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Abstract - In power grid management, accurate forecasting of faults is the key to providing uninterrupted electricity supply. 

Errors can result in significant losses of property as well as severe harm. Better alternatives adhere to the complex power grid 

data that frequently confuse conventional forecasting techniques and produce less-than-ideal forecasts. This research proposes 

a novel hybrid Wavelet-LSTM-Transformer model for power grid fault prediction. Long Short-Term Memory (LSTM) network 

sequential learning capabilities, attention processes of the Transformer model, and time-frequency analysis capabilities of 

wavelet transform are combined in the suggested model. In order to forecast trends, our approach maintains the notion of long-

term memory while capturing short-term variations. This paper demonstrates that the developed model outperforms the most 

comparable work using numerous experimental trials and comparisons. It offers a workable method to boost the worldwide 

resilience and dependability of power grid systems. The results stress combining several modeling techniques to tackle difficult 

forecasting problems in important infrastructure sectors. 

Keywords - Fault forecasting, Deep Learning, Hybrid model, Power grid.  

1. Introduction  
The basis of modern society is the contemporary power 

grid, which supplies electrical current to consumers from 

industrial sites. However, the intricate network of interrelated 

components of these networks presents several difficulties, 

including hardware failure, natural calamities, and operational 

mistakes. Building stable and dependable electrical systems 

becomes dependent on early problem diagnosis. Fault 

detection is a crucial technique in power systems to ensure the 

security and reliability of electric networks [1].  

Energy is still more important than ever for economic 

expansion in the modern world. The many problems their 

networks face include equipment failure and environmental 

risks. To avoid probable outages, reduce the likelihood of 

safety risks, and optimize the potential of the power system, 

prompt problem identification and resolution is essential in 

this constantly changing environment. Unlike the technical 

aspects of power networks, fault identification raises safety 

issues [2]. Early problem diagnosis is necessary to protect the 

public and utility staff from dangerous circumstances caused 

by power outages. Moreover, effective mistake detection 

capacity has already significant economic consequences [3].  

Actually, it helps to extend the life of essential 

infrastructure, shields expensive electrical equipment from 

damage, and reduces the cost of individual repairs. Basically, 

efficiency is the key to fault detection. With prompt 

interference, operators can boost electricity distribution, 

curtail losses, and maintain overall efficiency in the entire 

system.  

This article aims to explore the intricate link between fault 

detection and grid efficiency, in that identifying mistakes 

actively helps energy networks perform better. Several 

strategies are utilized to identify errors in time series data, and 

these approaches can be roughly classified into statistical, 

machine learning, and hybrid methods. Time series fault 

forecasting uses several techniques to warn and prevent 

potential system disturbances [4].  

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Conventional time series analysis models like 

Autoregressive Integrated Moving Average (ARIMA) [1] and 

Exponential Smoothing State Space Models [5], with differing 

emphases, respectively, capture previous patterns to predict 

future faults. Moreover, machine learning techniques like 

decision trees and Recurrent Neural Networks (RNN) with 

Long Short-Term Memory (LSTM) use data to model their 

predictions [6].  

Ensemble approaches and hybrid models combine 

different methods for higher accuracy. Adopting adaptive 

forecasting, feature engineering and online learning methods 

ensures that models can properly adjust with changing 

conditions and take full advantage of useful features for the 

task at hand fault prediction [7]. The selection of 

methodologies is based on the features of time series data and 

system needs; frequently, redundant usage of several 

methodologies is necessary to improve fault prediction 

accuracy or dependability. 

This work presents the Wavelet-LSTM-Transformer, a 

hybrid forecasting model that integrates three key elements: 

the transformer, LSTM, and the wavelet transform. Wavelet 

transform allows the extraction of several resolution 

characteristics. Analyzing signals with various frequency 

properties is made easier using it. Temporal relations are 

particularly well-suited for representation by a class of 

recurrent neural networks known as long-range dependencies, 

or LSTM. Meanwhile, the transformer architecture represents 

remote interactions very well through attentional mechanisms 

and achieves parallel processing free from sequential order 

restrictions.  

Both components are combined since the model attempts 

to leverage the feature extraction of Wavelet Transforms and 

the long-range dependency modeling of LSTM while also 

considering global relationships as assessed by the 

transformer. With this integrated strategy, people should be 

able to project work flexibly and excellently to suit all relevant 

applications. As a result, the model can more effectively 

identify complex patterns from time series data in several 

categories.  

An innovative contribution of this work is the 

development of Wavelet-LSTM-Transformer, a 

heterogeneous prediction model integrating wavelet 

transform, LSTM, and transformer. Its all-inclusive time 

series research frameworks, which combine long-term 

dependency modeling and global relationship comprehension 

with many multi-resolution feature extraction techniques, give 

it its distinctiveness.  

The diversity of the model implies that the forecast 

accuracy can be increased over previous methods. 

Furthermore, this work pioneers the combination of deep 

learning approaches. It has established a canon for the next 

research to tackle difficult analytical problems employing 

inventive technical combinations by effectively merging 

several components into one unified and flexible structure. 

The model results are contrasted with five other models: 

Wavelet-LSTM, LSTM-Transformer, Wavelet-Transformer, 

LSTM, and Transformer models. The outcome demonstrates 

the robustness of the suggested model since it can be trusted 

in such situations and outperforms the other models in all the 

evaluation criteria. 

2. Literature Review 
Electrical distribution networks must be reliable, safe, 

and efficient; fault predicting is essential. Even hard to foresee 

failures could lead to widespread outages, equipment damage, 

or even safety risks. Apart from obvious disruptions, ignoring 

problems could have serious repercussions. Downtime results 

in substantial financial losses, as do increased operating costs 

from emergency repairs and maintenance activities; and, most 

significantly, the loss of safe supplies brought on by 

catastrophic catastrophes has a far-reaching economic impact.  

Like this, waves outward. Every time something goes 

wrong, By contrast, proactive fault forecasting can be very 

beneficial to utilities and operators since it enables them to 

take preventative measures to lower risks or expenses. It is 

also a method of increasing grid capacity overall to meet the 

demands made on it while maximizing grid performance [8]. 

Many issues and interruptions brought about by power 

grid faults may impact the effectiveness and dependability of 

electrical distribution networks. The system’s stability is 

important since faults can lead to oscillations, frequency 

changes, and even widespread failures in an unstable network. 

Unexpected load redistributions, overloads of transmission 

lines, and disturbances to supply-demand equilibrium are 

among the more complicated consequences of changes in 

power flow dynamics. Concurrently, the most typical 

consequence is equipment loss [9].  

This happens when technology problems cause important 

infrastructure parts, such as transformers, circuit breakers, and 

safety relays, to fail or deteriorate. These problems are 

exacerbated by the following power flow transfer phenomena, 

which makes flexible control techniques necessary to manage 

and change network structure on the go. Voltage variation is 

another frequent occurrence and results from issues that cause 

voltage levels to spike, drop, or vary.  

These modifications directly impact the quality of the 

electricity supplied, which increases the possibility of 

sensitive equipment breaking down when needed most. It is 

clear from weighing these effects that efficient defect 

detection, forecasting, and management methods are 

necessary. This highlights the need to take proactive measures 

to improve the power grid and lessen the detrimental effects 
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while offering secure supervision of power distribution 

networks [10, 11]. Figure 1 summarizes the main effects of the 

grid faults. As power grid fault forecasting is closely related 

to the overall efficiency, safety and reliability of electric 

distribution systems, it has long been a hotly discussed issue. 

Traditional forecasting methods have provided valuable 

information but often fail to deal with power grid data’s 

complex, nonlinear and dynamic nature.  

 

That is why statistics and determinism mainly determine 

these models. On the other hand, bringing deep learning 

heralded a sea change; it opened up an unprecedented realm 

of possibilities for making more accurate and dependable 

predictions. Table 1 discusses a variety of different forecasting 

techniques and their characteristics.  
Fig. 1 The effects of power grid faults 

 
Table 1. A comparison of forecasting methods and deep learning architectures 

Ref. Method Description/ Characteristics 

[12] Time-Series Analysis Identifies patterns and trends by analyzing historical data. 

[13] Seasonal Decomposition Sorts time series data by trend, seasonality, and residuals. 

[14] Autoregressive Models 
Uses historical data and variables with a lag time to predict future 

values. 

[15] Exponential Smoothing Prioritizes up-to-date data for prediction by using weighted averaging. 

[16] 
Auto Regressive Integrated 

Moving Average (ARIMA) 

Uses a combination of moving average and autoregressive components 

to make predictions. 

[17] RNN Sequential data modeling involves capturing temporal dependencies. 

[18] LSTM 
A specialized RNN with a memory cell is designed to address the 

vanishing gradient problem. 

[19] Transformer Architecture that utilizes attention mechanisms and parallel processing. 

[20] 
Convolutional Neural 

Network (CNN) 
Employs convolutional layers to extract features hierarchically. 

[21] 
Generative Adversarial 

Network (GAN) 
Comprises generator and discriminator networks for data generation. 

[22] LSTM-ARIMA 
Combines LSTM and ARIMA to capture both prolonged relationships 

and time-based patterns effectively. 

[23] CNN-LSTM 
The approach utilizes CNN for extracting features and LSTM for 

modeling sequential data. 

[24] Wavelet-LSTM 
The approach uses Wavelet Transform for feature extraction and 

LSTM for capturing temporal relationships. 

System 
stability 

Changing in 
power flow

Equipement 
loss

Power flow 
transfer

Voltage 
variation
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3. Algorithms Background and Preliminaries 
3.1. Wavelet Transform  

The Wavelet Transform is a mathematical tool that, like 

the Fourier Transform, is used to decompose functions into 

frequency components. On the other hand, the Fourier 

Transform uses sinusoids, but the Wavelet Transform 

employs wavelets, which are brief waves with a limited 

period. One of the most essential aspects of wavelets is their 

ability to record frequency and position information 

simultaneously. Examining non-stationary signals, such as 

time series data with fluctuating frequency components across 

time, is particularly useful for wavelet analysis. This is so 

because multi-resolution analysis is possible with wavelets 

[25]. From the viewpoint of time-series analysis, wavelet 

transformation makes it feasible to extract significants 

properties at multiple scales, making it possible to depict 

complex temporal patterns in a more complete and adaptive 

manner [25]. A function f(t) which may be decomposed into 

its wavelet coefficients W(a,b) making use of the Wavelet 

Transform, which is: 

𝑊(𝑎, 𝑏) = ∫  
∞

−∞
𝑓(𝑡)𝜓𝑎,𝑏(𝑡)𝑑𝑡                                   (1) 

The wavelet function that has been scaled by 𝑎 and 

translated by 𝑏 is represented as 𝜓𝑎,𝑏(𝑡) =
1

√𝑎
𝜓 (

𝑡−𝑏

𝑎
) . The 

wavelet coefficient captures both temporal and frequency 

localizations and is suitable for assessing nonstationary 

signals in time-series data. 

The first step in ensuring consistency when analyzing 

power grid failure data over time is to compile and standardize 

the raw data. After that, this data is divided into several parts 

using the Wavelet Transform, like in a tale separating the main 

and subordinate topics. Important properties are extracted 

from these parts to identify and understand various power 

system failures. Specialized algorithms are applied after noise 

reduction techniques to uncover patterns and potential issues 

in the grid. By early identification and resolution of problems, 

this approach contributes to the stability of the electrical 

system. 

3.2. Long Short Term Memory  

A subset of Recurrent Neural Networks (RNNs), Long 

Short-Term Memory (LSTM) networks are designed to assist 

machines in learning how to depend on information over the 

short and long terms [26]. LSTMs employ input, forget, and 

output gates with specialized memory cells to regulate the 

information flow and allay worries about vanishing and 

increasing gradient issues that plague regular RNNs when 

processing long sequences. That will then enable them to 

absorb lengthier sequences more successfully. In sequential 

datasets, LSTMS may identify complex patterns and 

connections. They are, therefore, beneficial for jobs requiring 

a deep grasp of context and temporal links, such as sequence 

modeling, natural language processing, and time-series 

forecasting. Gating mechanisms are particular components 

used to build LSTM networks. These systems, which act 

similarly to filters, govern the flow of information inside the 

network’s memory cells [26]. These gating mechanisms are 

extremely important in defining how information is to be 

stored, accessed, or deleted over time, which is represented as 

follows: 

𝑓𝑡  = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                                      (2)

𝑖𝑡  = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)                                        (3) 

𝑜𝑡  = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)                                       (4)

𝑐̃𝑡  = tanh(𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)                                 (5)

𝑐𝑡  = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐̃𝑡                                              (6)

ℎ𝑡  = 𝑜𝑡 ⊙ tanh(𝑐𝑡)                                                      (7)

 

Where ct act like a memory bank that holds onto crucial 

details at each step while ht provide a condensed summary of 

those stored details. As new data xt arrives, the forgotten gate 

ft determines which old information to retain or discard, and 

the input gate it identifies which new insights should be 

incorporated. A candidate c̃t proposes potential updates to the 

memory and the output gate ot assist in determining the final 

summary ht. Through the coordinated actions of these gates 

and specific functions like sigmoid and tanh, the LSTM 

effectively processes sequence, ensuring it captures and 

retains the essential information for accurate predictions or 

interpretations. 

3.3. Transformer 

The Transformer design represents a paradigm jump in 

sequence modelling since it includes a unique attention 

mechanism that captures global data linkages. Transformers 

cannot run sequentially like RNNs and LSTMs. Rather, they 

evaluate each component, employing self-attention processes 

to determine its relative relevance [27]. Transformers can 

preserve complex linkages and dependencies over the input 

sequence thanks to the simultaneous processing and attention 

approach. Transformers allow this to be possible.” 

Transformers are thus especially useful for jobs requiring 

interdependence over great distances and contextual 

awareness. Transformers have shown remarkable 

performance in many fields, including natural language 

processing, photo identification, and time-series forecasting. 

This makes transformers quite flexible and helpful for 

managing sequential data. [27]. 

Given a sequence X = {x1, x2, … , xn}, the self-attention 

mechanism computes the attention scores Attention (Q, K, V) 

as follows: 

Query, Key, and Value Projections 

𝑄 = 𝑋 ⋅ 𝑊𝑄                                                                  (8)

𝐾 = 𝑋 ⋅ 𝑊𝐾                                                                  (9)

𝑉 = 𝑋 ⋅ 𝑊𝑉                                                                  (10)
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Where, WQ, WK, WV are weight matrices. 

3.3.1. Scaled Dot-Product Attention 

Attention (𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉                   (11)      

Where dk is the dimension of the key vector, and softmax 

is applied along the rows to obtain the attention scores. 

4. Proposed Wavelet LSTM Transformer Model 
A novel architectural approach is offered via the Wavelet-

LSTM-Transformer paradigm. Integration of transformer-

based sequence modelling, LSTM-based temporal modelling, 

and wavelet transformation in this architecture provides 

synergistic effects. Using this integration, the model may 

effectively include and exploit temporal relationships and 

multi-resolution features in the input data. The method is thus 

particularly suitable for intricate time-series applications and 

those involving power grid forecasting. 

Three primary activities comprise the prediction model: 

input preprocessing and representation, sequence encoding 

using Wavelet-LSTM layers, and sequence modeling using 

Transformer layers. The model structure is enumerated in 

Figure 2 as a flowchart. 

4.1. Input Representation and Preprocessing 

Preprocessing of the incoming time series data for power 

grids involves standardization and perhaps denoising. This 

ensures data consistency and reduces the number of errors 

brought on by noise sources. After this, a wavelet modification 

of the data makes it possible to extract multi-resolution 

features that can record regional and worldwide patterns.  

In the long term, this makes the model more resilient and 

flexible. Following the conversion, an embedding layer 

prepares the continuous wavelet coefficients for further 

analysis by the LSTM and Transformer layers. 

Let X represent the input time-series data for the shape of 

(T, d), where T is the sequence length and d is the feature 

dimension. 

Then, Wavelet Transformation 

𝑊 =  WaveletTransform (𝑋)                                     (12) 

Where, W represents the wavelet-transformed data, 

capturing multi-resolution features. 

𝐸 = Embedding (𝑊)                                                 (13) 

Where 𝐸 represents the embedded data suitable for 

subsequent processing. 

4.2. Sequence Encoding Using Wavelet-LSTM Layers 

The encoded data then passes via a sequence of LSTM 

layers. As detectives, these layers identify the temporal trends 

and connections in the order. Because of their better gating 

mechanisms, these Long Short Term Memory (LSTM) layers 

can comprehend short- and long-term connections. The 

method next goes on to the Wavelet Integration phase. Here, 

the LSTM layers are boosted using wavelet-transformed data. 

Consider it as providing the model with a specialized lens to 

comprehend complicated patterns at various stages in the 

sequence fully. The merging of wavelet-transformed features 

with the LSTM’s innate capabilities gives a formidable model 

capable of decoding intricate, multi-resolution patterns in the 

data. 

Given LSTM parameters ΘLSTM, , the LSTM encoder is 

defined as, 

 

H = LSTM (E; ΘLSTM)                                                 (14) 

Where H contains the LSTM-encoded sequence 

representations. 

 

Then, the Wavelet integration can be represented by, 

Hwavelet = [H, W]                                                         (15) 

Hwavelet  integrates the LSTM-encoded features with the 

wavelet-transformed data. 

5. Sequence Modeling using Transformer Layers 
Following the sequence’s encoding by the LSTM layers, 

the data passes via a sequence of Transformers blocks. 

Position-wise feed-forward networks and multi-head self-

attention processes distinguish each of these blocks. These 

architectural configurations are extremely useful when 

understanding complex interactions and dependencies over 

several time intervals and feature dimensions.After 

completing Transformer processing, the outputs are carefully 

mixed with the previously encoded LSTM characteristic. We 

can combine the input sequence’s temporal dynamics and 

multi-resolution data into a comprehensive picture by 

integrating several fusion procedures or concatenative 

methodologies. Finally, the collected information is fed via a 

prediction layer designed to generate final predictions or 

classifications relevant to the intended tasks, such as fault 

forecasting or anomaly identification. This concludes the 

modelling procedure. Given Transformer parameters 

ΘTransformer , then the Transformer blocks are defined as 

O = Transformer (Hwavelet ; ΘTransformer )                   (16) 

Where, O contains the Transformer-encoded sequence 

representations.
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Fig. 2 Summary of the model structure 

 

Then, the integration and fusion can be represented by 

F = [Hwavelet , O]                                                        (17) 

Where, F integrates the LSTM-encoded and Transformer-

encoded features. 

Then, the final prediction layer can be represented by: 

Y = Dense (F; ΘDense )                                               (18) 

Where, Y represents the final predictions or 

classifications, and  ΘDense  are the parameters of the dense 

prediction layer. 

To sum up, Figure 2 shows the suggested model structure 

as the Wavelet-LSTM-Transformer model uses an embedding 

layer (E) to represent the data in a lower dimension after a 

wavelet transformation (W) to extract temporal features from 

the input time-series data (X). The LSTM encoder (H) extracts 

sequential patterns from the embedded data. Wavelet 

characteristics are also integrated into the LSTM encoder (H) 

to improve temporal representation. The LSTM features (F) 

are combined with Transformer blocks (0) to capture long-

range relationships and spatial patterns. Finally, the model 

generates a final prediction (Y) using the combined 

knowledge from the LSTM and Transformer layers, resulting 

in a comprehensive approach to understanding and forecasting 

time-series data.  

6. Empirical Study 
6.1. Dataset Description 

The history of recorded faults is evaluated in this paper in 

relation to the year 2020 (beginning on January 1 and ending 

on December 31), and this history corresponds to the total 

number of faults that have occurred in distribution branches in 

the Lages region of Brazil. The Centrais Elétricas de Santa 

Catarina (CELESC) provided the data for this evaluation. 

Considering that 2020 was a leap year, there were a total of 

366 days for which records were kept. The total number of 

alarms regarding defects that occurred during this period is 

displayed in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Power grid failures documented in the Lages Region in 2020 

 

Since failures generally occur in a nonlinear pattern, this 

evaluation was based on statistical analysis, and it was 

impossible to determine exactly when a failure would occur. 

However, it was possible to evaluate in which period of the 

year there was a greater chance of the most failures occurring. 

Performing a time series evaluation involves adding up all of 

the failures on the same day. This allows for the calculation of 

a daily failure rate over some time, which can then be used to 

assess the impact of the change in season on the rise in the 

number of failures in an electrical power grid. Regarding the 

alarms filed by the electric power utility business during the 

period being examined, these failures are evaluated in 

connection to themselves. Table 2 contains a few examples of 

alarms, which are shown here. 

Table 2. An illustration of recorded alarms during the specified time 

frame 

Date Time Fault Record 

07/01/2020 00:24:02 Current Phase C 

06/04/2020 10:04:32 Current Phase A 

06/04/2020 10:05:53 Current Phase B 

09/06/2020 15:21:21 Recloser Failure 

30/06/2020 14:11:05 Relay 50/51 (Phase C) 

10/11/2020 17:06:48 Neutral Protection 

31/12/2020 10:30:47 Current Phase A 
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6.2. Baseline Model 

Baseline models are crucial to power grid fault 

predictions, revealing the efficacy and improvements of new 

methods. Branco et al. [24] applied hybrid Wavelet-LSTM for 

fault forecasting in electrical power grids, which examines 

predictive modelling during the 2020 Brazilian pandemic, 

which is a good example. In this study, the authors used the 

Wavelet-LSTM model to improve LSTM network 

prognostication. The ability of the wavelet transform to 

enhance temporal data extraction and provide the LSTM 

model with better precision and robustness led to the selection 

of this model design. 

This work constructed a hybrid wavelet-LSTM-

transformer model that combines transformer, LSTM, and 

wavelet transform elements in a synergistic framework. After 

a knowledge of the benefits and drawbacks of numerous 

models, a composite framework that incorporates their best 

aspects was created. Wavelet-enhanced feature extractions, 

LSTM temporal modeling, and Transformer attention 

methods are claimed to generate a model architecture with 

improved prediction fidelity and durability. 

These analytical frameworks combined create a scholarly 

discussion with significant implications for electrical power 

system failure prediction paradigms. This report carefully 

assesses the pros and disadvantages of each model architecture 

to determine its overall benefits. Robustness profiles, 

computational efficiency, and prediction accuracy measure 

analysis expose every model’s special value offers and 

development prospects. Comparative evaluations go beyond 

numerical assessments, including qualitative examinations of 

every modelling paradigm’s epistemological, practical, and 

theoretical foundations. This multifaceted analysis contributes 

deep theoretical knowledge and real-world application to 

academic debate. 

6.3. Working Structure  

This power fault prediction system uses a transformer, 

Long Short-Term Memory, and Wavelet Transform 

topologies. Time series power grid measurements guarantee 

homogeneity, and preprocessing eliminates noise. A more 

precise study of local and global patterns is made possible by 

the Wavelet Transform by retrieving multi-resolution 

attributes from preprocessed data.  

LSTM layers record temporal dependencies and patterns; 

transformer layers record complex interactions across time 

steps and feature dimensions. Transformers and LSTMs are 

used in the hybrid design to increase the model’s lifetime and 

predictability.  

RMSE, MAE, and R^2 assess performance, and the 

model uses SGDM, Adam, and RMSprop optimizers. 

Advanced optimization techniques and neural network 

architectures are combined in this technology to produce 

reliable and accurate power grid failure forecasts. The inquiry 

workflow is shown in Figure 4. The results of the proposed 

model are then compared with five different models, Wavelet-

LSTM,  LSTM-Transformer, Wavelet-Transformer, LSTM, 

and Transformer models, in terms of the mentioned evaluation 

metrics.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Workflow and optimizer selection flowchart 
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7. Results and Discussions  
7.1. Model Setup 

The proposed Wavelet-LSTM-Transformer model 

captures input data’s complicated temporal dependencies and 

feature interactions. Multiple levels in the model serve 

different roles in the hierarchical data processing pipeline. The 

model initially receives input sequences with dimensions of 

(None, 100, 10), where None allows for flexible batch sizes, 

100 represents sequence length, and 10 represents feature 

dimensionality at each time step. Data transformations begin 

with this basic input layer, which channels sequences into the 

LSTM layer. Long-range relationships and temporal dynamics 

in data sequences are captured well by the LSTM component 

with 71,168 parameters. A dropout layer post-LSTM 

selectively deactivates neurons with a 20% dropout rate during 

training to strengthen the model’s overfitting resistance and 

generalization ability. 

A Multi-Head Attention mechanism with 527,488 

parameters is added to the architecture to identify and 

highlight data patterns and relationships. The attention-based 

layer improves the model’s ability to capture local and global 

data sequence dependencies. A tightly linked neural network 

segment with 16,512 parameters refines extracted features 

after the attention layer, enabling an intricate change that 

prepares the input for downstream processing.  

A key concatenation layer smoothly integrates attention 

and dense layer features into a consolidated feature map of 

dimensions (None, 100, 256). A thick layer with 16,448 

parameters feeds a singular-neuron output layer that generates 

model predictions to complete the architectural ensemble. The 

model has 631,681 trainable parameters, demonstrating its 

ability to identify complicated patterns and derive complex 

correlations from data sequences. Figure 5 illustrates the 

summary of the proposed model. 

7.2. Numerical Results 

In machine learning and predictive analytics, models are 

routinely compared to existing methods to determine their 

efficacy and practicality. This study compared our “Wavelet-

LSTM-Transformer” model to Branco et al.’s [24] and LSTM-

Transformer, Wavelet-Transformer, LSTM, and Transformer 

models. The proposed model’s predictive capability and 

generalizability in power grid failure forecasting were tested. 

Table 3 illustrates the proposed model’s numerical analysis 

and compares it with Branco et al. (Wavelet-LSTM model)  

reached by 200 epochs, and the wavelet transform with one 

node is selected. 

The analysis began with RMSE and MAE measures. 

Lower numbers indicate better model predicting accuracy. 

Here, the proposed model performed well. In all three 

optimizers, SGDM, ADAM, and RMSprop, the proposed 

model had lower RMSE and MAE than Branco et al..  

The model can explain more data variability when the R2 

value is close to 1. Our Model and Branco et al. [1] revealed 

low R2 values across all evaluated optimizers, indicating that 

while providing accurate predictions, these models may not 

capture all data patterns and nuances. 

Optimizers are crucial to deep learning model training 

and performance. Their main role is adjusting model 

characteristics like weights and learning rates to decrease loss 

function. We tested several optimizers to see which improved 

model performance. The performance measures, especially 

R2, reveal the optimizer’s ability to explain data variance. Our 

trials showed that the ADAM optimizer, known for its 

adjustable learning rates and momentum, performed well.  

These optimizers can handle complex loss landscapes, 

ensuring faster convergence and reliable generalization. 

However, optimizers like RMSprop have advantages, 

especially for non-stationary targets. Their adaptive 

mechanisms protect them against unpredictable gradients, 

making model training stable and efficient. Choosing an 

optimizer is a strategic decision that can affect the model’s 

predictive power and generalizability. Our study shows the 

effectiveness of several optimizers and emphasizes the 

importance of optimizer selection in deep learning research 

and implementation. A comparison has been made on six 

different models: Wavelet-LSTM using Branco et al. results, 

Wavelet- LSTM- Transformer, LSTM-Transformer, wavelet-

transformer, LSTM, and Transformer Models as shown in 

Table 3. 

Comparative examination shows the proposed model’s 

potential to challenge fault forecasting methods. While the 

models performed well across optimizers, further training 

epochs or ensemble approaches may improve the proposed 

model. Future studies could also investigate the patterns 

behind the disparities, improving power grid failure 

forecasting tools. 

According to the results of our empirical research, 

RMSprop consistently outperformed SGDM and ADAM 

across all of the criteria studied. These results highlight the 

relevance of optimizer selection, which also highlights the 

potential superiority of RMSprop for the particular model and 

dataset being considered.  

Figure 6 illustrates the proposed model performance 

regarding training and validation losses for the three 

optimizers. Moreover, Figure 7 shows the actual and predicted 

values of the power grid faults using the proposed model, and 

Figure 8 illustrates the actual and predicted values of the 

power grid faults using the Branco et al. model. 
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Fig. 5 The proposed model summary 

Table 3. The numerical results of the proposed model compared with five different models for time series fault forecasting 

Method Optimizer RMSE MAE 𝐑𝟐 

Branco et al. [24] 

RMSprop 3.93 × 10−3 6.64 × 10−4 0.5212 

SGDM 3.51 × 10−3 1.17 × 10−3 0.2089 

ADAM 3.98 × 10-3 6.51 × 10−4 0.5554 

The Proposed Model 

RMSprop 1.42× 10−3 3.38× 10−4 0.6576 

SGDM 2.51 × 10−3 3.25× 10−4 0.6593 

ADAM 2.14× 10−3 5.97× 10−4 0.6571 

LSTM-Transformer 

RMSprop 0.00438 0.00695 0.1591 

SGDM 0.00392 0.00139 0.1254 

ADAM 0.00495 0.00731 0.1985 

Wavelet-Transformer 

RMSprop 7.25× 10−3 9.87× 10−4 0.5321 

SGDM 6.85× 10−3 8.31× 10−3 0.2354 

ADAM 6.98× 10−3 8.65× 10−4 0.5425 

LSTM 

RMSprop 0.0495 0.0698 0.1595 

SGDM 0.535 0.775 0.1065 

ADAM 0.0532 0.0783 0.1142 

Transformer 

RMSprop 0.656 0.8211 0.1052 

SGDM 0.0621 0.0863 0.1432 

ADAM 0.0736 0.0935 0.1596 
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Fig. 6 the training and validation loss plot for the model of wavelet-LSTM-transformer in the case of  (a) RMSprop optimizer, (b) SGDM optimizer, 

and (c) ADAM optimizer. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

Fig. 7 Actual vs Predicted faults using wavelet-LSTM-transformer model with RMSprop optimizer 
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Fig. 8 Actual vs Predicted faults using wavelet-LSTM model 

 

This research aims to conduct an exhaustive evaluation of 

six different models specifically designed for fault forecasting 

in power networks. Among these models were variants of the 

Wavelet-LSTM, LSTM-Transformer, Wavelet-Transformer, 

LSTM, and Transformer architectures. These models were 

trained and assessed using three distinct optimizers: 

RMSprop, SGDM, and ADAM. By use of criteria such as 

RMSE, MAE, and reliability R squared, we were able to 

determine the suitability of each model for fault prediction 

tasks and get knowledge about its relative performance. 

It is demonstrated that the hybrid wavelet-LSTM-

transformer model is a very effective model across all 

optimizer configurations. Remarkably, the Wavelet-LSTM-

Transformer model constantly obtained the lowest RMSE 

values when trained with RMSprop, SGDM, and ADAM 

optimizers. These findings show that the proposed model is 

resilient and applicable to capture the intricate temporal 

correlations found in fault data. Moreover, the Wavelet-

LSTM-Transformer model frequently outperformed the 

baseline Branco et al. model as well as other variations, 

including Transformer, LSTM-Transformer, Wavelet-

Transformer, and LSTM, under all optimizer parameters, 

proving its superiority in fault forecasting tasks. This was 

shown by the model frequently beating the baseline model. 

Moreover, the optimizer selection impacted the model 

performance because each optimizer demonstrated varying 

success across various model designs. The fact that the 

ADAM optimizer delivered competitive solutions for most 

models repeatedly shows how well it can traverse complex 

optimization environments. Conversely, the architecture of 

the underlying model affected the uneven performance of 

RMSprop and SGDM. This emphasizes the need to choose 

optimizers with great thought while training models.The 

Transformer model performed far worse than others, 

particularly when trained using SGDM and RMSprop 

optimizers. This study shows that the Transformer design may 

not be as good at capturing long-range connections in failure 

data. 

These findings significantly impact fault forecasting in 

power grids and highlight the significance of selecting 

appropriate model architectures and optimizer settings to 

obtain the best possible predictive accuracy. The created 

WLST model mainly exhibits promise for practical use. It 

makes proactive maintenance methods in electrical power 

systems easier to apply and offers better performance and 

dependability in problem prediction. 

Taking into consideration that the forecast is one step 

forward, which corresponds to one day, the results of the 

comparison of the anticipated and observed values, which are 

displayed in Figure 7, indicate that it would be possible to 

estimate the failures that will occur on the following day based 

on the recorded history. As each stage of the forecast is 

completed, the history of the data that has been captured up 

until the next projected forecast is looked at to make 

predictions about the subsequent forecast.  

Because the forecast concerns the aggregate of the failure 

records that have occurred with time, it could estimate the 

number of failures that would occur the following day. 

Failures are related to weather conditions; nevertheless, they 

tend to rise depending on the time of year, which is the topic 

of this research. Failures primarily occur during the winter 

months. Following the point at which the total number of 

failures reached its highest accumulated value, there was a 
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fluctuation in the prediction, which was anticipated due to the 

sudden change in the time series. 

8. Conclusion 
The power grid environment needs forecasting systems to 

provide accurate and reliable data to prevent future 

breakdowns and guarantee continuous service. We examine 

six different designs that were trained using three distinct 

optimizers. With consistent performance above baseline 

models and different changes across all optimizer settings, it 

became evident that the Hybrid Wavelet-LSTM-Transformer 

model was the most promising method. These results show the 

need for optimizer selection for the model training process and 

how well the proposed model captures the intricate temporal 

dynamics of fault data. 

We have actual proof from our experiments that the 

suggested model may achieve the goals. Concerning power 

system data, the model demonstrated a remarkable capacity to 

capture complex patterns, including long-term dependencies 

and short-term oscillations. This is a significant breakthrough 

because the proposed model regularly outperformed the 

Wavelet-LSTM model alone. Among these metrics were more 

significant R squared values and reduced RMSE and MAE 

values.  

Moreover, the model is flexible and reliable, as seen by 

its adaptability to several optimization techniques, such as 

ADAM, RMSprop, and SGDM. Prediction accuracy was 

observed to rise with the synergistic complementing of some 

optimizers, namely RMSprop, to the Wavelet-LSTM-

Transformer design.The data’s quality and level of detail 

define the effectiveness of the Hybrid Wavelet-LSTM-

Transformer model. While our results were positive, 

improving data preparation methods should be the top priority 

for future studies to provide a more comprehensive picture of 

grid behavior. Further worries regarding the model’s capacity 

to manage processing efficiency and huge-scale grid networks 

persist. The structure of the suggested model has to be 

optimized for higher efficiency while maintaining accuracy to 

increase its applicability. Constant validation in many real-

world grid scenarios is necessary to guarantee the system’s 

dependability and durability. 
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