
SSRG International Journal of Electrical and Electronics Engineering Volume 11 Issue 12, 375-385, December 2024

ISSN: 2348-8379/ https://doi.org/10.14445/23488379/IJEEE-V11I12P134 © 2024 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Morphological and Syntactic Challenges in Malayalam:

A Dependency Parsing Perspective

P.V. Ajusha1, A.P. Ajees2

1School of Information Science and Technology, Kannur University, Kerala, India.
2Department of Computer Science, Cochin University of Science and Technology, Kerala, India.

1Corresponding Author : ajusha321@outlook.com

Received: 19 October 2024 Revised: 20 November 2024 Accepted: 18 December 2024 Published: 31 December 2024

Abstract – Natural language processing is the area of study that focuses on how computers and human languages interact.

Machine translation, sentiment analysis, semantic analysis, and text analysis are a few of them. The key natural language

processing component is morphological analysis, which breaks words into their corresponding morphemes to determine their

structure and meaning. Dependency parsing algorithms use morphological information to determine the syntactic structure of a

sentence. This study evaluates the performance of various parsers, including Turbo parser, Lys-FASTPARSE, UU parser, and

neural network based parser, to analyse dependency parsing methodologies used in the Malayalam language. The study

evaluates the performance of these parsers in handling the difficulties and effectiveness of extensive morphological and syntactic

features of Malayalam. Among these parsers, Lys-FASTPARSE performs better in LAS F1 score, MLAS score, and BLEX score,

maintaining values of 56.60 and 48.58 before and after optimization. The neural network parser shows minor improvements in

unlabelled attachment scores from 0.72 to 0.73 and labelled attachment scores from 0.46 to 0.47. With an LAS of 66.89% and

UAS of 87.12%, the Turbo parser shows better results for baseline performance. The precision of 98.81% and recall of 88.42%

in binned HEAD directions of the UU parser shows its performance in managing right direction dependencies. While lower, the

parser's performance in managing left-direction and root dependencies still reflects its ability to navigate complex syntactic

structures effectively. The results underscore the significance of tailored parsing techniques for morphologically rich languages

like Malayalam and provide insights into optimizing parser performance for improved syntactic analysis.

Keywords - Neural network-based parser, Dependency parsing, Lys-FAST parser, UU parser, Transition based parsing.

1. Introduction
Malayalam belongs to the South Dravidian language

family and is an agglutinative language with rich inflectional

morphology. Dependency parsing is a fundamental task in

Natural Language Processing (NLP) that involves analyzing

the grammatical structure of a sentence by identifying the

relationships between words. In dependency parsing, the

syntactic structure of a sentence is represented as a tree where

each word is connected to a "head" word, forming a directed

relationship known as a dependency [1]. The goal is to

determine which words depend on others and the nature of

these dependencies, such as subject-verb or object-verb

relationships. The resulting dependency tree provides a

compact and informative representation of the sentence's

syntactic structure. Unlike phrase structure parsing, which

represents sentence structure using nested phrases,

dependency parsing focuses on binary relations between

words. This makes it particularly useful for free or flexible

word order languages, where dependencies between words are

more informative than their linear sequence [2]. Dependency

parse trees can be divided into projective and non-projective

trees [3]. Figure 1 illustrates the structure of a sentence as

represented by a dependency graph in projective dependency

parsing. In the projective trees the edges do not cross each

other and a word and its dependents can form a substring of

the sentence, but in non-projective trees, there are crossing

edges. Non-projective transition-based parsing has been

actively explored in the last decade. Figure 2 depicts a

dependency graph in non-projective dependency parsing,

where syntactic dependencies between words can cross over

each other, reflecting more complex sentence structures.

 The success of neural networks and word embeddings

for projective dependency parsing also encouraged research

on neural nonprojective models 4]. In a projective dependency

tree, every subtree's yield is a contiguous sentence substring.

Identifying tagging issues and problems in annotation are

closely connected to dependency parsing in several ways.

These are crucial for improving the accuracy and efficiency of

parsing systems. Dependency parsing relies heavily on

accurate Part-of-Speech (POS) tags to determine the syntactic

structure of sentences [5].

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ajusha321@outlook.com

P.V. Ajusha & A.P. Ajees / IJEEE, 11(12), 375-385, 2024

376

Fig. 1 Dependency graph in projective dependency parsing

Fig. 2 Dependency graph in non-projective dependency parsing

Malayalam, a Dravidian language spoken predominantly

in the Indian state of Kerala, presents unique challenges for

NLP due to its rich morphology and flexible word order.

Dependency parsing is crucial for many NLP applications,

including sentimental analysis, machine translation, and

information extraction. The relationship between words in

Malayalam does not reflect the position in a sentence [6].

Dependency parsing is particularly important, enabling an

accurate representation of the sentence structure by focusing

on the functional relationships between words rather than their

position. Malayalam's script and morphological richness

necessitate robust parsing techniques for complex sentence

constructions, such as compound verbs, inflected nouns, and

agglutinative formations. Dependency parsing helps

disambiguate these structures, clearly understanding who is

doing what and to whom in a sentence. This understanding is

vital for advancing NLP applications in Malayalam, enabling

more effective processing, analysis, and generation of text in

the language.

1.1. Historical Evolution of Parsing Techniques

Dependency parsing techniques have evolved

significantly, with tailored approaches emerging for

agglutinative languages due to their unique morphological

characteristics. Traditional rule-based parsers were among the

earliest methods, relying on handcrafted rules to parse

sentences, but they struggled with scalability and linguistic

diversity. Statistical parsers, such as the Maximum Entropy

and Conditional Random Field-based models, improved

generalization by learning from annotated corpora, yet they

often fell short in handling complex agglutinations. Neural

network-based approaches, particularly transition-based and

graph-based dependency parsers, have shown promise by

leveraging deep learning to capture intricate syntactic

dependencies. For agglutinative languages like Malayalam,

specific adaptations have been made, such as incorporating

morphological features, suffix splitting, and subword

embeddings to manage the rich morphology effectively.

Hybrid methods that combine rule-based techniques with

statistical or neural models have also been developed to

balance linguistic insights with computational efficiency.

Recent advancements include multilingual parsers, such as

UDify and multilingual BERT-based parsers, which benefit

from cross-linguistic data to improve performance on

underrepresented languages. These advancements underline

the importance of integrating linguistic features and

leveraging modern machine learning techniques to tackle the

challenges posed by agglutinative languages.

2. Literature Review
In order to address free word order and rich morphology,

Nayana et al. [7] introduced a dependency parser approach for

Malayalam. The authors used a malt parser and LIBSVM

algorithm to incorporate phrase tags and parts of speech. NLP

for Malayalam marks advancement using this system, but the

sentence structure is more complicated and needs further

ROOT

NMOD SBJ VC PP

PUNC

NP

Root Mr. Tomash Will Rermain as a Director Emeritus

NMOD

NMOD

ROOT

NMOD SBJ VC

PP

PUNC

NP

Root A Hearing is Scheduled on the issue today

TMP

NMOD

P.V. Ajusha & A.P. Ajees / IJEEE, 11(12), 375-385, 2024

377

improvement.Using Paninian grammar, Aparna et al. [8]

developed a Malayalam dependency parser that constructs

integer programming constraints from grammatical

constraints. This method introduced a linguistic parsing for

Malayalam’s flexible word order. Krishnakumar et al.

introduced a method for identifying objects and subjects in

Malayalam. The authors compared MALT and MST parsers,

emphasizing the importance of extensive training data for

precise parsing. While the results are promising, the study

would benefit from a deeper analysis of the parsers'

performance on complex sentence structures. El-Morsy [10]

developed an Arabic Open Information Extraction (AOIE)

system that uses dependency parsing to extract relation tuples

from Arabic text, tackling the language’s morphological

complexity. The system is domain-independent and scalable

but struggles with certain clause types, indicating room for

improvement.

Al-Ghamdi et al. [11] created the first syntactically

annotated corpus for Classical Arabic poetry, facilitating

linguistic analysis of this complex form, and initial

dependency parsing experiments showed the corpus's value.

Halabi et al. [12] examined the impact of varying dependency

relations on Arabic parsing performance, advocating for

language-specific treebanks like I3rab. The study emphasizes

empirical approaches for developing linguistic resources,

though more detailed improvements from optimized

dependency relations are needed. Zmigrod et al. [13]

highlighted the distinction between dependency and spanning

trees in dependency parsing, introducing an efficient

algorithm to enforce dependency tree constraints. While the

study addresses a crucial aspect of parsing, further research is

needed to explore its practical implications. Zsibrita et al. [14]

presented "magyarlanc," a toolkit for processing Hungarian

texts, including dependency parsing. The tool is valuable for

Hungarian and other morphologically rich languages, though

language-specific features may limit its application. Alves et

al. [15] investigated the use of typological approaches to

improve Croatian dependency parsing with the Udify tool.

The study found that combining Croatian with certain

languages significantly improves parsing, though the

limitations of typological approaches and linguistic resources

pose challenges.

3. Method
The utilized dataset for this study comprises 9031

sentences from Malayalam Treebank Data_IIITH [16]. At the

dependency parsing level to manually annotate data, this

treebank is designed as an electronic repository to capture

textual relationships. Both parts of speech and chunk level

data are encoded within the treebank. Within the selected

treebank, the Paninian karaka theoretical model is

incorporated. Initially, SSF denotes the treebank, then

undergoes CoNLL conversion. In order to satisfy the MST

need, the CoNLL is transformed into MST format. This

conversion makes incorporating the MST parser easier for

another set of analyses. In conducting experiments with MST

Parser version 0.2, the dataset was divided into 80% for

training and 20% for testing. The data was formatted

specifically for the parser, with each sentence laid out across

three or four lines in a space-separated format. Extensive

experimentation was performed to optimize the graph-based

parser, which included fine-tuning various settings. The MST

Parser supports two training modes, projective and non-

projective and allows adjustments for the k-best parse size and

feature scope.

3.1. Dataset Construction and Pre-Processing

In this study, the datasets were carefully chosen for

training and testing to ensure thorough coverage of the

linguistic diversity of the Malayalam language. According to

Universal dependency principles, the Malayalam treebank

was the primary dataset. The dataset consists of 5000 tokens

spread across 5000 sentences from literary works and news

articles. To consider the rich agglutinative nature of

Malayalam, the dataset includes compound words, syntactic

notations, and inflectional forms. Sentences were tokenized

and annotated with head dependent relationships, parts of

speech tags and morphological features. Cleaning the noisy

text and splitting the complex words into sub-words are the

pre-processing steps to meet the parser's needs better.

3.2. LysFast Parser

In a transition-based parsing framework, the initial

configuration consists of an initial stack, a buffer holding

remaining input words, and a set of dependency arcs that are

initially empty. The parser transitions from one configuration

to another based on a defined set of rules, including the Shift

transition, which moves the next word in the buffer to the top

of the stack or Reduce, which adds a dependency arc between

two words atop the stack. LysFast is based on transition-based

parsing, where any sentence's dependency structure is

gradually built into a series of state transitions. It is very

adaptive to languages with elaborate morphology and flexible

syntax, such as Malayalam. Extract a rich set of features from

the current state of the stack, buffer, and partially constructed

dependency tree that ensure accurate predictions. Lexical

information such as word forms and lemmas are used along

with part-of-speech tags, plus morphological features such as

case markers and verb inflections unique to the Malayalam

language. These features will enable a better decision-making

process for parsing Malayalam, mainly because its syntactic

variations are considerable.

3.3. Neural Network Parser

We have used encoding sentences into dense vector

representations and embedding them in predicting

dependency relationships between words. This approach

allowed our parser to learn and generalize from large amounts

of annotated data, effectively capturing local and global

syntactic dependencies. The parser mapped every word in the

sentence into a high-dimensional vector and captured

P.V. Ajusha & A.P. Ajees / IJEEE, 11(12), 375-385, 2024

378

semantic and syntactic information based on the word's

context within the large corpus. We tried some pre-trained

embeddings, such as Word2Vec and FastText, but most of the

learning and training happened during the parsing process in

our implementation. These word embeddings helped us give

continuous, dense representations of words and helped our

model deal with variability and ambiguity inherent in natural

language.We employed the multi-layer neural network

architecture to process the sequence of word embeddings and

to predict dependency relations. This allowed us to capture

long-range dependencies and more complex sentence

structures. We also looked into using Transformer-based

architectures where self-attention mechanisms are applied to

simultaneously capture the relationships between all pairs of

words in a sentence. Our parser predicted the dependency

relations between words after encoding the sentence in the

neural network. We used a feedforward neural network, which

is a multi-layer perceptron. It inputs the hidden states of word

pairs and produces scores for potential dependency arcs. Our

model was trained to predict each word's head and the type of

dependency relation, such as subject or object. Our predictions

were graph-based, where the parser scores all possible arcs

and selects the highest-scoring arcs to form the dependency

tree.

3.4. UU Parser

UU Parser was a rule-based approach along with

statistical techniques, enabling the parser to analyze and

predict dependency relations within sentences efficiently. In

our study, the UU Parser highly depended on a rule-based

system to perform morphological analysis, which is highly

important for languages like Malayalam, where inflectional

morphology is rich. We defined an entire system of linguistic

rules for adequate identification and categorization of the

morphological properties of words such as tense, number, and

case. This is significant to ensure that the parser correctly

identifies words' syntactic roles in a sentence. Besides rule-

based morphological analysis, statistical models were

employed to predict word dependency relations.

The UU Parser had a probabilistic model that

approximated the probability of dependency arcs based on a

dependency-annotated tree bank. As such, it combined output

from the rule-based morphological analyzer and the

predictions of the statistical model for better syntactic

structure determinations of sentences. It gave us the best of

two worlds: a rule-based system's accuracy and statistical

methods' flexibility.

To improve the performance of the UU Parser, lexical

resources in the form of an exhaustive Malayalam dictionary

and part-of-speech tagger were incorporated. The extra

context that such resources brought was helpful in

disambiguating words that might have multiple meanings. The

lexical resources were extremely useful when dealing with

out-of-vocabulary words and infrequent morphological forms.

3.5. Turbo Parser

Turbo Parser uses graph-based modeling of dependency

parsing. It represents sentences as graphs where nodes are

words and edges are dependencies. This allows the parser to

handle complicated syntactic relationships by reducing them

to a maximum spanning tree problem. This paper used the

approach to efficiently compute the most likely dependency

structure of Malayalam sentences, known for free word order

and complex syntactic features.

A maximum spanning tree algorithm at the core identifies

the optimal dependency structure for any input sentence. The

algorithm applies the principle of making the sum of weights

as large as possible for a dependency tree based on scores

assigned to potential dependency arcs. We used this algorithm

so that the parser could also capture the syntactic

dependencies in Malayalam, even when the dependencies

were ambiguous or overlapping. The Turbo Parser has feature-

based learning in its parsing mechanism. It uses a rich set of

features, such as word embeddings, part-of-speech tags, and

syntactic cues, for predicting dependency relations between

words. We extracted and utilized these features to train the

parser on a Malayalam-specific dependency-annotated

corpus. This feature-based approach helps the parser

distinguish between more subtle syntactic patterns and

relationships while improving overall accuracy.

4. Results and Discussion
For each configuration, models were developed that

significantly improved the qualitative metric of LAS, UAS,

and Labeled Accuracy (LA). The percentage of correct head-

dependent relation identification that is irrelevant to labels is

known as UAS. This gives a metric of how effective syntactic

structure is even in a complex word-building language such as

agglutinative. A better UAS score indicates that the parser is

doing a good job of capturing basic syntactic dependencies,

which is quite important in languages with rich morphology.

LAS extends the UAS score by adding the correctness of the

dependency labels beside the structure. For Malayalam, where

words are usually associated with many morphological

variations and syntactic nuances, LAS must see how well the

parser could assign the right syntactic roles and semantic

labels to dependencies other than structural accuracy.

BLEX emphasizes lexicalized dependencies and checks

how well a parser attaches the specific words correctly to other

words in a sentence. The parser is not language dependent, so

no special adjustments were required in language, and the best

configuration for Malayalam was identified through these

experiments. Efficiency is an important aspect of the design of

the LysFast Parser, especially when handling large-scale text

data. The parser is optimized to minimize overheads on the

computation process, thereby enabling it to process sentences

rapidly without losing accuracy. Table 1 illustrates the Lys-

FASTPARSE Dependency Parser results for cross-validation

compared with the baseline and optimisation methods.

P.V. Ajusha & A.P. Ajees / IJEEE, 11(12), 375-385, 2024

379

Table 1. Parsing accuracy for Lys-FASTPARSE

Performance Parameters Baseline Optimization

LAS F1 Score 56.60 56.60

MLAS Score 48.58 48.58

BLEX Score 48.58 48.58

 Table 2. Parsing accuracy for neural parser

Parameters Order 1 Order 2

LAS 0.46 0.47

UAS 0.72 0.73

 The metrics used to evaluate the performance include the

LAS F1, MLAS Score, and BLEX scores. These scores

indicate how well the parser identifies syntactic dependencies

and labels morphological features. The LAS F1 Score, which

stands for Labeled Attachment Score, measures the accuracy

of the correct head and the dependency label assigned to each

word in the sentence. In this case, the LAS F1 Score is 56.60

for both the baseline and optimization approaches, indicating

that the optimization process did not improve the baseline

performance in terms of syntactic dependency parsing

accuracy. The MLAS Score, or Morphology-Aware Labeled

Attachment Score, considers the accuracy of the syntactic

dependencies while also considering the correctness of

morphological features such as part-of-speech tags. Here, the

MLAS Score remains constant at 48.58 for both the baseline

and optimization methods. This suggests that the optimization

did not enhance the parser's ability to identify and utilize

morphological features in the parsing process correctly.

Finally, the BLEX Score, which stands for Labeled

Attachment Score, evaluates the performance by considering

both the syntactic dependencies and the correctness of

lemmatization (i.e., the base forms of words). The BLEX

Score also remains unchanged at 48.58 for both approaches.

This indicates that the optimization efforts did not improve the

parser's performance in terms of accurately identifying and

using lemmas along with syntactic dependencies. Table 2

compares the performance of two parsing models or

configurations (Order 1 and Order 2) based on two key

metrics: LAS and UAS. For Order 1, the LAS is 0.46, and the

UAS is 0.72; for Order 2, the LAS is slightly higher at 0.47

and the UAS at 0.73. This indicates that Order 2 performs

marginally better than Order 1 in correctly assigning syntactic

heads and labels (as shown by LAS) and identifying syntactic

heads regardless of the labels (as shown by UAS). The small

increments suggest an improvement in parsing accuracy with

the second configuration. The analysis of the parsing

performance of the UU parser shown in Table 3 across

different categories of words reveals variations in accuracy for

several key metrics: the number of correct heads, correct

dependencies, and instances where both the head and

dependency were correctly identified. Out of 13,680 words,

the parsing system achieved 78% accuracy in identifying the

correct heads, 53% accuracy for correct dependencies, and

48% for both being correct simultaneously. Nouns and proper

nouns performed well in head accuracy, achieving 83%, but

showed lower accuracy in dependency assignment with 45%

and 46%, respectively. Verbs demonstrated a balanced

performance, with 75% accuracy for heads and 72% for

dependencies, resulting in 68% accuracy for both.

Table 3. Overall accuracy over CPOSTAGs in UU parser

Category Words Right Head % Head Right Dep % Dep Both Right % Both

Total 13680 10643 78% 7202 53% 6611 48%

N 6232 5186 83% 2820 45% 2571 41%

V 4599 3427 75% 3319 72% 3123 68%

PN 949 787 83% 437 46% 398 42%

CC 450 268 60% 187 42% 143 32%

AVY 423 219 52% 230 54% 187 44%

ADV 381 295 77% 5 1% 5 1%

RPD 234 169 72% 60 26% 52 22%

NST 102 69 68% 21 21% 17 17%

QTF 80 66 82% 31 39% 29 36%

V_VM_VF 53 29 55% 28 53% 28 53%

PSP 48 31 65% 13 27% 12 25%

PNQ 36 32 89% 10 28% 10 28%

NUM 26 22 85% 8 31% 7 27%

CCP 19 8 42% 8 42% 5 26%

CL 18 16 89% 16 89% 15 83%

CC_CCS 14 9 64% 3 21% 3 21%

ADJ 5 3 60% 3 60% 3 60%

INTF 3 2 67% 1 33% 1 33%

UNK 3 3 100% 0 0% 0 0%

V_VM_VNF 3 0 0% 0 0% 0 0%

DEM 1 1 100% 1 100% 1 100%

P.V. Ajusha & A.P. Ajees / IJEEE, 11(12), 375-385, 2024

380

Table 4. Error rate and its distribution over CPOSTAGs in UU parser

Category Words Head Err % Head Err Dep Err % Dep Err Both Wrong % Both Wrong

Total 13680 3037 22% 6478 47% 2446 18%

N 6232 1046 17% 3412 55% 797 13%

V 4599 1172 25% 1280 28% 976 21%

PN 949 162 17% 512 54% 123 13%

CC 450 182 40% 263 58% 138 31%

AVY 423 204 48% 193 46% 161 38%

ADV 381 86 23% 376 99% 86 23%

RPD 234 65 28% 174 74% 57 24%

NST 102 33 32% 81 79% 29 28%

QTF 80 14 18% 49 61% 12 15%

V_VM_VF 53 24 45% 25 47% 24 45%

PSP 48 17 35% 35 73% 16 33%

PNQ 36 4 11% 26 72% 4 11%

NUM 26 4 15% 18 69% 3 12%

CCP 19 11 58% 11 58% 8 42%

CL 18 2 11% 2 11% 1 6%

CC_CCS 14 5 36% 11 79% 5 36%

ADJ 5 2 40% 2 40% 2 40%

INTF 3 1 33% 2 67% 1 33%

UNK 3 0 0% 3 100% 0 0%

V_VM_VNF 3 3 100% 3 100% 3 100%

DEM 1 0 0% 0 0% 0 0%

V_VM_VINF 1 0 0% 0 0% 0 0%

However, categories like adverbs and conjunctions had

significantly lower performance in dependency accuracy,

indicating areas needing improvement. While some

categories, such as unknown words and demonstratives,

showed perfect accuracy in the few instances present, these

results are not broadly indicative due to the small sample sizes.

The error analysis for parsing is tabulated in Table 4 across

various word categories, highlighting distinct challenges and

variations in performance.Of 13,680 words, 22% had head

errors, 47% had dependency errors, and 18% had both errors,

indicating areas where the parsing system struggles. Nouns

and proper nouns displayed relatively low head error rates of

17% but faced higher dependency error rates at 55% and 54%,

respectively. Verbs had a higher head error rate of 25% and

moderate dependency errors at 28%. Conjunctions and

adverbs faced significant difficulties, with conjunctions

showing 40% head errors and 58% dependency errors, while

adverbs had 48% head errors and 46% dependency errors.

Notably, categories like adverbs and particles exhibited

nearly complete dependency errors, with 99% and 73%,

respectively, underscoring the parsing system's challenges

with these words. Smaller categories, such as unknown words

and demonstratives, had perfect head accuracy but high

dependency error rates, though these results are based on very

few instances and may not be statistically significant. The

performance metrics for the parsing system are tabulated in

Table 5 and, based on direction-specific dependencies, reveal

varying levels of accuracy and precision. Figure 3 illustrates

the precision and recall metrics for binned HEAD directions,

highlighting the parser's accuracy in predicting syntactic

dependencies based on the direction of the HEAD to its

dependents. For dependencies directed "to_root," the system

correctly identified 1,148 out of 1,872 instances, achieving a

recall of 61.32% and a precision of 61.65%.

This indicates a moderate ability to identify root

dependencies correctly. For dependencies going "left," the

system showed a high recall of 90.76% by correctly

identifying 953 out of 1,050 instances, but with a precision of

43.50%, indicating a significant number of false positives.

Conversely, for "right" dependencies, the system performed

very well, with a recall of 88.42% and a precision of 98.81%,

correctly identifying 9,512 out of 10,758 instances and

showing very few false positives. No "self" dependencies

made recall and precision metrics not applicable (NaN).

These results suggest that while the system identifies

rightward dependencies with high precision, it struggles with

leftward dependencies, as evidenced by the lower precision in

that category. Figure 4 displays the precision and recall

metrics for binned HEAD distances, demonstrating the

parser's performance in predicting dependencies based on the

varying distances between the HEAD and its dependents.

When considering dependencies at a distance of 1, the system

excelled, achieving a high recall of 92.24% and precision of

93.14%, correctly identifying 6,691 out of 7,254 instances, as

shown in Table 6.

P.V. Ajusha & A.P. Ajees / IJEEE, 11(12), 375-385, 2024

381

Fig. 3 Precision and recall of binned HEAD direction

Table 5. Precision and recall of binned HEAD direction

Direction Gold Correct System Recall (%) Precision (%)

to_root 1872 1148 1862 61.32 61.65

left 1050 953 2191 90.76 43.50

right 10758 9512 9627 88.42 98.81

self 0 0 0 NaN NaN

Table 6. Precision and recall of binned HEAD distance

Distance Gold Correct System Recall (%) Precision (%)

to_root 1872 1148 1862 61.32 61.65

1 7254 6691 7184 92.24 93.14

2 2370 1808 2218 76.29 81.51

3-6 1872 1246 2008 66.56 62.05

7-... 312 66 408 21.15 16.18

Fig. 4 Precision and recall of binned HEAD distance

0

20

40

60

80

100

120

to_root left right self

B
in

n
ed

 H
E

A
D

 d
ir

ec
ti

o
n

Axis Title

Precision and Recall of Binned HEAD Direction

Recall (%) Precision (%)

0

10

20

30

40

50

60

70

80

90

100

to_root 1 2 3-Jun 7-...

B
in

n
ed

 H
E

A
D

 d
is

ta
n
ce

Precision and recall of binned HEAD distance

Recall (%) Precision (%)

P.V. Ajusha & A.P. Ajees / IJEEE, 11(12), 375-385, 2024

382

Performance decreased at a distance of 2, with a recall of

76.29% and precision of 81.51%, correctly identifying 1,808

out of 2,370 instances. The system's effectiveness dropped

further for dependencies at distances between 3 and 6, where

it correctly identified 1,246 out of 1,872 instances, resulting in

a recall of 66.56% and a precision of 62.05%. The system

struggled significantly with long-distance dependencies (7 or

more), achieving a recall of only 21.15% and a precision of

16.18%, with just 66 correct identifications out of 312

instances. This analysis highlights the system's strong

performance in handling short-distance dependencies but

considerable challenges with longer dependencies.

Figure 5 illustrates the error words identified by the UU

Parser, highlighting instances where the parser struggled to

predict the dependencies correctly, likely due to the complex

morphological features of the Malayalam language. Table 7

highlights the focus words where most parsing errors occur.

The word "NULL / CC" shows dependency errors, and 92 are

both errors. Lastly, the adverb "തന്നെ" shows 14 head

errors, 52 dependency errors, and 13 both errors. These focus

words contribute significantly to the overall parsing errors,

indicating areas where the parsing system might need

improvement.

Table 7. The most frequent error words in the UU parser

 any head dep both

NULL / CC 307 182 263 138

ആണ് / V 209 201 199 191

എെ് / AVY 109 96 105 92

തന്നെ / RPD 53 14 52 13

ആയി / V 45 41 36 32

Fig. 5 Error words in the UU parser

The errors identified in the dependency analysis are

primarily related to incorrect dependency relationships

between words, particularly after the focus word (the word of

interest in each error). Here is a concise explanation for each

of the top 10 errors.

 Dependency "k1" instead of "k2"

This error occurs when the system incorrectly assigns a

dependency relationship ("k1") instead of the correct

dependency ("k2") after the focus word, and it has happened

289 times. It often involves nouns (N) or verbs (V), indicating

a systematic misinterpretation of syntactic relationships.

 Dependency "k2" instead of "k1"

Conversely, this error reflects instances where the system

incorrectly assigns "k2" instead of "k1" after the focus word,

typically with nouns (N) or verbs (V). During testing, this

error occurred 276 times.

 Dependency "pof" instead of "k1"

Here, the system erroneously assigns "pof" (postposition)

instead of "k1" (first case marker) after the focus word, and

this happened 272 times.

 Dependency "pof" instead of "k2"

This error mirrors the previous one but involves "pof"

instead of "k2" after the focus word, indicating an incorrect

assignment of postpositional relationships.

 Head = 0 instead of after the focus word

This error occurs when the system incorrectly places the

head dependency as zero (root) instead of correctly identifying

0

50

100

150

200

250

300

350

NULL / CC ആണ് / V എന്ന് / AVY തന്നന്ന / RPD ആയി / V

Error words in UU parser

any head dep both

P.V. Ajusha & A.P. Ajees / IJEEE, 11(12), 375-385, 2024

383

the relationship after the focus word, often observed with

nouns (N) or verbs (V).

 Dependency "k1" instead of "k1s"

Here, the system assigns "k1" instead of the correct "k1s"

(noun sub-case marker) after the focus word, indicating a

specific error related to noun case marking.

 Dependency "k2" instead of "pof"

This error involves the incorrect assignment of "k2"

instead of "pof" after the focus word, usually seen with nouns

(N) or verbs (V) 129 times.

 Dependency "pof" instead of "k1s"

This error indicates the incorrect assignment of "pof"

instead of "k1s" after the focus word, particularly in cases

involving noun sub-case markers, which happened 126 times.
 Dependency "k7" instead of "k7p"

This error reflects cases where the system assigns "k7"

instead of "k7p" after the focus word, suggesting a

misinterpretation of syntactic relationships, often with nouns

(N) or verbs (V).

 Dependency "k7" instead of "k4" (101 times)

Lastly, this error occurs when "k7" is incorrectly assigned

instead of "k4" after the focus word, indicating a systematic

error in identifying syntactic dependencies, particularly with

nouns (N). Such errors were reported in 101 times. These

errors highlight common challenges in accurately parsing

dependency relationships, especially in languages with rich

morphosyntactic features like Malayalam. Improving the

precision of dependency parsing algorithms would require

refining the rules and features to identify and classify these

relationships based on linguistic context and syntactic

structures. Figure 6 shows the parsing accuracy of the Turbo

Parser, presenting the performance metrics. Lys-

FASTPARSE, while generally stable in performance,

struggled with complex compound words and agglutinative

forms typical of Malayalam. These forms often involve the

concatenation of multiple morphemes, leading to difficulties

in correctly identifying head-dependent relationships.

Additionally, the parser faced challenges with rightward

dependencies, where the syntactic structure was not captured

as effectively as leftward or root dependencies. Errors often

involved misidentifying the syntactic head in constructions

with heavy inflectional morphology. The Neural Network-

based parser showed improvements in parsing accuracy, but it

still faced errors related to morphological ambiguities. In

particular, it struggled with parsing sentences involving

nominal compounds and verb conjugations. This parser,

which depends on feature learning, also had difficulty

correctly predicting the relationships between words in

sentences with non-canonical word orders, as is common in

Malayalam. While it performed better on simpler structures,

its accuracy dropped significantly in complex syntactic

constructions, such as postpositions or relative clauses.The

UU parser performed well in simpler syntactic structures but

encountered challenges with long-range dependencies and

sentence structures involving multiple subclauses, which are

prevalent in Malayalam. In particular, the parser often fails to

capture the relationships between the verb and its arguments

in passive voice constructions, a common syntactic feature in

Malayalam. Errors in handling subject-object agreement were

also frequent in sentences with complex subject-predicate

relations. The Turbo Parser demonstrated the best overall

performance, but it still encountered challenges with parsing

intricate syntactic constructions typical of Malayalam, such as

complex relative clauses, multi-word compounds, and the

flexibility of word order. Additionally, it occasionally

misidentified the syntactic head in long-distance

dependencies, especially when dealing with nested clauses or

when multiple compound words were involved. Moreover, the

parser showed difficulty in accurately labeling the

dependencies in sentences with elliptical constructions, which

are frequent in conversational Malayalam.

Fig. 6 Parsing accuracy of turbo parser

0

10

20

30

40

50

60

70

80

90

100

LAS UAS LAS

Parsing Accuracy Turbo parser

P.V. Ajusha & A.P. Ajees / IJEEE, 11(12), 375-385, 2024

384

Table 8. Parsing results of Turbo parser

Performance parameters Baseline Optimization

Labeled attachment score 66.89 % 66.88 %

Unlabeled attachment score 87.12 % 87.83 %

Label accuracy score 70.66 % 70.58 %

Table 9. Comparative performance of the parsers

Parser Comparison
UAS p-

Value

LAS P-

Value

Statistical

Significance
Conclusion

Lys-FASTPARSE vs.

Neural Network

> 0.05

> 0.05

Not significant

No significant difference in performance.

Lys-FASTPARSE vs. UU

Parser

< 0.05

< 0.05

Significant UU Parser outperforms Lys-FASTPARSE.

Lys-FASTPARSE vs.

Turbo Parser

< 0.01
< 0.01

Significant

Turbo Parser significantly outperforms Lys-

FASTPARSE.

Neural Network vs. Turbo

Parser

< 0.01

< 0.01

Significant
Turbo Parser significantly outperforms Neural

Network-based parser.

UU Parser vs. Turbo Parser

> 0.05

> 0.05

Not significant

No significant difference in performance.

Table 8 presents the performance metrics of a dependency

parsing model, comparing the baseline configuration with an

optimized configuration. LAS, which measures the accuracy

of both the head and the dependency label, shows a slight

decrease from 66.89% in the baseline to 66.88% in the

optimized version. The UAS, which measures only the

accuracy of the head, improved from 87.12% to 87.83% after

optimization. Finally, the LAS, indicating the correctness of

the dependency labels alone, shows a minor decrease from

70.66% to 70.58%. These results suggest that while the

optimization improved the accuracy of the head attachments,

it had a negligible impact on the labeled attachment accuracy

and a slight negative impact on the label accuracy.

5. Conclusion
This study provides an in-depth exploration of

dependency parsing methodologies applied to the Malayalam

language, with a focus on evaluating the performance of

various parsers, including Lys-FASTPARSE, a Neural

Network-based parser, UU parser and the Turbo Parser. The

findings underscore the importance of morphological analysis

in enhancing the accuracy of dependency parsing, particularly

for Malayalam, which is characterized by rich morphological

and syntactic complexity. The analysis reveals that while the

Lys-FASTPARSE maintained stable performance metrics

across various optimization attempts, the Neural Network

parser demonstrated a modest yet significant improvement in

capturing sentence dependencies, as evidenced by slight gains

in UAS and LAS scores. The Turbo Parser emerged as the

most robust among the evaluated parsers, exhibiting high UAS

and LAS scores and demonstrating a balanced approach

between accuracy and computational efficiency. The detailed

examination of precision and recall in handling binned HEAD

directions, particularly in right-direction dependencies,

highlights the parser's strength in navigating intricate syntactic

structures, though challenges remain in accurately parsing

left-direction and root dependencies. These findings highlight

the necessity of customized parsing techniques for languages

with intricate morphologies like Malayalam and emphasize

the potential of combining rule-based and statistical

approaches to achieve higher parsing accuracy. This study

advances the understanding of dependency parsing for

underrepresented languages and provides practical insights

that can be applied to improve natural language processing

systems, making them more adaptable and effective in

processing diverse linguistic inputs.

Acknowledgments
I want to express my sincere gratitude to all those who

contributed to completing this research paper. I extend my

heartfelt thanks to my supervisor, family, colleagues and

fellow researchers for their encouragement and understanding

during the demanding phases of this work.

References
[1] Sandra Kübler, Ryan McDonald, and Joakim Nivre, Dependency Parsing, Synthesis Lectures on Human Language Technologies, Springer,

pp. 11-20, 2009. [CrossRef] [Google Scholar] [Publisher Link]

[2] Carlos Gómez-Rodríguez, John Carroll, and David Weir, “Dependency Parsing Schemata and Mildly Non-Projective Dependency

Parsing,” Computational Linguistics, vol. 37, no. 3, pp. 541-586, 2011. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1007/978-3-031-02131-2_2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dependency+parsing.+In+Dependency+parsing+&btnG=&oq=Dependency+Parsing
https://link.springer.com/chapter/10.1007/978-3-031-02131-2_2
https://doi.org/10.1162/COLI_a_00060
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dependency+parsing+schemata+and+mildly+non-projective+dependency+parsing.&btnG=
https://direct.mit.edu/coli/article/37/3/541/2110/Dependency-Parsing-Schemata-and-Mildly-Non

P.V. Ajusha & A.P. Ajees / IJEEE, 11(12), 375-385, 2024

385

[3] David Vilares, and Carlos Gómez-Rodríguez, “A Non-Projective Greedy Dependency Parser with Bidirectional Lstm,” arXiv, 2017.

[CrossRef] [Google Scholar] [Publisher Link]

[4] Daniel Hershcovich, Universal Semantic Parsing with Neural Networks, Ph.D. Thesis, Hebrew University, pp. 1-288, 2019. [Google

Scholar] [Publisher Link]

[5] Dat Quoc Nguyen, and Karin Verspoor, “From POS Tagging to Dependency Parsing for Biomedical Event Extraction,” BMC

Bioinformatics, vol. 20, pp. 1-13, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[6] B. Premjith et al., “Embedding Linguistic Features in Word Embedding for Preposition Sense Disambiguation in English—Malayalam

Machine Translation Context,” Recent Advances in Computational Intelligence,” Springer, pp. 341-370, 2019.[CrossRef] [Google Scholar]

[Publisher Link]

[7] R.M. Nayana, R.R. Rajeev, and C. Naseer, “Dependency Parser for Malayalam: A Machine Learning Approach,” 2018 International CET

Conference on Control, Communication, and Computing (IC4), Thiruvananthapuram, India, pp. 394-398, 2018. [CrossRef] [Google

Scholar] [Publisher Link]

[8] T. Aparnna, P.G. Raji, and K.P. Soman, “Integer Linear Programming Approach to Dependency Parsing for Malayalam,” 2010 International

Conference on Recent Trends in Information, Telecommunication and Computing, Kerala, India, pp. 324-326, 2010. [CrossRef] [Google

Scholar] [Publisher Link]

[9] K. Krishnakumar, S. Rajendran, and N. Rajendran, “Subject and Object Identification in Malayalam Using Machine Learning

Approach,” IJDL International Journal of Dravidian Linguistics, vol. 42, no. 1, pp. 36-66, 2013. [Google Scholar] [Publisher Link]

[10] Sally Mohamed Ali El-Morsy, Mahmoud Hussein, and Hamdy M. Mousa, “Arabic Open Information Extraction System Using Dependency

Parsing,” International Journal of Electrical and Computer Engineering (IJECE), vol. 12, no. 1, pp. 541-551, 2022. [CrossRef] [Google

Scholar] [Publisher Link]

[11] Sharefah Al-Ghamdi, Hend Al-Khalifa, and Abdulmalik Al-Salman, “A Dependency Treebank for Classical Arabic Poetry,” Proceedings

of the Sixth International Conference on Dependency Linguistics, (Depling, SyntaxFest 2021), pp. 1-9, 2021. [Google Scholar] [Publisher

Link]

[12] HDana Halabi, Arafat Awajan, and Ebaa Fayyoumi, “Improving Arabic Dependency Parsers by using Dependency Relations,” 2020 21st

International Arab Conference on Information Technology (ACIT), Giza, Egypt, pp. 1-7, 2020. [CrossRef] [Google Scholar] [Publisher

Link]

[13] Ran Zmigrod, Tim Vieira, and, Ryan Cotterell, “Please Mind the Root: Decoding Arborescences for Dependency Parsing,” arXiv, 2020.

[CrossRef] [Google Scholar] [Publisher Link]

[14] Janos Zsibrita, Veronika Vincze, and Richard Farkas, “Magyarlanc: A Tool for Morphological and Dependency Parsing of Hungarian,”

Proceedings of Recent Advances in Natural Language Processing, Hissar, Bulgaria, pp. 763-771, 2013. [Google Scholar] [Publisher Link]

[15] Diego Alves, Boke Bekavac, and Marko Tadić, “Typological Approach to Improve Dependency Parsing for Croatian Language,”

Proceedings of the 20th International Workshop on Treebanks and Linguistic Theories, pp. 1-11, 2021. [Google Scholar] [Publisher Link]

[16] Malayalam Treebank Data_IIITH, TDIL, GoTranslate Web Localizer, 2018. [Online]. Available: https://tdil-

dc.in/index.php?option=com_download&task=showresourceDetails&toolid=1980&lang=en

https://doi.org/10.48550/arXiv.1707.03228
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+non-projective+greedy+dependency+parser+with+bidirectional+LSTMs&btnG=
https://arxiv.org/abs/1707.03228
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Universal+Semantic+Parsing+with+Neural+Networks.+&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Universal+Semantic+Parsing+with+Neural+Networks.+&btnG=
https://danielhers.github.io/thesis.pdf
https://doi.org/10.1186/s12859-019-2604-0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=From+POS+tagging+to+dependency+parsing+for+biomedical+event+extraction&btnG=
https://link.springer.com/article/10.1186/s12859-019-2604-0
https://doi.org/10.1007/978-3-030-12500-4_20
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Embedding+linguistic+features+in+word+embedding+for+preposition+sense+disambiguation+in+English%E2%80%94Malayalam+machine+translation+context&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-12500-4_20
https://doi.org/10.1109/CETIC4.2018.8531020
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dependency+parser+for+malayalam%3A+A+machine+learning+approach&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dependency+parser+for+malayalam%3A+A+machine+learning+approach&btnG=
https://ieeexplore.ieee.org/abstract/document/8531020
https://doi.org/10.1109/ITC.2010.97
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Integer+linear+programming+approach+to+dependency+parsing+for+Malayalam&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Integer+linear+programming+approach+to+dependency+parsing+for+Malayalam&btnG=
https://ieeexplore.ieee.org/abstract/document/5460570
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Integer+linear+programming+approach+to+dependency+parsing+for+Malayalam&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=SUBJECT+AND+OBJECT+IDENTIFICATION+IN+MALAYALAM+USING+MACHINE+LEARNING+APPROACH.+IJDL&btnG=
https://doi.org/10.11591/ijece.v12i1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Arabic+open+information+extraction+system+using+dependency+parsing.&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Arabic+open+information+extraction+system+using+dependency+parsing.&btnG=
https://ijece.iaescore.com/index.php/IJECE/article/view/24343/15359
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+dependency+treebank+for+classical+Arabic+poetry&btnG=
https://aclanthology.org/2021.depling-1.1.pdf
https://aclanthology.org/2021.depling-1.1.pdf
https://doi.org/10.1109/ACIT50332.2020.9300100
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improving+Arabic+dependency+parsers+by+using+dependency+relations.+&btnG=
https://ieeexplore.ieee.org/abstract/document/9300100
https://ieeexplore.ieee.org/abstract/document/9300100
https://doi.org/10.48550/arXiv.2010.02550
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Please+mind+the+root%3A+Decoding+arborescences+for+dependency+parsing&btnG=
https://arxiv.org/abs/2010.02550
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+tool+for+morphological+and+dependency+parsing+of+hungarian&btnG=
https://aclanthology.org/R13-1099.pdf
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Typological+Approach+to+Improve+Dependency+Parsing+for+Croatian+Language&btnG=#d=gs_cit&t=1735390364622&u=%2Fscholar%3Fq%3Dinfo%3Agfp4rRLZ9NoJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Den
https://aclanthology.org/2021.tlt-1.1.pdf

