reliable clustering results. 

 
Fig. 4 Comparison of model performance based on data preparation 

level 

Figure 4 illustrates the accuracy of various machine 

learning models for voltage stability analysis in power 

systems, focusing on two stages: Data Augmentation (DA) 

and Temporal Ensembling (TE) with Recurrent Neural 

Networks (RNNs). Key observations: The analysis shows that 

the GRU-LSTM hybrid model achieves the highest accuracy 

for augmented datasets, making it the best choice for stability 

analysis.  

The CNN-LSTM model also performs well but is slightly 

less accurate than the GRU-LSTM hybrid. Also, significant 

accuracy gains in GRU-LSTM and LSTM models post-TE, 

highlighting their proficiency in handling temporal data. CNN 

shows substantial initial improvement but slightly decreased 

after TE, indicating a possible misalignment with temporal 

processing needs. CNN-LSTM benefits from both stages, 

demonstrating its hybrid spatial and temporal data handling 

capability.  

6.3. Performance under Different Topologies 

This analysis evaluates the model’s performance by 

augmenting additional features rather than increasing the time 

stamps to emulate topological changes. This approach allows 

the model to gain exposure to new structural scenarios, 

enriching its ability to generalize across varied grid 

configurations. Traditional datasets typically provide static 

topologies, limiting the model's adaptability to real-world 

changes in power system structures. The model learns patterns 

associated with different topologies by adding more features 

(representing virtual buses). 

Table 3. Model performance under various topologies 

Model Accuracy RMSE MAE MSE 

Original 0.98411 0.0158 0.01402 0.000252 

T1 0.98852 0.0114 0.00951 0.000131 

T2 0.99746 0.00253 0.00161 0.000006 

T3 0.99817 0.00182 0.00151 0.000003 

T4 0.99805 0.00194 0.00143 0.000003 

Table 3 shows a clear improvement in metrics with 

increased augmentation. The "Original" configuration 

achieved an accuracy of 0.9841, while augmented models (T1, 

T2, T3) reached progressively higher accuracies, with "T3" 

achieving 0.99817 and the lowest error metrics (RMSE: 

0.00182, MAE: 0.00151, MSE: 0.000003). This approach 

highlights the benefits of augmentation, as it enhances the 

model’s performance with horizontal (space) augmentation. 

Incorporating topological diversity in training data to ensure 

reliable performance is key for any learning model. 

6.4. Performance under Noise (SNRs/with another Model) 

This study uses Signal-to-Noise Ratio (SNR) to examine 

deviations from the ideal fundamental frequency in noise-free 

PMU bus voltage time series data, which is standardized in per 

unit (PU) values. Using PU voltage levels ensures consistency 

across buses and enhances the comparability of SNR 

calculations across different system conditions. Signal 

Definition and PU Normalization: In the noise-free PU 

voltage data, variations from the expected 50Hz or 60Hz 

sinusoidal waveform represent "noise" relative to the ideal 

signal. Using PU voltage measurements provides a consistent 

baseline, facilitating accurate assessment of deviations 

without bias due to differing voltage magnitudes across the 

buses.  

SNR Calculation and Interpretation: With the ideal PU 

voltage signal as a reference, SNR calculations quantify the 

strength of the fundamental frequency compared to observed 

deviations expressed in PU. Higher SNR values suggest 

stability and adherence to the ideal waveform, while lower 

values indicate system dynamics or potential disturbances. In 

evaluating the resilience of various models against noise and 

varying signal-to-noise ratios (SNRs), the primary focus is on 

the accuracy metric, which directly reflects each model's 

ability to predict outcomes despite noise interference 

correctly. In Table 4, the accuracy of deep learning models is 

compared under 10, 30, and 50 --dB SNR. This measure is 

crucial in noisy environments where maintaining prediction 

reliability is essential for voltage stability assessments. 
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Table 4. Comparison of model performance under different SNR 

SNR 

(dB) 

GRU-

LSTM 
CNN LSTM 

CNN-

LSTM 
SVM 

Noise-

free 
0.9363 0.9051 0.9536 0.9352 0.9502 

10dB 0.9287 0.7582 0.9343 0.9389 0.9359 

30dB 0.9337 0.9352 0.9346 0.9377 0.9359 

50dB 0.9265 0.8333 0.9347 0.9367 0.9359 

The GRU-LSTM hybrid model is the most robust and 

accurate choice for predicting time series data across a 

spectrum of noise conditions. While the CNN and LSTM 

models have their strengths at specific noise levels, the GRU-

LSTM hybrid offers the best overall performance, making it 

the preferred model for tasks involving noisy time series 

prediction. As the SNR decreases, the challenge of 

distinguishing signal from noise grows, affecting all models 

but impacting the GRU-LSTM hybrid the least, thereby 

underscoring its superior noise-handling capabilities. 

6.5. Performance under Different Time Window 

Assessment of the performance of GRU-LSTM, CNN-

LSTM, CNN, and SVM models across varying sequence 

lengths (10, 30, 50) is essential to understanding how each 

model processes temporal dependencies and extracts features. 

This understanding is crucial because the structural nuances of 

each model influence their capability to handle different 

observation time windows (OTWs). The following detailed 

analysis breaks down the impact of each model's architecture 

on its performance across these varied temporal scales. 

Table 5. Comparison of nominated models’ performance under 

different OTW 

Model (OTW) MSE MAE RMSE 

GRU-LSTM 

3 6.672 0.006 0.008 

9 8.522 0.006 0.009 

15 8.630 0.006 0.009 

CNN-LSTM 

3 2.847 0.004 0.005 

9 1.799 0.003 0.004 

15 1.0327 0.0025 0.003 

CNN 

3 0.0001 0.009 0.010 

9 3.341 0.004 0.005 

15 2.251 0.003 0.004 

In Table 5, The GRU-LSTM exhibits increasing error 

metrics as the sequence length increases from 3 to 15. This 

trend suggests that while the model can capture both short-

term and long-term dependencies, it might suffer from 

overfitting or computational complexity when dealing with 

longer sequences. The consistency in MAE across different 

OTWs indicates that the model’s average error magnitude 

remains stable. However, the increasing MSE and RMSE 

suggest growing variance in the error distribution or outlier 

effects as the sequence lengthens. Contrasting with GRU-

LSTM, the CNN-LSTM shows improved performance as the 

sequence length increases, with all three metrics decreasing. 

This model effectively combines CNN's ability to extract 

spatial or feature-based information efficiently with LSTM's 

proficiency in capturing temporal dependencies, making it 

highly effective for longer sequences. The CNN performs best 

at the shortest OTW, indicating its strength in handling spatial 

features over short sequences.  

6.6. Model Architecture and Hyperparameter Tuning 

Hyperparameter tuning is conducted to optimize the 

GRU-LSTM model's performance for sequence prediction 

tasks. The primary objective was to identify the most practical 

combination of units, epochs, batch size, and dropout rate to 

maximize the model’s predictive accuracy while minimizing 

overfitting. Table 6 summarizes the results of our experiments, 

showcasing the mean test score and standard deviation for 

various configurations of the GRU-LSTM model. The results 

of different configurations of the GRU-LSTM model by 

varying the hyperparameters are as follows. 

Table 6. Hyperparameter tuning results for GRU-LSTM model (ranked 

from high to low score) 

Units Epoch 
Batch 

Size 

Dropout 

Rate 

Standard 

Test Score 

Mean 

Test 

Score 

75 10 10 0.1 -0.00027 0.000028 

50 10 10 0.1 -0.00038 0.000139 

50 20 20 0.2 -0.00043 0.000091 

25 10 10 0.1 -0.00147 0.000397 

25 10 0.3 0.2 -0.00187 0.000138 

The tuning results are presented in Table 6, where each 

row represents a unique combination of hyperparameters and 

the corresponding mean and standard deviation of test scores. 

The mean test score indicates the average performance across 

multiple runs, while the standard deviation reflects the 

stability and consistency of each configuration. The results 

reveal notable insights into the accuracy of each 

hyperparameter of the respective model.  

The tuning results indicate that configurations with 50 

units ranked consistently higher than those with 25 units, 

suggesting that more units improve the model’s ability to 

interpret temporal patterns effectively. The top configurations 

used 50 units, achieving mean test scores of -0.000383 and -

0.000433, respectively. Increasing the number of epochs from 

10 to 20 generally resulted in a minimal change in mean test 

score, implying that ten epochs may suffice for convergence. 
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Batch size also impacted performance, with a smaller batch 

size of 16 outperforming larger sizes in configurations with 50 

units, likely due to the increased number of gradient updates 

per epoch. Regarding regularization, lower dropout rates, 

particularly 0.1, were more favorable, as seen in the highest-

ranked configurations. Increasing the dropout rate to 0.2 or 0.3 

led to higher mean test scores, suggesting that lighter 

regularization may be better suited for this model. 

Finally, regarding consistency, the configuration with 50 

units, 20 epochs, 0.1 dropouts, and a batch size 16 

demonstrated the lowest standard deviation (0.000091), 

indicating the most stable performance. Higher dropout rates 

were generally associated with greater variability, as shown in 

the configurations ranked 3 to 5. The results from 

hyperparameter tuning suggest that the best configuration for 

the GRU-LSTM model is 50 units, ten epochs, a dropout rate 

of 0.1, and a batch size 16. This configuration achieved the 

lowest mean test score, indicating superior predictive 

performance while maintaining a relatively low standard 

deviation. 

7. Conclusion 

This study tackles the challenge of forecasting voltage 

instability within power systems by employing sophisticated 

deep-learning methods. It innovatively applies generative AI 

to address the inherent limitation of sparse datasets in these 

dynamic systems. The work also highlights the capability of 

RNNs in time-series clustering. This research validates the 

hypothesis that prior data augmentation followed by temporal 

ensembling enhances model generalization and predictive 

outcomes of the GRU-LSTM models. The methodological 

core of this investigation involved a detailed evaluation of 

multiple deep learning architectures. These models were 

assessed using diverse data preparation to determine the 

forecasting efficacy of power system dynamics under varied 

operational scenarios. The model’s effectiveness was 

evaluated using the IEEE 6 Bus System for various deep 

learning models, especially the hybrid GRU-LSTM and CNN-

LSTM methods, including various parameter settings of the 

nominated deep learning model. The best hyperparameter 

settings were ranked based on the test score. These tests 

confirm that the deep learning models perform well under 

semi-supervised conditions and produce less error than 

standard supervised machine learning models. Future research 

will benefit from integrating emerging AI trends like transfer 

and quantum machine learning by enhancing the power 

system's predictive accuracy and operational resilience. These 

advancements will be crucial in developing sophisticated 

contingency plans and ensuring optimal responses to dynamic 

grid conditions by maintaining the security of the power 

system. 
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