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Abstract - Recent progress in ophthalmology provides advanced operating rooms with surgical robots and microscopes. 

Integrating these tools has a significant impact on the field of retinal surgery. Traditional retinal surgeries were often limited 

by the risk of tremors and challenges in maintaining steady control during complex surgical procedures, leading to a higher 

risk of complications. This study proposes a Reinforcement Learning (RL) approach to control a robotic arm in retinal 

microsurgery to enhance precision and reduce the inherent risks of this delicate procedure. The proposed model consists of 

several key elements, such as a robotic surgery arm, a microscope, and RL agents to control the surgical instrument in real-

time according to the visual feedback from the microscope. The RL agent employs a Deep Q-Network (DQN) architecture by 

interacting with the environment through a sequence of actions and rewards to enhance the movement of the robotic arm. The 

model utilizes a Convolutional Neural Network (CNN) to extract features from images or frames for accurate state 

representation. The results demonstrated superior performance with an accuracy of 95%, precision of 97%, recall of 96%, 

and an F1 score of 96%. The simulation results confirm the high precision control of the robotic arm for minimizing 

complications in retinal surgeries.  

Keywords - Retina, Robotic retina surgery, Microscope, Reinforcement learning, Robotic arm. 

1. Introduction 
A thin layer of light-sensitive tissue located at the back of 

the eye, the retina converts incoming light into neural signals 

for the brain to process. Conditions like diabetic retinopathy, 

retinal detachment, and macular degeneration cause visual 

impairments or sometimes blindness [1]. The most sensitive 

and toughest procedure in ophthalmology is retinal 

microsurgery, which requires high precision and skill from 

surgeons. The success of retinal surgeries depends upon the 

ability of surgeons to regulate the tiny instrument inside the 

eye without causing damage to the surrounding tissues. Over 

the past few decades, microsurgical technologies have 

revolutionized the treatment of retinal disorders with 

enhanced results and quicker recovery times [2]. Advanced 

surgical skills are required for the retinal microsurgery. The 

dimensions for retinal microsurgery are beyond the 

physiological threshold for many individuals. Physiological 

tremors can occur during surgical procedures with tool 

positioning errors. Patient mobility during the procedure 

under monitored anaesthesia is another risk factor, leading to 

higher complications. The inability to detect the pressure 

variations among the surgeons significantly impacted their 

control of potentially injurious factors [3].  

Traditional retinal surgeries are performed by highly 

skilled surgeons with microscopes and microsurgical 

instruments. One of the primary challenges in retinal 

microsurgery is dealing with the extremely small area, which 

necessitates movements within a few micrometers. 

Additionally, the retina is more prone to damage because of 

its highly sensitive and delicate structure. However, slight 

hand movement or any distraction can lead to serious 

complications. Thus, the demand for technological 

innovations paves the way for robot-assisted retinal 

microsurgery to improve surgical results by minimizing risks 

[4]. Robot-assisted technologies provide more precise and 

controlled microscopic movements to reduce the risks of 

intraoperative complications. The robotic system can hold the 

tool steady for a long period of time, which is impossible for 

a human surgeon. Routine tasks can be repeatedly performed 

within well-defined safety boundaries, standardizing care 

equality among all patients by reducing surgeon variability 

[5]. Moreover, during their training phase, surgeons use 

simulators to develop skills that are not a perfect analog to real 

surgical procedures. If robotic systems were widely employed, 

simulators could enable precise design to mimic the 

performance characteristics of surgical robotic systems. This 

study proposes a reinforcement learning method for 

http://www.internationaljournalssrg.org/
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microscope-assisted robotic retina surgery arm control. The 

main contributions of the study are outlined below: 

 To control a robotic arm in microscope-assisted robotic 

retina surgery. 

 To develop a reinforcement learning model that can 

automatically adjust the robotic arm during surgical 

procedures. 

 To demonstrate the effectiveness of reinforcement 

learning in responding in real-time to visual feedback. 

The remaining portion of the paper is arranged as follows: 

Section 2 provides a literature review of retinal surgery 

methods and explores the research gap in the proposed model. 

Section 3 detailed the proposed reinforcement learning for 

microscope-assisted robotic retina surgery with arms control. 

Section 4 details the in-depth analysis of the results of 

handling reinforcement learning. Section 5 furnishes 

concluding remarks. 

2. Related Works 
Ebrahimi et al. [6] proposed a state-estimating Kalman 

Filtering (KF) to enhance the insertion depth and instrument 

tip position. Beam theory was employed with sclera force 

measurement and robot Forward Kinematics (FWK) to 

localize the tooltip. The method combined the sensor 

measurements and robot FWK for insertion depth 

measurement. The outcomes indicated that after applying KF, 

the insertion depth and instrument tip position had improved 

by 94% and 77%, respectively. The study was limited by the 

reliance on KF under non-linear conditions. Zhou et al. [7] 

developed 3D navigation of a microsurgical instrument using 

spotlight projection. The feasibility of the model was assessed 

by employing a Remote Center of Motion (RCM) constraint 

using the Steady-Hand Eye Robot (SHER). This model 

achieved an average tracking error of 0.013 mm compared to 

manual tracking. However, the study presented challenges due 

to the changes in the lighting conditions, which affected the 

precision of the tracking algorithm.   

Cereda et al. [8] evaluated an instrument integrated 

Optical Coherence Tomography (iiOCT) based on a distance 

sensor for robotic vitreoretinal surgery. The intraoperative and 

preoperative OCT images were compared by processing the 

images to assess the SNR ratio at different distances and 

angles. The results demonstrated the model’s accuracy, with a 

thickness value difference of less than 5% compared to the 

measured preoperative OCT. The key limitation of the study 

was the reduced signal accuracy when imaging the area of 

excessive retinal curvature. Chatterjee et al. [9] explained the 

advancements in robot-assisted surgeries. Modern robotic 

surgery systems are designed with highly sensitive robotic 

arms and miniaturized surgical instruments for precise 

visualization while reducing hand tremors. The revolution of 

artificial intelligence enhanced complex surgical procedures. 

However, the cost and maintenance of the robotic system and 

the availability of trained surgeons posed major challenges. 

Birch et al. [10] used trocar localization with a micro-camera 

mounted on the surgical forceps for robot-assisted 

vitreoretinal surgery. The model tracked both ArUco markers 

attached on either side of a trocar, with the trocar position at 

the estimated midpoint between the markers. The findings 

revealed an RMSE of 1.82 mm and 1.24 mm for marker 

localization and trocar localizations, respectively. The study 

was limited by its potential for misaligning markers during 

surgery. Jian et al. [11] introduced a parallel robot for 

minimally invasive eye surgery with RCM. Both forward and 

inverse kinematic models were analyzed, which showed 

partially decoupled motion, and dimension optimization was 

conducted.  

A prototype was developed with precision ranging from 

7 ± 2 μm to 30 ±8 μm and accuracy from 21 ±10 μm to 568± 

374 μm. The complexity of manufacturing and assembly 

processes limited the study. Wang et al. [12] designed an 

image-guided automatic control method for posterior segment 

eye surgery. The study introduced a tip detection network 

(Net-SR), which calculates the coordinates of the Tips of 

Surgical Forceps (ToSF) and Tips of Shadow (ToS). The 

results demonstrated superior performance over traditional 

key point detection with a 41.7% improvement in optimal 

speed. Jacobsen et al. [13] compared robot-assisted and 

manual vitreoretinal surgery using a surgical simulator in 

virtual reality. The method involved 10 numbers of surgeons, 

each representing the vitreoretinal and ophthalmic categories. 

The experiments utilized the Eyesi virtual-reality simulator. 

The results showed that the robot-assisted surgery was time-

consuming with greater precision value and lesser tissue 

damage. However, the simulation setup was incapable of 

spontaneous actions during surgery, which has limitations in 

real-life surgeries. He et al. [14] used an automatic light pipe 

actuation model for robot-assisted retinal surgery. 

 The target region was automatically illuminated utilizing 

a light pipe attached to the robotic arm and a hybrid force-

velocity controller. The results demonstrated the model’s 

effectiveness in illuminating the target area with negligible 

offset and average scleral forces of less than 50 mN. However, 

registering the eyeball in the robot frame before surgery is 

necessary to achieve the desired area. Guo et al. [15] 

introduced a hybrid brain-computer interface with 

simultaneous and sequential modes having steady-state visual 

eye tracking in a virtual reality environment. The study 

utilized decision fusion of Electroencephalography (EEG) and 

eye-gaze in simultaneous mode, whereas no calibration was 

done in sequential mode. The study’s limitations included the 

potential challenge of ensuring robustness across various 

diverse real-world environments. Kim et al. [16] proposed an 

efficient imaging system using intraoperative OCT and 

microscope, providing real-time depth feedback. A CNN was 

employed to segment task-relevant information. Patient care 
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was satisfied using trajectory generation by employing model 

predictive control. The study demonstrated its effectiveness 

by automating Subretinal Injection (SI) through 30 trials on 

pig eyes with an accuracy of 26 ± 12µm. These reviewed 

studies demonstrate some great advancements in robot-

assisted eye surgery with integrated imaging systems, 

navigation methods, and sensor-based controls that improve 

precision and depth perception. However, several gaps still 

remain. Besides, comprehensive validation of these systems in 

real-life, unpredictable surgical environments is also missing. 

Besides, high manufacturing complexity and the costs of the 

systems limit the wider adoption of these technologies. Future 

research should thus focus on enhancing robustness, handling 

dynamic and nonlinear conditions, and making the entire 

process smooth for integrating robotic systems into practical 

clinical applications of autonomous surgical technologies. 

3. Materials and Methods  
Robot-assisted retinal microsurgery is crucial because 

slight hand movements of surgeons during surgical procedures 

can cause serious complications due to the extreme sensitivity 

of the retina. Traditional procedures are often limited by the 

control and stability of micro-scale movements, which can be 

mitigated by the enhanced capability of robotic arms for 

autonomous decision-making during complex surgical 

procedures. This study incorporates reinforcement learning 

with microscope-assisted robotic arm control to achieve 

precise real-time surgical procedures. Figure 1 illustrates the 

block visualization of the suggested model.  

3.1. System Overview 

The system for robot-assisted retinal microsurgery in this 

study consists of several key elements, such as a robotic 

surgery arm, a microscope, and reinforcement learning agents. 

Each component plays a major role in efficient surgery with 

high precision. The robotic surgery arm is the physical arm 

that needs to be controlled. Multiple actuators and joints that 

can move in specific directions are featured to perform various 

ranges of motions for different surgical procedures.

Fig. 1 Block diagram of the suggested model 
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The movement of a surgical robotic arm is categorized 

into passive and active parts. The first four joints comprise 

passive parts for the arm’s preoperative positioning. These 

joints are not actively engaged during the procedures. Using a 

master manipulator, the doctors control the last four joints, 

which are active parts, to adjust the position of the microscope 

or surgical instrument.  

Figure 2 illustrates the structure of the surgical robot arm. 

Another essential component of a robotic surgery system is the 

microscope. Microscopes capture visual feedback through 

images or video to guide the robotic arm. This feedback helps 

detect the current position of the robotic arm by monitoring 

the surgical area during the surgical procedure. A 

reinforcement learning agent is employed to learn from the 

environment and adapt to the feedback from the microscope 

accordingly to execute movements for the robotic arm. 

3.1.1. Surgical Instrument  

The tracking and control of the surgical instruments are 

facilitated by adding simple and specific markers to them. The 

pose of the surgical instrument is indirectly determined by 

identifying the pose features of the marker, thereby reducing 

the increased workload and time required to identify the entire 

surgical instrument. The marker is designed in accordance 

with the rotation invariance of the circular feature. This circle 

becomes an ellipse during rotation without changing the long 

axis size due to the mapping relationship. Thus, to accurately 

determine the surgical instrument’s orientation and position, 

the circular marker’s long axis represents the size of the 

surgical tool, and the coordinates of the circular center 

represent the position information of the tools. The marker 

setting of the surgical instrument is illustrated in Figure 3.  

3.1.2. Visual Field Adjustment of Microscope 

Markov Decision Process (MDP), a common RL model 

to guide decision-making processes, is utilized to adjust 

microscopic posture automatically [17]. Five tuples represent 

the MDF {𝑆, 𝐴, 𝑅, 𝑃, 𝛾}, where 𝑆 is a set of states representing 

the visual feedback from the microscope, 𝐴 is the set of actions 

representing the movements of the robotic arm, 𝑅 is the 

reward function guiding the RL agent, 𝑃 is the transition 

probability between the new and current states, and γ is the 

discount factor. 

 
Fig. 2 Structure of the surgical robotic arm 

 

Fig. 3 Marker setting of surgical instruments 
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Fig. 4 Microscopic visual field adjustment 

Figure 4 provides the diagrammatic representation of the 

microscopic visual field adjustment. RL agent aims to 

maximize the total discounted reward (G) as expressed in 

Equation (1). 

           𝐺(𝑡) = ∑ 𝛾𝑗𝑅𝑡+𝑗+1
∞
𝑗=1                              (1) 

Where 𝑡 represents the current time step, 𝛾 is the discount 

factor, and 𝑅𝑡+𝑗+1 is the received reward at 𝑡 + 𝑗 + 1 time 

step. The Q-function defined by Equation (2) represents the 

expected future rewards during an action 𝑎 in a state 𝑠 under 

a policy 𝜋.  

  𝑄(𝑠, 𝑎) = 𝐸𝜋 𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎                      (2) 

Where 𝑆𝑡 and 𝐴𝑡 are the current state and action, 

respectively, with expectation E that maps states to action. The 

maximum action value function defined by Equation (3) is 

obtained by maximizing the expected future rewards from the 

next state 𝑠′ and action 𝑎′. 
𝑄∗(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝑃(𝑠′|𝑠, 𝑎)𝑚𝑎𝑥𝑎′𝑠′ 𝑄∗(𝑠′, 𝑎′)    (3) 

Equation (4) derived the optimal policy that maximizes 

the expected return. 

𝜋∗(𝑠) = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑎′𝑄
∗(𝑠, 𝑎)                           (4) 

Thus, by MDP, the system makes an action decision 

according to the visual feedback from the microscope, adjusts 

the microscopic pose, and updates the policy to maximize 

future rewards for the automatic visual field adjustment of the 

microscope. 

3.2. Feature Extraction Using Proposed CNN Model 

Initially, robotic arm position and microscopic feedback 

are the primary inputs for state representation. The 

microscopic feedback consists of images or video frames 

taken using a sensor integrated with the microscope to extract 

relevant features such as distance, position, and object 

orientation. The state of the robotic arm position represents 

current joint angles or the current position and orientation of 

the arm. It helps to analyze the smooth movement between the 

positions for more precise adjustments. A CNN is employed 

to extract relevant features from the visual data captured by 

the microscope [18].  

The basic CNN architecture is given in Figure 5. The 

input, 𝑋 ∈ ℝ128×128×3represents the height and width of the 

image with three RGB channels. The input consists of pixel 

values corresponding to each channel’s position. There are 

three convolutional layers with increasing filter sizes (32, 

64,128) and kernel sizes of (3, 3) to extract features from the 

images. The convolution operations between the input image 

and the filter produced feature maps. Mathematically, the 

convolution operation is given by Equation (5). 

𝑦 𝑚, 𝑛 = ∑ ∑ 𝑥 𝑚 + 1, 𝑛 + 𝑗 𝑘−1
𝑗=0

𝑘−1
𝑖=0 . 𝑤 𝑖, 𝑗           (5) 

Where 𝑦 𝑚, 𝑛  is the feature map having 𝑥 𝑚 + 1, 𝑛 + 𝑗  
as input, k is the filter size, and 𝑤 𝑖, 𝑗  is the weight value at 

position (i, j). The ReLU activation function is employed to 

introduce non-linearity. Max pooling layers reduce the spatial 

dimensions of the feature maps by selecting the minimum 

values in each 2 × 2 window. Mathematically, max pooling is 

expressed in Equation (6). 

Fig. 5 Basic CNN architecture 
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𝑃(𝑚, 𝑛) = 𝑚𝑎𝑥𝑖,𝑗(𝐴 𝑚 ∙ 𝑠 + 𝑖, 𝑛 ∙ 𝑠 + 𝑗 )            (6) 

The feature map is then flattened into a 1D vector to input 

into the Fully Connected (FC) layer. Two FC layers with 256 

and 128 units were employed, followed by dropout layers to 

prevent overfitting. Finally, the output layer predicts the Q 

value for each action, which has units equal to the number of 

possible actions. Table 1 provides the model summary of the 

proposed method. Figure 6 provides the proposed model 

architecture. 

Table 1. Proposed model summary 

Layer (Type) Output Shape Parameters 

Input Layer (None, 128, 128, 3) 0 

Conv2D (None, 128, 128, 32) 896 

Maxpooling2D (None, 64, 64, 32) 0 

Conv2D (None, 64, 64, 64) 18496 

Maxpooling2D (None, 32, 32, 64) 0 

Conv2D (None, 32, 32, 128) 73856 

Maxpooling2D (None, 16, 16, 128) 0 

Flatten (None, 32768) 0 

Dense (None, 256) 8388864 

Dropout (None, 256) 0 

Dense (None, 128) 32896 

Dropout (None, 128) 0 

Dense (None, 4) 516 

Total Parameters: 8515524 

Trainable parameters: 8515524 

Non-trainable parameters: 0 
  

Fig. 6 Proposed model architecture 

3.3. Reinforcement Learning for Robotic Arm Control 

The reinforcement learning for robotic arm control 

involves multiple steps. According to the current state, the 

robotic arm takes actions and receives rewards based on its 

performance in fulfilling tasks. RL defines an action space that 

includes the joint movements for adjusting angles of specific 

joints, the end effect controller for positioning or orienting the 

arm’s end effector (gripper), and path planning to compute 

trajectories to reach a specific target or avoid obstacles. 

Consider the movement of the robotic arm in terms of its joints 

as in Equation (7). 

              𝑎 =  𝑎1, 𝑎2, … …𝑎𝑛                               (7) 

Where 𝑎𝑖, 𝑖 = 1,2,3… 𝑛 defines the movement of ith joint. 

To understand the current arm configuration, the robotic arm 

captures the current joint angle or Cartesian coordinates. The 

rewards are defined as achieving specific tasks, such as task 

completion, successfully positioning the arm to a desired 

location or orientation, and reducing error to achieve finer 

control. The reward function is given by Equation (8). 

𝑅(𝑠, 𝑎) = −‖𝑝𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑝𝑎𝑟𝑚‖                           (8) 

where 𝑝𝑡𝑎𝑟𝑔𝑒𝑡  is the target position and 𝑝𝑎𝑟𝑚 is the current 

position of the arm. In the RL process, the agent balances 

exploration and exploitation for the agent’s interaction with its 

environment to maximize the reward function [19]. The 

exploration strategy refers to the process of trying new actions 

to learn. It identifies better actions or policies. On the other 

hand, exploitation strategy employs learned actions to 

maximize the reward. The action a is selected using an 

epsilon-greedy policy (𝜀 -greedy) as expressed by Equation 

(9). 
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𝐴𝑐𝑡𝑖𝑜𝑛(𝑎) =

{
𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛                      𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜖

𝑎𝑟𝑔𝑚𝑎𝑥𝑎′𝑄(𝑠, 𝑎′)                  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜖   
(9) 

Where 𝜖 is the exploration rate, which decreases over 

time as the agent learns. 

Q-learning or Deep Q-Networks (DQN) are used as the 

learning algorithm. The main goal of Q-learning is to estimate 

the optimal action-value function 𝑄∗(𝑠, 𝑎), which denotes that 

the expected cumulative reward begins from the start s, taking 

the corresponding action a by following the optimal policy. 

The update rule of the Q-value is given by Equation (10). 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎)+∝ (𝑅(𝑠, 𝑎) + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′) −
𝑄(𝑠, 𝑎))                                                                       (10) 

Where 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′) represents the maximum Q-value 

for the state  𝑠’ over possible action 𝑎’. The Q-values are 

iteratively improved until they converge to 𝑄∗(𝑠, 𝑎) to satisfy 

the Bellman optimality equation. By replacing the Q-value 

table with a neural network, DQN enables learning processes 

in more complex environments where states and actions are 

high-dimensional. DQN updates the policy based on the 

rewards for actions taken in different states. In DQN, the Q-

value is defined as Equation (11). 

             𝑄(𝑠, 𝑎; 𝜃) ≈ 𝑁𝑁(𝑠, 𝑎)                            (11) 

Where 𝜃 represents the weights of the neural network. A 

Deep Neural Network (DNN) minimizes the difference 

between the predicted Q-value and the target value obtained 

from the immediate reward and the discounted future Q-value. 

The loss function of DNN is given by Equation (12). 

𝐿(𝜃) = 𝔼(𝑠,𝑎,𝑟,𝑠′) (𝑅(𝑠, 𝑎) + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′; 𝜃−) −

𝑄(𝑠, 𝑎: 𝜃))2                                             (12) 

Where 𝜃− is the parameter of the target network. In DQN, 

𝜃 is updated using the gradient of the loss function as given by 

Equation (13). 

∇𝜃𝐿(𝜃) = (𝑅(𝑠, 𝑎) + 𝛾𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎; 𝜃′) −
𝑄(𝑠𝑡 , 𝑎𝑡; 𝜃))∇𝜃𝑄(𝑠𝑡 , 𝑎𝑡; 𝜃)                                  (13) 

 For training, the RL agent interacts with the environment 

over multiple episodes. During training, the agent observes the 

current state as microscope feedback and arm position, selects 

suitable actions based on learning or exploring as a policy, and 

executes the selected actions on the robotic arm.

  

Algorithm 1. Reinforcement learning for robotic arm control 

Define environment 

 State space: State space S, including joint angles θi, ranging from Smin to Smax. 

 Action space: Action A, where the robotic arm can adjust its joint angle θi. 

Initialization  

Initialize Q-values for state-action pairs: Q(s, a) ← 0     ∀s ∈ S, a ∈ A 

Set the exploration rate ϵ. 

Initialize the target network parameter θ−. 

Set learning rate ∝, discount factor γ 

Training loop 

Begin  

1. For each episode: 

 Initialize the state s 

2. For each time step within the episode 

 Select an action using ϵ greedy policy using Equation (9). 

 Execute the action a on the robotic arm and observe the new state s′and reward R (s, a). 

 Store the transition (s, a, R (s, a), s′) in the replay buffer. 

 Sample a mini-batch of transitions from the replay buffer. 

 Update Q-values using Bellman Equations. 

                                  For Q-learning: Update Q-value using Equation (10). 

                                 For DQN: Compute the target value, y = R(s, a) + γmaxa′Q(s′, a′; θ−) 

                                                  Update θ by minimizing the loss function using Equation (12). 

                                                 Compute the gradient of the loss function using Equation (13).  

 Update the target network parameter θ−  

 Update the state to s′for the next time step. 

3. Decaying exploration rate. 

End  
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The agent receives rewards as feedback on how well the 

arm achieved the task objective. The policy (Q-values or 

neural network weights) was updated to improve the 

performance over time. Once trained, the RL agent can 

autonomously control the robotic arm based on real-time 

feedback from the microscope.  

Based on new microscopic images or frames as state 

information, it continuously adjusts its action to maintain 

accuracy and precision in surgical tasks. Through continuous 

learning about environmental interactions and optimizing 

actions, the model achieves adaptive control over the robotic 

arm for retina surgery with high responsiveness in dynamic 

environments. The RL algorithm for robotic arm control is 

given below. 

3.4. Surgery Simulation Setup 

The study utilized the crossed platform robotic simulator 

V-REP for simulation to validate the proposed method [20]. 

The surgery setup comprises a microscope arm and a surgical 

instrument, as shown in Figure 7. A visual sensor is mounted 

to the microscopic arm manipulator to capture RGB images.  

The background color of the software is set to red to 

simulate a real surgical environment. At the beginning of 

every training session, the microscopic arm is initialized to the 

same position, and the surgical instrument is aligned in the 

center of the microscopic view. The robotic arm carries out a 

series of movements to accurately position the surgical 

instrument, which moves randomly in three-dimensional 

space to reach the desired location. 

Hyperparameters are crucial configuration parameters 

that specify how a deep learning framework operates and 

functions during training. As demonstrated in Table 2, 

hyperparameters are user-specified prior to training, in 

contrast to the model’s parameters, which are determined by 

the data. 

 
Fig. 7 Surgery setup 

Table 2. Hyperparameter specifications 

Hyperparameters Values 

Number of epochs 1000 

Activation function ReLU 

Batch size 64 

Dropout 0.5 

4. Results and Discussion 
    Understanding the effectiveness and learning trends of 

the suggested model depends on the accuracy and loss plots. 

The accuracy plot graphically illustrates the model’s capacity 

to consistently predict data labels throughout training 

iterations on both the training and validation datasets. Figures 

8 and 9 illustrate the proposed model’s accuracy and loss plot. 

The increase in the accuracy curve during the training and 

validation phases indicates the effectiveness of RL agents in 

improving the controlling capabilities of robotic arms, 

whereas the decreasing loss denotes the accurate predictions 

of RL agents. The correlation between the model’s predictions 

and the actual labels is evaluated to assess the model’s 

effectiveness during training. A loss plot depicts the 

progression of the model’s loss function over various 

iterations or epochs throughout the training process. This 

declining trend indicates that the model’s capacity to reduce 

prediction mistakes is enhanced over time. Reduced loss 

values signify superior concordance between the model’s 

predictions and the actual labels in the training dataset. 

Analogous to accuracy, variations in loss values are evident 

throughout epochs, indicating the model’s reaction to changes 

in the training data and optimization procedure.  

A highly effective method for evaluating the accuracy of 

the proposed model is using a confusion matrix. The matrix 

provides a systematic overview of the model’s performance 

by comparing its predictions with the actual labels across 

multiple classes. It organizes the findings in a tabular format, 

with rows denoting the real labels and columns indicating the 

predicted labels. Each cell in the matrix signifies the frequency 

of instances in which the model’s predictions align with or 

diverge from the actual labels. 

Microscope 

The Field of Vision 

Surgical Instrument 

Microscope Arm 



Reena S. Rajan & H. Vennila et al. / IJEEE, 11(12), 361-374, 2024 

369 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8 Accuracy plot of the proposed model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9 Loss plot of the proposed model 

 
Fig. 10 Confusion matrix 

-0.50      -0.25       0.00        0.25       0.50        0.75      1.00        1.25       1.50 
Predicted 

A
ct

u
al
 

-0.25 

1.00 

1.25 

1.50 

-0.50 
Confusion Matrix

 

40 

30 

20 

10 

90 

0.75 

0.00 

0.25 

0.50 

90
 

5
 

5
 

90
 

80 

70 

60 

50 

0                  200                400                600                800                 1000  

Epochs 

A
cc

u
ra

cy
 

0.96 

0.95 

0.94 

0.93 

0.92 

Train 
Validation 

0                 200                 400                600                800                 1000  

Epochs 

L
o

ss
 

0.35 

0.30 

0.25 

0.20 

0.15 

Train 

Validation 

0.10 



Reena S. Rajan & H. Vennila et al. / IJEEE, 11(12), 361-374, 2024 

370 

The confusion matrix is divided into four quadrants, with 

the diagonal elements indicating accurate predictions and the 

off-diagonal elements signifying misclassifications. Figure 10 

represents the confusion matrix of the proposed model with 

predicted and actual outcomes. This visual representation 

identifies the agent’s ability to classify actions correctly. 

Performance indicators obtained from the confusion matrix 

provide a comprehensive assessment of the proposed model’s 

effectiveness. To comprehensively assess the efficacy and 

operational efficiency of the proposed model, the four 

principal metrics employed are F1-score, accuracy, precision, 

and recall. These metrics, based in the principles of False 

Positive (FP), False Negative (FN), True Negative (TN), and 

True Positive (TP), are crucial for evaluating the model’s 

efficacy. The mathematical formulations for these 

performance parameters are shown in Equations (14), (15), 

(16), and (17). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                      (14) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                             (15) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                   (16) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                      (17) 

 

The obtained performance metrics, as shown in Figure 11, 

highlight the exceptional efficacy of the developed model. The 

proposed RL for microscope-assisted robotic retina surgery 

arm control achieved an accuracy of 95%, indicating the 

model’s efficiency in effectively controlling the robotic arm 

in the surgical area. 97% precision denotes accurate 

predictions by minimizing errors affecting impairments to the 

retina’s highly sensitive tissue. With a recall rate of 96%, the 

model provides accurate actions with respect to the state for 

increasing surgical safety. 96.5% F1score reflects a balance 

between precision and recall, indicating the effectiveness of 

RL. These metrics collectively determine the efficiency of the 

proposed model for retina surgery with high adaptability and 

fine control of the RL agent. Figure 12 shows the rewards over 

episodes. A rising trend indicates the effective learning of 

agents to achieve task goals. Figure 13 plots the number of 

steps (length) of each episode. The decreasing trend in the plot 

suggests the agent’s learning efficiency over time.The 

changes in the states and actions taken by the agent over time 

are visualized in Figure 14, and it helps to understand how the 

agent explores the state space and adapts its actions to achieve 

optimal control. The smooth transitions in the plot indicate 

efficient learning and effective actions. The line plot of actions 

the agent takes over time steps within an episode indicates that 

the agent has learned a stable policy for reaching and 

maintaining the task goal. During early training, variations in 

actions show exploration, while consistent actions indicate 

exploitation of learned policies.  

Fig. 11 Performance metrics 
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Fig. 12 Rewards over episodes Fig. 13 Episode lengths over episodes 
 

(a) (b) 
Fig. 14 (a) Time step vs. States, and (b) Time step vs. Actions.  

 

  
Fig. 15 ROC curve Fig. 16 States vs. Actions Scatter Plot 

 

The Receiver Operating Characteristic (ROC) curve is 

illustrated in Figure 15, which plots the TP rate against the FP 

rate. The Area Under the Curve (AUC) summarizes the 

performance of the ROC curve. A high value of AUC 
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indicates superior performance in distinguishing between the 

actions. The proposed model has a 0.95 AUC. The scatter plot 

of states and the corresponding actions taken by the agent is 

given in Figure 16. This plot indicates that certain states 

consistently lead to specific actions, showing learned behavior 

patterns. Due to exploration, early training shows a wider 

spread, whereas later training shows tighter clustering due to 

learned policies. Figure 17 illustrates the histogram of states 

and actions, showing the distribution of states and actions 

taken by the agent. It reveals the probability of agent visits to 

different states, with more visits to the goal state indicating 

effective learning. The frequency of actions with more 

frequent optimal actions indicates learned policies. The 

heatmap of Q-values for state-action pairs is illustrated in 

Figure 18. It visually represents a learned policy, revealing 

preferred actions for each state. A high Q-value indicates 

optimal actions for obtaining higher rewards in specific states. 

The central peak of the state distribution illustrated by Figure 

19(a) shows a high frequency at the state of around 0.5, 

indicating successful learning with frequent agent visits. A 

wide spread of states during early training suggests extensive 

exploration. As the training progresses, the spread narrows, 

indicating more focus on the goal state. The concentration of 

state visits around that state over time illustrates the agent’s 

efficiency in reaching and maintaining the goal position. As 

depicted by Figure 19(b), the action distribution exhibits a 

skewed distribution with a high frequency for action 1 since 

the agent prefers this action, possibly because it frequently 

results in higher rewards. A more balanced distribution 

between actions 0 and 1 might suggest that both actions are 

equally valuable or that the agent is still exploring. 

 
Fig. 17 Histogram of states and actions 

 
Fig. 18 Q-Value heat map 
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(a) (b) 
Fig. 19 (a) State distribution, and (b) Action distribution.

The action distribution is more uniform during the initial 

episodes, indicating that the agent explores different actions to 

understand their effects. The distribution might skew towards 

those actions as the agent learns which actions lead to better 

rewards. Once the agent has converged on an optimal policy, 

the learning behavior of the agent is reflected, showing a clear 

preference for the optimal actions in the action distribution.  

5. Conclusion 
This study proposes a novel RL-based method for 

controlling a microscope-assisted robotic arm in retinal 

microsurgery, aiming to increase precision and safety in this 

complex procedure. The proposed system can achieve 

autonomous adaptation and optimization in the motion of the 

robotic arm using a DQN with a CNN to process real-time 

visual feedback. The evaluation of the model underlines its 

effectiveness with high performance metrics: 95% accuracy, 

97% precision, and 96% recall, showing its capability for 

controlling the surgical instrument with high precision and 

reducing risks. The RL agent can learn a strategy by which 

higher rewards are received, and loss decreases over time, 

showing its efficiency in balancing exploration and 

exploitation to achieve optimal control. Simulation results 

confirm the system’s potential for enhancing surgical 

outcomes through adaptive, precise robotic arm control, thus 

significantly contributing to the retinal microsurgery research 

area. This approach promises to enhance surgical accuracy, 

thus improving patient safety. 
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