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Abstract - Tropical cyclone intensity classification is critical for disaster preparedness and resource allocation. Existing methods 

rely heavily on either manual analysis or computationally intensive deep learning models, which, despite their high accuracy, 

are often impractical for real-time scenarios. A significant gap exists in the literature where lightweight yet accurate models 

optimized for real-time applications are underexplored. This study addresses this gap by leveraging Gabor filter-based texture 

feature extraction combined with machine learning models, enabling precise cyclone intensity classification while balancing 

computational efficiency and prediction accuracy. By evaluating multiple classifiers, including Random Forest, SVM, and KNN, 

this study offers a comparative perspective to identify the most effective model for cyclone intensity classification in binary and 

multi-class setups. 
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1. Introduction  
Often accompanied by strong winds, heavy downpours of 

rain, and low atmospheric pressure, Tropical Cyclones (TCs) 

or typhoons are extreme meteorological events that may be 

catastrophic for affected coastal cities. For proper execution 

of preparedness and response strategies and to determine 

possible consequences of tropical storms, it is important to 

categorize the storms. In the past, conventions in defining TCs' 

genesis included factors like wind velocity and central 

pressure. Yet the complexity of these approaches makes it 

necessary to look at other complex approaches to classifying 

such events.  

Usually, binary classification categorizes the TCs into 

two categories, “Tropical storm” and “Hurricane,” but the 

multi-class classification allows for classification into several 

intensity classes. HHS has stated that tools like Support Vector 

Machines (SVM), K-Nearest Neighbors (KNN), Bayes Net, 

Random Forest, and Decision Trees Researchers can use such 

machine learning algorithms to automate the kind of 

categorization, improve the predicted accuracy and reduce the 

need for direct sifting through papers. However, there are 

feature extraction techniques that enhance the efficiency of 

these algorithms. For instance, Gabor wavelets are one of the 

most generally applied image analysis methods, which, if used 

in the feature extraction phase, can significantly enhance the 

TC intensity categorization accuracy. 

Gabor filters are special for texture analysis and pattern 

recognition in images since they provide spatial and spatial 

frequency information. Given such studies, Gabor filters were 

defined to analyse complex satellite data using several 

frequency components to capture other structural aspects of 

tropical cyclones. Because cyclone strength has to be 

classified based on their differences, the ability to emphasize 

characteristics at different orientations and scales is critical 

because it allows for discerning small differences that 

correlate with the differences in intensity. It has been 

evidenced in previous studies that Gabor filters are quite 

effective for various applications, such as image recognition, 

medical image processing and analyzing complex natural 

phenomena such as the tropical cyclone. 

However, literature research is still deficient in the 

comparative assessment of different machine learning 

strategies when combined with the Gabor filter. In contrast, 

the number of published papers on machine learning-based TC 

intensity categorization is gradually increasing. However, to 

the author’s knowledge, no previous research has investigated 

how all these factors interact to produce outcomes in binary 

and multi-class classification systems.  

To close this gap, it is vital to enhance the outcomes that 

define the approaches to accuracy enhancement of the TC 

intensity categorization, which is crucial in managing 
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disasters. The increase in intensity and frequency of tropical 

cyclones due to climate change is the fundamental motivation 

for the study. Scholars argue that the degree of TC intensity 

necessarily matters for enhancing forecasting, preparedness, 

and reaction to completion. In developing more accurate and 

automated categorization procedures, this study aims to 

contribute by looking at the Gabor filter and numerous 

machine learning methods. With higher levels of 

categorization, improved risk assessment and resource-

allocating decisions could be achieved, and this might 

someday help save lives and minimize the monetary costs of 

these tropical cyclones. 

The primary objective of this study is to determine the 

level of tropical cyclone strength differentiation initially as 

binary and then further as multi-class using Gabor filters on 

top of an assortment of machine learning algorithms, 

including SVM, KNN, BayesNet, Random Forest, Decision 

Trees, and so on. To identify whether the accuracies of TC 

intensity classification about different ratios of SH, GH, PS 

and other factors to be investigated in this study, the specific 

measures of performance of the various combinations shall be 

analyzed with careful calibrations. The results will provide 

valuable data to improve cyclone prediction and reduction 

knowledge, indicating that greater preparedness and reaction 

plans increase cyclone risk. 

Current practices concerning cyclone intensity 

categorization can be grouped within a broad set of 

possibilities. Currently, many convolutional neural networks 

and long- and short-term memories are reported to produce 

high accuracy. For instance, Tian et al. (2024) applied 

spatiotemporal attention networks and got high accuracy in 

short-term intensity prediction. However, their methods 

require massive computations and are impractical for real-

time use, especially in regions with limited resources. 

However, these traditional machine learning techniques, 

employed by Thenmozhi et al. (2024), sacrifice finer feature 

extraction necessary for intensity prediction for computational 

optimization. 

This work links these approaches by incorporating Gabor 

filters, which were previously demonstrated to perform 

splendidly in capturing canonical texture-based inventions 

with lightweight classifiers like Random Forest. While similar 

in HLE accuracy to state-of-the-art deep learning models, 

these proposed results require far less computation. Unlike 

previous classifications that relied on classical filters, the 

novel addition of Gabor filters helps overcome an important 

drawback of previous studies in the differentiation between 

cyclone intensities.  

This work is organized as follows: Section 2 presents a 

review of related research, Section 3 describes materials and 

techniques, Section 4 displays results and analysis, Section 5 

concludes the work, and Section 5 describes the future scope. 

2. Literature Survey  

Tian et al. proposed STAC-Pred, a spatiotemporal 

attention convolutional network for real-time TC intensity 

prediction. The model improved performance by 0.47 and 

0.28 compared to the interval at 3 and 6 hours, demonstrating 

significant improvements in short-term intensity prediction 

[1]. Ho et al. developed two AI models to determine TC 

centers in the western North Pacific: a CNN and an LSTM 

model. The models combined information from six networks 

of geostationary satellite imagery, demonstrating comparable 

or better performance than existing operational products [2]. 

Thenmozhi et al. utilized multi-criteria decision-making 

and ML models to assess cyclone risk and impact. The method 

assigned weights to various vulnerability criteria and 

employed SVM, SAM, and MLC algorithms to generate pre- 

and post-cyclone land use maps [3]. Choo et al. proposed a 

transfer learning approach with the Swin Transformer model 

for TC intensity estimation. The greatest pre-trained and TL 

models achieved deviations of 6.46 and 6.48 kts, showing 7% 

to 52% improvement over control models. This demonstrates 

the effectiveness of transfer learning in leveraging data from 

different satellite missions [4].  

Sonet et al. used cloud-free satellite images and an SVM 

to examine land use and land shelter changes in pre- and post-

cyclone phases to assess disaster impact. The study quantified 

land feature changes and flooding extent following Cyclone 

Bulbul in coastal Bangladesh [5]. Wang et al. introduced 

HuCL, a novel forecasting framework that integrates CNNs as 

well as LSTMs to progress and analyse multimodal data for 

TC track prediction. The model demonstrated improved 

accuracy in forecasting TC tracks in the Pacific Northwest 

compared to traditional unimodal methods [6]. Li et al. 

developed the “Time-based Attention Mechanism 

ConvLSTM” (TAM-CL) model for TC track and intensity 

prediction. The model uses ConvLSTM with 3D convolution 

kernels to enhance spatiotemporal feature extraction from 

atmospheric reanalysis data, incorporating an attention 

mechanism to advance long-term prediction outcomes [7]. 

Nasimi et al. proposed EESRGAN for automated 

estimation of tornado-induced treefall. The model achieved an 

accuracy up to 0.86 and an Average Precision (AP) of 0.88, 

demonstrating the potential of deep learning in post-disaster 

damage assessment [8]. Senior-Williams et al. evaluated 

transfer learning for tropical storm classification, with models 

achieving accuracies of 0.75, 0.82, 0.69, and 0.89 on four 

experimental datasets. These results demonstrate the potential 

of transfer learning in adapting pre-trained models to 

specialized meteorological tasks [9]. Patra et al. developed a 

satellite-based cyclone impact assessment methodology. The 

water and non-water pixel classification accuracy was 0.93 

and 0.89 for pre- and post-images, respectively, demonstrating 

the approach's effectiveness in mapping cyclone-induced 

flooding [10]. 
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Qian et al. reviewed recent advancements in TC 

governing and analysis techniques, focusing on climatological 

satellites, sensors, and aircraft. The study highlighted 

emerging technologies and products that support improved TC 

monitoring accuracy and operational capabilities [11]. 

Moustafa et al. proposed EESRGAN for cyclone detection in 

climate model data. The model attained an accuracy of up to 

0.863 and a precision of 0.886, demonstrating the potential of 

super-resolution techniques in improving cyclone detection in 

low-resolution data [12].  Yao et al. developed a deep neural 

network approach for wind turbine load reduction during TCs. 

The load suppression effect was 1%-9% under different 

working conditions compared to traditional strategies, 

demonstrating the potential of ML in enhancing renewable 

energy infrastructure resilience [13]. May et al. demonstrated 

that a CNN based on the U-Net architecture can accurately 

identify clouds associated with tropical cyclones in 

geostationary infrared images [14]. Ma et al. developed 

DLPE-MST, a deep learning model for precipitation 

estimation from GOES-16 data. The algorithm outperformed 

others' POD and correlation, achieving scores of 0.91 and 

0.58, respectively. These show the potential of deep learning 

in refining satellite-based precipitation estimates in TC 

conditions [15]. 

Juhyun Lee et al. developed a hybrid-CNN merging with 

the satellite imagery and statistical model outputs to forecast 

tropical cyclone intensity. This demonstrates the potential of 

deep learning approaches to substantially enhance TC 

intensity forecasting, particularly for challenging rapid 

intensification scenarios [16]. Wang et al. introduced a 

physics-novel improved deep CNN to determine centers of 

low-intensity tropical cyclones in satellite IR images. The 

model significantly improved accuracy over current-moment-

only approaches by integrating consecutive images and 

historical TC information. Mean distance errors for tropical 

depression and tropical storm levels were reduced to 20.1 km 

and 19.1 km, representing improvements of 63.0% and 54.6%, 

respectively. This demonstrates the value of incorporating 

temporal information and physics-based knowledge into deep 

learning models for TC analysis [17]. Mu et al. developed the 

TC3R model for retrieving tropical cyclone rainfall 

information from C-band Sentinel-1 SAR imagery. When 

compared to SMAP measurements, it achieved an RMSE of 

3.78 m/s. These results indicate that deep learning can extract 

rainfall information from SAR data, even in challenging TC 

conditions [18]. 

Kitamoto et al. presented the Digital Typhoon dataset, a 

40+ year satellite image dataset for selected ML models on 

spatio-temporal tropical cyclone images. While not providing 

specific metrics, this dataset significantly contributes to the 

field, enabling more robust and comparable evaluations of TC 

analysis models [19]. Griffin et al. developed D-MINT and D-

PRINT, two ML models to predict current and short-term 

intensity change in global typhoons. This suggests that 

machine learning can complement and potentially enhance 

existing operational TC forecasting tools [20]. Zhao et al. 

proposed an effective TC tracking technique called 

SiamTCNet on DL with IR satellite images. It improves upon 

the SiamRPN network by incorporating spatiotemporal 

evolution characteristics and using multiple input frames to 

capture TC temporal changes [21]. 

Raynaud et al. introduced a U-Net based model to detect 

TC wind structure in outputs of the AROME model [22]. The 

model achieved 0.8 (average-intersection-over-union), 

demonstrating the potential of semantic segmentation 

approaches in TC wind field analysis [23]. Cui et al. developed 

an ML model and interpreted TC-induced sea surface 

temperature cooling spatial structure amplitude. It uses 

Extreme Gradient Boosting (XGBoost) with 12 TC and ocean 

state predictors, outperforming a numerical model in accuracy 

[24]. Pal et al. introduced Small Skip Net (SSN), a lightweight 

CNN-based architecture for classifying TC satellite images. 

The model got an overall accuracy (0.92) on the test set, 

demonstrating that efficient architectures can achieve high 

performance in TC classification tasks [25]. Bharathi et al. 

introduced a prophetic outline for typhoon prediction by 

SVM. The approach analyzes diverse climatological 

constraints to identify forms associated with cyclone growth, 

signifying robust acts in identifying potential cyclonal 

constructions [26]. Tian et al. proposed EasyRP-R-CNN, a 

convolutional-based cyclone detection framework focusing on 

improving efficiency. It introduces a new Region of Interest 

choice apparatus and a scale-based ROI consortium 

component to avoid classifying undersized ROIs [27]. 

Liu et al. introduced TCRainNet, a rainfall nowcasting 

model for TCs. The model's nowcasts had averaged POD and 

CSI greater than 0.27 and 0.2, respectively, with deviations 

below 2.6mm. These results demonstrate the model's ability to 

provide reasonably accurate short-term rainfall predictions for 

TCs [28]. Zhang et al. proposed the STIA model for TC 

intensity estimation using Himawari-8 satellite data. The 

model achieved an overall deviation of 3.61 m/s (RMSE) and 

2.83 m/s (MAE), signifying strong performance in TC 

intensity assessment from geostationary IR images [29].  

Li et al. introduced a transfer learning-based GAN 

framework for reconstructing inner-core high winds from 

SAR images during TC events. The model showed strong 

performance, with a bias of -0.69 m/s, deviation of 4.08 m/s, 

and R-value of 0.91 under heavy rainfall conditions, 

demonstrating the potential of GANs in improving SAR-based 

wind estimates in TCs [30]. 

Eusebi et al. developed a physics-informed neural 

network for TC data assimilation. This proposed model's 

ability to reconstruct realistic wind and pressure fields from 

sparse data demonstrates the potential of combining deep 

learning with physical constraints in TC analysis [31]. 
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Hachiya et al. presented a novel practise for unfair ordinal 

multi-class classification of TC intensity changes. This 

approach addresses a common challenge in TC strength 

change prediction [32].  

Mawatwal et al. proposed a hybrid architecture using a 

Convolutional Neural Network for automated cyclone 

intensity prediction. The model incorporates a binary, multi-

class, YOLOv3-based cyclone indicator and deterioration 

module. It achieved high accuracy for binary classification 

(98.4% ±0.003) and reasonable performance for multi-class 

classification (63.83% ±1.3) and intensity estimation (RMSE 

of 16.2 ±0.9 knots). These outcomes recommend that the 

hybrid approach can effectively handle different aspects of 

cyclone analysis, from detection to intensity estimation [33]. 

Nguyen and Kieu explored using ResNet and UNet 

architectures to predict tropical cyclone formation from large-

scale environmental conditions. This proposed model showed 

the best performance at 12-18 hour forecast lead times and 

when using a vast area covering the Pacific Ocean. This 

suggests that CNNs can effectively capture the complex 

spatial patterns associated with TC formation, potentially 

improving early warning capabilities [34]. Tian et al. 

introduced TCIP-Net, a TC intensity prediction network that 

extracts convective structural information from IR satellite 

imagery. These models use Hovmöller diagrams to represent 

spatio-temporal evolution, and its subnetwork for capturing 

asymmetric TC structure information represents innovative 

approaches to TC intensity prediction [35].  

Present-day approaches to cyclone intensity 

differentiation comprise a wide variety of classification 

techniques. A few recent studies on the architectures of deep 

learning models, such as CNNs and LSTMs, have very high 

accuracy rates. Tian et al. (2024) employed spatiotemporal 

attention networks to develop highly accurate short-term 

intensity prediction.  

However, their methods require intensive computation to 

provide results, making them unsuitable for real-time 

applications in the scarcity of resources in the Third World. 

Computational models such as those employed by Thenmozhi 

et al. (2024) provide efficient machine learning but do not 

contain rich feature extraction required in intensity 

computations. 

This work links these methodologies by presenting how 

Gabor filters, categorized for their ability to detect texture-

based features, could be combined with simple classifiers such 

as Random Forest. While our approach is as accurate as actual 

deep learning models, our computational complexity is much 

lower. Compared with classical methods, introducing Gabor 

filters improves the capability to identify the difference in 

cyclone intensities, thus overcoming weaknesses in existing 

studies. 

3. Materials and Methods  
3.1. Description of the SINSAT3D Dataset 

This research employs datasets of 136 infrared images 

extracted from the Kaggle repository featuring cyclone cases 

from 2012 to 2021 [36]. In the data preparation stage, images 

were resized to 224*224 pixels, converted to grayscale and 

then normalized. Further, image data was rotated and flipped 

to augment the dataset and improve the training of the models. 

Normalization of filter responses was done by applying a 

combination of wavelet pyramid and statistical features of 

Gabor filters that turned out to be vital in extracting texture 

from cyclones. These features were used to train different 

machine learning classifiers: binary Random Forest, 

binary/Multi-class SVM, and binary/Multi-class KNN. 

Accuracy, recall, F1 score, and computational time offered a 

balanced parameter comparison. 

3.1.1. Image Preprocessing 

All images were converted to grayscale and resized to a 

uniform size to ensure consistency in the input data. 

3.1.2. Gabor Filter 

The Gabor filter was applied to extract image texture 

features.  

The Gabor filter is defined as: g(x1,y1;λ,θ,ψ,σ,γ) = exp(-

(x1'²+γ1²y1'²)/(2σ²)) * cos(2πx1'/λ + ψ). 

 SVM: Performs well on high-dimensional data and is 

relatively immune from over-fitting when the right kernel 

is chosen. 

 KNN: An easy-to-understand and applied method that is 

effective for low dimensional problems and delivers 

results without parameter estimation. 

 Naive Bayes: Its applicability can, therefore, be analyzed 

as effective for data calibrated in binary or categorical 

terms according to probabilistic notions. 

 Random Forest: An ensemble method used for accurate 

modeling and suitable for non-linear data. 

 Decision Tree: An easily interpretable model with 

intuitive derivatives that can perform fast for small data 

sets. 

3.1.3. Experimental Setup 

The data was divided into 80% training and 20% testing 

set. Gabor filter features were used for binary classification 

with SVM, KNN and Naive Bayes, Decision Tre and Random 

Forest.  

Random Forest and Decision Tree were applied for multi-

class classification, and Gaussian filter features were used. 

The above models were carried out using the Python sklearn 

library. Different authors have defined training time 

differently, so the time taken to train each model was recorded. 
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Fig. 1 Schema of the proposed system 

136 Infrared Image acquisition from Kaggle data repository 

Preprocessing technique (Resize, Normalization, Augmentation) 

Image feature extraction and selections: {Mean, Std, etc} 

Problem Statement: Typhoons intensity prediction by Gabor Filter  

Binary Class: {low/Medium, High} Multi Class: {Low, Medium, High} 

Result? 

Fit a Model 

Gabor Filter 

SVM KNN                                                             Bayes Net Random Forest  Bayes Net 

Yes 

No 
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Algorithm: Typhoon Intensity Classification using Multi-

Feature Extraction and Ensemble ML (TICMFE-EML) 

 

Input: Set of infrared satellite images I = {I₁, I₂, ..., I₁₃₆}  

Output: Typhoon intensity classification model M 

Step 1 : Image Preprocessing: For each Iᵢ ∈ I:  

a. Resize: Iᵢʳ = R(Iᵢ, 224, 224), where R is the resize 

function  

b. Normalize: Iᵢⁿ = (Iᵢʳ - min(Iᵢʳ)) / (max(Iᵢʳ) - min(Iᵢʳ))  

Step 2 : Image Augmentation: For each Iᵢⁿ, generate:  

a. Flip: Iᵢᶠ = F(Iᵢⁿ), where F is the flip function  

b. Rotate: Iᵢʳᵒᵗ = Rot(Iᵢⁿ, θ), where Rot is the rotation 

function and θ ∈ {90°, 180°, 270°} Augmented set: 

A = {Iᵢⁿ, Iᵢᶠ, Iᵢʳᵒᵗ} for all i, resulting in 3000 images  

Step 3 : Feature Extraction: For each image J ∈ A, compute:  

a. Mean: μ = (1/N) ∑ᵢⱼ J(i,j)  

b. Std: σ = √((1/N) ∑ᵢⱼ (J(i,j) - μ)²)  

c. Skewness: γ₁ = E[((X-μ)/σ)³]  

d. Kurtosis: γ₂ = E[((X-μ)/σ)⁴] - 3  

e. Entropy: H = -∑ p(x) log₂(p(x))  

f. Eye Area: A = ∑ᵢⱼ E(i,j), where E is the binary eye 

region  

g. Eye Circularity: C = 4πA / P², where P is the 

perimeter of the eye  

h. Eye Eccentricity: e = √(1 - (b²/a²)), where a and b 

are major and minor axes  

i. GLCM features: Compute contrast, homogeneity, 

energy, and correlation from GLCM matrix  

j. Gradient Mean: μ_grad = (1/N) ∑ᵢⱼ |∇J(i,j)|  

k. FFT Mean: μ_fft = (1/N) ∑ᵤᵥ |F(u,v)|, where F is the 

Fourier transform l. FFT STD: σ_fft = √((1/N) ∑ᵤᵥ 

(|F(u,v)| - μ_fft)²)  

Step 4 : Feature Vector: For each image J, create feature 

vector: X_J = [μ, σ, γ₁, γ₂, H, A, C, e, GLCM_features, μ_grad, 

μ_fft, σ_fft]  

Step 5 : Classification Preparation:  

a. Binary: Y_binary = {0 if low/medium, 1 if high}  

b. Multi-class: Y_multi = {0 if low, 1 if medium, 2 if 

high}  

c. Balance dataset: Randomly select 300 images for 

each class  

Step 6 : Filtering: Gabor Filter: g(x1,y1;λ,θ,ψ,σ,γ) = exp(-

(x1'²+γ²y1'²)/(2σ²))cos(2πx1'/λ + ψ)  

Where x' = xcosθ + ysinθ, y' = -xsinθ + ycosθ J_Gab = J * g  

Step 7 : Machine Learning Models:  

a. SVM: f(x) = sign(w^T x + b)  

b. KNN: y = mode(y_i) for k nearest neighbors  

c. Naive Bayes: P(y|x) = P(x|y)P(y) / P(x)  

d. Random Forest: y = mode(tree_i(x)) for i=1 to 

n_trees  

e. Decision Tree: y = leaf_value(x)  

Step 8 : Model Evaluation: For each model m:  

a. Accuracy: Acc_m  

b. Precision: Prec_m  

c. Recall: Rec_m  

d. F1 Score: F1_m  , etc 

Step 9 : Model Selection and Fitting: M = argmax_m (F1_m) 

Train M on entire dataset 

 

Figure 1 shows the following methods for predicting an 

optimal outcome using the ML models. 

4. Results and Discussion  
This section focuses on the results and discussions of the 

binary class and multi class classification with Gabor filter by 

SVM, KNN, Bayes Net, Decision Tree, and Random Tree for 

predicting the intensity of tropical cyclones of infrared 

images. 

Table 1 presents the accuracy metrics for various 

classifiers applied to binary and multi-class classification 

tasks. The Binary Class SVM and Multi Class SVM both 

achieve an accuracy of 0.79, indicating consistent 

performance across classification types. The Binary Class 

KNN has an accuracy of 0.75, while the Multi Class KNN 

performs slightly better at 0.78. The Binary Class Bayes Net 

achieves an accuracy of 0.78, closely followed by the Multi 

Class Bayes Net at 0.77. The Binary Class Random Forest 

classifier excels with the highest accuracy of 0.88, and the 

Multi Class Random Forest also demonstrates strong 

performance with an accuracy of 0.86. The Binary Class 

Decision Tree records an accuracy of 0.81, while the Multi 

Class Decision Tree has a lower accuracy of 0.73. Overall, the 

Random Forest classifiers stand out in accuracy, while SVM 

and KNN classifiers display comparable effectiveness in 

binary and multi-class settings. 

Table 1 outlines the precision metrics for various 

classifiers in binary and multi-class classification scenarios. 

The Binary Class SVM and Multi Class SVM maintain a 

precision score of 0.79, demonstrating consistent 

effectiveness in identifying relevant instances. The Binary 

Class KNN exhibits a precision of 0.75, while the Multi Class 

KNN slightly outperforms it with a precision of 0.78. Both the 

Binary Class Bayes Net and Multi Class Bayes Net classifiers 

achieve a precision of 0.77, indicating a balanced performance 

across both classification types. The Binary Class Random 

Forest achieves the highest precision at 0.88, while the Multi 

Class Random Forest also performs strongly at 0.86. 

Meanwhile, the Binary Class Decision Tree records a 

precision of 0.81, while the Multi Class Decision Tree shows 

a lower precision of 0.73. In summary, Random Forest 

classifiers demonstrate superior precision, while SVM and 

KNN classifiers exhibit competitive results across both 

classification types. 

Table 1 presents the recall metrics for various classifiers 

in binary and multi-class classification tasks. The Binary Class 

SVM and Multi Class SVM achieve identical recall scores of 

0.79, reflecting a strong capability to identify relevant 

instances across both classification scenarios. In contrast, the 
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Binary Class KNN shows a lower recall of 0.53, and the Multi 

Class KNN further decreases to 0.36, indicating a struggle to 

capture positive instances effectively. The Binary Class Bayes 

Net exhibits a recall of 0.58, while the Multi Class Bayes Net 

maintains a slightly lower recall at 0.53. Notably, the Binary 

Class Random Forest and Multi Class Random Forest 

classifiers excel in the recall, with scores of 0.88 and 0.86, 

respectively, demonstrating their strong performance in 

identifying true positives. The Binary Class Decision Tree 

also performs well, with a recall of 0.81, while the Multi Class 

Decision Tree has a lower recall of 0.73. Overall, Random 

Forest classifiers stand out in recall performance, whereas 

KNN classifiers show challenges in capturing relevant 

instances effectively. 

Table 1 outlines the Receiver Operating Characteristic 

(ROC) scores for various classifiers in binary, multi-class 

classification tasks. The Binary Class SVM achieves an ROC 

score of 0.88, while the Multi Class SVM performs even better 

with an ROC of 0.94, indicating strong discriminatory ability 

between classes. In contrast, the Binary Class KNN and Multi 

Class KNN show lower ROC scores of 0.67 and 0.75, 

respectively, suggesting less effective classification 

performance. The Binary Class Bayes Net has a notably low 

ROC of 0.60, with the Multi Class Bayes Net improving 

slightly to 0.67, indicating limited capability in distinguishing 

between classes. Both Random Forest classifiers stand out 

with high ROC scores: 0.95 for the Binary Class Random 

Forest and 0.96 for the Multi Class Random Forest, reflecting 

their excellent classification performance. Lastly, the Binary 

Class Decision Tree shows an ROC of 0.81, while the Multi 

Class Decision Tree slightly drops to 0.80, indicating good, 

though not exceptional, performance in class differentiation. 

Overall, Random Forest and SVM classifiers demonstrate 

superior ROC scores, indicating their robustness in multi-class 

and binary classification tasks. 

Table 1 presents the Precision-Recall Curve (PRC) scores 

for various classifiers in binary,multi-class classification 

tasks. The Binary Class SVM achieves a high PRC score of 

0.90, while the Multi Class SVM slightly improves to 0.92, 

indicating effective precision in identifying positive instances 

across multiple classes. In contrast, both KNN classifiers 

perform notably lower, with the Binary Class KNN at 0.66 and 

the Multi Class KNN at 0.61, suggesting challenges in 

maintaining precision. The performance of the Bayes Net 

classifiers is also limited, with the Binary Class Bayes Net 

scoring 0.54 and the Multi Class Bayes Net at 0.50, reflecting 

a decrease in precision. Both Random Forest classifiers excel, 

achieving scores of 0.94 for the Binary Class Random Forest 

and 0.95 for the Multi Class Random Forest, demonstrating 

outstanding precision in predicting positive cases. Lastly, the 

Binary Class Decision Tree scores 0.81, while the Multi Class 

Decision Tree lags at 0.62, indicating varying precision levels. 

The Random Forest and SVM classifiers showcase the 

strongest PRC scores, highlighting their reliability in multi-

class and binary classification tasks. 

Table 1 has F-Measure results for the various classifiers 

that illustrate their effectiveness in balancing precision and 

recall across binary and multi-class classification tasks. The 

Binary and Multi Class SVM achieve an F-Measure of 0.79, 

indicating consistent performance in accurately classifying 

instances in both scenarios. In contrast, the Binary Class KNN 

and Multi Class KNN show considerably lower F-Measure 

scores of 0.39 and 0.22, respectively, suggesting that KNN 

struggles to balance precision and recall, particularly in multi-

class situations. The Binary Class Bayes Net achieves an F-

Measure of 0.51, while the Multi Class Bayes Net slightly 

improves to 0.52, reflecting moderate performance but still 

below optimal levels. The Random Forest classifiers excel, 

with the Binary Class Random Forest scoring 0.88 and the 

Multi Class Random Forest at 0.86, indicating a strong ability 

to balance precision and recall across both types of 

classification. Lastly, the Decision Tree classifiers show solid 

results, scoring 0.81 for binary classification and 0.73 for 

multi-class classification, demonstrating robust performance 

though slightly less effective than Random Forest in multi-

class scenarios. 

The MCC scores for the classifiers indicate their 

effectiveness in handling binary and multi-class classification 

tasks. The Binary Class SVM achieves an MCC of 0.58. At 

the same time, the Multi Class SVM demonstrates improved 

performance with an MCC of 0.68, suggesting that the SVM 

models effectively provide a balanced representation of true 

and predicted classifications. In contrast, the Binary Class 

KNN and Multi Class KNN yield low MCC scores of 0.13 and 

0.14, respectively, indicating their struggle to classify 

instances accurately and reflect the actual distribution of 

classes. The Binary Class Bayes Net scores 0.32, and the Multi 

Class Bayes Net improves slightly to 0.42, highlighting 

moderate performance but still showing room for 

improvement. The Random Forest classifiers stand out with 

impressive MCC scores of 0.77 for the binary classification 

and 0.79 for multi-class classification, signifying their 

robustness in accurately capturing the correlation between 

actual and predicted values. Lastly, the Binary Class Decision 

Tree achieves an MCC of 0.62, while the Multi Class Decision 

Tree scores 0.59, indicating reasonable performance but not as 

strong as the Random Forest models.  

The Kappa statistics for the classifiers provide insights 

into their agreement with the true class labels beyond chance. 

For the Binary Class SVM, the Kappa value is 0.58; for the 

Multi Class SVM, it is 0.68, indicating moderate agreement 

and suggesting that these models perform better than random 

guessing. In contrast, the Binary Class KNN and Multi Class 

KNN show very low Kappa values of 0.04, reflecting poor 

agreement with the true labels and indicating that these 

classifiers are not effectively distinguishing between classes. 
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The Binary Class Bayes Net scores 0.18, while the Multi Class 

Bayes Net slightly improves with 0.32, indicating minimal 

agreement. The Binary Class Random Forest excels with a 

Kappa value of 0.77, and the Multi Class Random Forest also 

performs strongly with 0.79, indicating substantial agreement 

with the true classifications. Finally, the Binary Class 

Decision Tree has a Kappa value of 0.62, and the Multi Class 

Decision Tree scores 0.59, reflecting reasonable agreement 

but not as robust as the Random Forest models. The MAE 

values measure the average absolute errors between 

predicted and actual values, reflecting the accuracy of 

the classifiers in binary and multi-class settings. For the 

Binary Class SVM, the MAE is 0.21, while the Multi 

Class SVM shows a slightly higher error of 0.28, 

indicating reasonable performance in both 

classifications. The Binary Class KNN has a higher 

MAE of 0.47, and the Multi Class KNN exhibits a 

significant increase to 0.92, suggesting that the KNN 

models are less effective at making accurate predictions. 

The Binary Class Bayes Net records an MAE of 0.42, 

and the Multi Class Bayes Net has a higher MAE of 0.67, 

indicating a moderate error level.  

In contrast, the Binary Class Random Forest performs 

exceptionally well with the lowest MAE of 0.12, followed by 

the Multi Class Random Forest with an MAE of 0.16, 

demonstrating its effectiveness in making accurate 

predictions. Lastly, the Binary Class Decision Tree has an 

MAE of 0.19. At the same time, the Multi Class Decision Tree 

shows an MAE of 0.34, indicating that decision trees have 

moderate predictive capabilities compared to the Random 

Forest models. The RMSE values quantify the differences 

between predicted and actual outcomes, with lower values 

indicating better predictive accuracy. For the Binary Class 

SVM, the RMSE is 0.46, while the Multi Class SVM shows a 

higher RMSE of 0.64, suggesting that the multi-class model 

has a more significant average error. The Binary Class KNN 

has an RMSE of 0.68, which increases significantly to 1.23 for 

the Multi Class KNN, indicating a substantial drop in 

predictive performance for multi-class scenarios. Similarly, 

the Binary Class Bayes Net exhibits an RMSE of 0.65, while 

the Multi Class Bayes Net has an even higher RMSE of 1.04, 

further reflecting the challenges in multi-class predictions. 

The Binary Class Random Forest demonstrates strong 

performance with the lowest RMSE of 0.34, while the Multi 

Class Random Forest has a slightly higher RMSE of 0.45 but 

remains competitive. The Binary Class Decision Tree shows 

an RMSE of 0.44. At the same time, the Multi Class Decision 

Tree has an RMSE of 0.69, indicating that decision trees also 

perform reasonably well but do not match the Random Forest 

models. Overall, the Random Forest classifiers again emerge 

as the most reliable models with the lowest RMSE values 

across binary and multi-class classifications, emphasizing 

their robustness in predicting outcomes. 

Table 1. Binary and multi class with Gabor filter by ML models vs. Classification metrics 
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1 Binary Class + SVM 0.79 0.79 0.79 0.88 0.9 0.58 0.79 0.58 0.21 0.46 0.42 0.91 25.73 

2 Multi Class + SVM 0.79 0.79 0.79 0.94 0.92 0.68 0.79 0.68 0.28 0.64 0.43 0.81 79.79 

3 Binary Class + KNN 0.75 0.75 0.53 0.67 0.66 0.04 0.39 0.13 0.47 0.68 0.93 1.37 0 

4 Multi Class + KNN 0.78 0.78 0.36 0.75 0.61 0.04 0.22 0.14 0.92 1.23 1.45 1.55 0 

5 
Binary Class +  

Bayes Net 
0.78 0.77 0.58 0.6 0.54 0.18 0.51 0.32 0.42 0.65 0.83 1.29 0.22 

6 
Multi Class +  

Bayes Net 
0.77 0.77 0.53 0.67 0.5 0.32 0.52 0.42 0.67 1.04 1.04 1.32 0.36 

7 
Binary Class +  

Random Forest  
0.88 0.88 0.88 0.95 0.94 0.77 0.88 0.77 0.12 0.34 0.23 0.68 1.46 

8 
Multi Class +  

Random Forest 
0.86 0.86 0.86 0.96 0.95 0.79 0.86 0.79 0.16 0.45 0.25 0.57 2.96 

9 
Binary Class +  

Decision Tree 
0.81 0.81 0.81 0.81 0.81 0.62 0.81 0.62 0.19 0.44 0.38 0.88 3.19 

10 
Multi Class +  

Decision Tree 
0.73 0.73 0.73 0.8 0.62 0.59 0.73 0.59 0.34 0.69 0.53 0.87 7.14 
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Fig. 2 Binary and multi class with Gabor filter by ML models Vs. Classification metrics 

 

 
Fig. 3 Binary and multi class with Gabor filter by ML models Vs. Regression metrics 

The Relative Absolute Error (RAE) measures the 

accuracy of predictions by comparing the absolute error to a 

baseline, with lower values indicating better performance. For 

the Binary Class SVM, the RAE is 0.42. At the same time, the 

Multi Class SVM shows a marginally higher RAE of 0.43, 

suggesting that the performance in binary and multi-class 

scenarios is quite similar. The Binary Class KNN has a 

significantly higher RAE of 0.93, which increases to 1.45 for 

the Multi Class KNN, indicating a substantial deterioration in 

prediction accuracy for the multi-class setting. Similarly, the 

Binary Class Bayes Net has an RAE of 0.83, which escalates 

to 1.04 for the Multi Class Bayes Net, reflecting the increased 

difficulty of multi-class predictions. In contrast, the Binary 

Class Random Forest performs best with the lowest RAE of 

0.23, while the Multi Class Random Forest has a slightly 

higher RAE of 0.25 yet still indicates strong predictive 

capabilities.  
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Fig. 4 Binary and multi class with Gabor filter by ML models Vs. Time complexity 

 

Lastly, the Binary Class Decision Tree has an RAE of 

0.38. At the same time, the Multi Class Decision Tree rises to 

0.53, highlighting a similar trend where decision trees also 

perform less effectively in multi-class situations. Overall, 

Random Forest models continue to demonstrate superior 

performance across both binary and multi-class 

classifications, evidenced by their lower relative absolute 

error values. 

The Root Relative Squared Error (RRSE) quantifies the 

prediction error relative to the magnitude of the observed 

values, with lower values indicating better predictive 

performance. For the Binary Class SVM, the RRSE is 0.91, 

suggesting a moderate error in predictions. In contrast, the 

Multi Class SVM shows improved performance with an 

RRSE of 0.81, indicating that it is more accurate in a multi-

class scenario than the binary classification. The Binary Class 

KNN has a significantly higher RRSE of 1.37, which further 

increases to 1.55 for the Multi Class KNN, demonstrating a 

notable decline in prediction accuracy in the multi-class case. 

The Binary Class Bayes Net records an RRSE of 1.29. At the 

same time, the Multi Class Bayes Net exhibits a slightly higher 

value of 1.32, reflecting similar performance across both 

classification types but with considerable error. The Binary 

Class Random Forest stands out with the lowest RRSE of 0.68, 

and the Multi Class Random Forest further improves this 

performance with an RRSE of 0.57, indicating strong 

predictive accuracy in both scenarios. Lastly, the Binary Class 

Decision Tree shows an RRSE of 0.88, and the Multi Class 

Decision Tree has a marginally lower value of 0.87, 

suggesting a stable but less impressive performance compared 

to the Random Forest models.  

The time complexity for various classifiers indicates the 

computational resources required for processing data and 

making predictions. For Binary Class SVM, the time 

complexity is 25.73 seconds, while the Multi Class SVM 

significantly increases to 79.79 seconds, demonstrating a 

higher demand for computation in multi-class scenarios. In 

contrast, both Binary Class KNN and Multi Class KNN have 

a time complexity of 0 seconds, suggesting that they are 

speedy, likely due to their instance-based learning approach. 

The Binary Class Bayes Net takes 0.22 seconds, and the Multi 

Class Bayes Net takes 0.36 seconds, indicating efficient 

performance in both cases.  

The Binary Class Random Forest shows a time 

complexity of 1.46 seconds, which increases to 2.96 seconds 

for the Multi Class Random Forest, reflecting a moderate 

increase in computational time for multi-class classification. 

The Binary Class Decision Tree requires 3.19 seconds. In 

comparison, the Multi Class Decision Tree increases this to 

7.14 seconds, indicating that decision trees, while still 

relatively quick, take more time as the complexity of the task 

increases. KNN classifiers exhibit the least time complexity, 

while SVM models demand the most computational 

resources, particularly in multi-class situations. 

4.1. Classifier Performance 

Random Forest was the most accurate model in all the 

aspects of binary classification, with an accuracy of 0.88 and 

multi class classification, with an accuracy of 0.86. SVM 

achieved a competitive accuracy of 0.79. However, it was 

considerably slower regarding computational time (79.79s) 

when performing multi-class classification. KNN proved fast 
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and efficient with processing times being measured in near-

instances and was the model with the least recall of 0.36, 

especially when tested in a multi-class environment. The 

findings underpin the recommendation that Random Forest is 

the most effective algorithm for real-time applications since it 

provides reasonable accuracy and uses limited computational 

resources. 

4.2. Computational Efficiency in Relation to Prediction 

Accuracy 

As seen in this study, there is always a compromise 

between the time the algorithm takes to make a prediction and 

the prediction accuracy. Although SVM offers good accuracy 

here, it was several times slower than the other algorithms, 

making it unfit for real-time use. However, as seen in Figure 

4, KNN had a minimum computational time but low accuracy 

and recall, and it would not be suitable for use in important 

operations. Random Forest learned that high accuracy could 

easily be achieved with relatively average computational 

resources, thus making it possible to implement it in disaster 

management cases where timeliness is vital. 

4.3. Possibilities in Practical Cases 

In real-world applications such as evacuation planning 

and resource estimation, the speed of the solution and the 

degree of precision required are important considerations. 

Based on the results, Random Forest can be recommended for 

deploying real-time applications because its accuracy is 

acceptably high and time-consuming is reasonable 

(approximately 2.96 seconds in multi-class classification 

task). This capability is especially useful in areas of the world 

with limited high-performance computing resources, a factor 

that can prove expensive in many cases. 

4.4. Comparison of the Proposed with Existing Work 

Thus, compared to the deep learning models that Juhyun 

Lee et al. propose (2024), the proposed approach performs 

almost as effectively but consumes much less computational 

resources. This makes it a viable alternative for regions with 

limited computational capacity aside from the reduction in 

response time experienced by models trained on this 

framework. Moreover, the Gabor filters give a head start 

compared to the conventional machine learning models 

because they offer better feature extraction and, thus, better 

classification results. 

5. Conclusion  
This research shows the utility of an ensemble of Gabor 

filters and machine learning models for TC intensity 

prediction. Compared to all the other classifiers, Random 

Forest securely took the highest accuracy mark, with 0.88 in 

binary classification and 0.86 in multi-class classification. 

However, computational time usage was not significantly 

high.  

The research fills the gap between developing highly 

accurate deep learning models and using computationally 

efficient algorithms for applications requiring real-time 

information processing. Further work could be done to study 

the Gabor filters in conjunction with deep learning approaches 

to improve the measure’s efficiency. 
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