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Abstract – Natural language processing is the area of study that focuses on how computers and human languages interact. 

Machine translation, sentiment analysis, semantic analysis, and text analysis are a few of them. The key natural language 

processing component is morphological analysis, which breaks words into their corresponding morphemes to determine their 

structure and meaning. Dependency parsing algorithms use morphological information to determine the syntactic structure of a 

sentence. This study evaluates the performance of various parsers, including Turbo parser, Lys-FASTPARSE, UU parser, and 

neural network based parser, to analyse dependency parsing methodologies used in the Malayalam language. The study 

evaluates the performance of these parsers in handling the difficulties and effectiveness of extensive morphological and syntactic 

features of Malayalam. Among these parsers, Lys-FASTPARSE performs better in LAS F1 score, MLAS score, and BLEX score, 

maintaining values of 56.60 and 48.58 before and after optimization. The neural network parser shows minor improvements in 

unlabelled attachment scores from 0.72 to 0.73 and labelled attachment scores from 0.46 to 0.47. With an LAS of 66.89% and 

UAS of 87.12%, the Turbo parser shows better results for baseline performance. The precision of 98.81% and recall of 88.42% 

in binned HEAD directions of the UU parser shows its performance in managing right direction dependencies. While lower, the 

parser's performance in managing left-direction and root dependencies still reflects its ability to navigate complex syntactic 

structures effectively. The results underscore the significance of tailored parsing techniques for morphologically rich languages 

like Malayalam and provide insights into optimizing parser performance for improved syntactic analysis. 

Keywords - Neural network-based parser, Dependency parsing, Lys-FAST parser, UU parser, Transition based parsing.

1. Introduction 
Malayalam belongs to the South Dravidian language 

family and is an agglutinative language with rich inflectional 

morphology. Dependency parsing is a fundamental task in 

Natural Language Processing (NLP) that involves analyzing 

the grammatical structure of a sentence by identifying the 

relationships between words. In dependency parsing, the 

syntactic structure of a sentence is represented as a tree where 

each word is connected to a "head" word, forming a directed 

relationship known as a dependency [1]. The goal is to 

determine which words depend on others and the nature of 

these dependencies, such as subject-verb or object-verb 

relationships. The resulting dependency tree provides a 

compact and informative representation of the sentence's 

syntactic structure. Unlike phrase structure parsing, which 

represents sentence structure using nested phrases, 

dependency parsing focuses on binary relations between 

words. This makes it particularly useful for free or flexible 

word order languages, where dependencies between words are 

more informative than their linear sequence [2]. Dependency 

parse trees can be divided into projective and non-projective 

trees [3]. Figure 1 illustrates the structure of a sentence as 

represented by a dependency graph in projective dependency 

parsing. In the projective trees the edges do not cross each 

other and a word and its dependents can form a substring of 

the sentence, but in non-projective trees, there are crossing 

edges. Non-projective transition-based parsing has been 

actively explored in the last decade. Figure 2 depicts a 

dependency graph in non-projective dependency parsing, 

where syntactic dependencies between words can cross over 

each other, reflecting more complex sentence structures. 

 The success of neural networks and  word embeddings 

for projective dependency parsing also encouraged research 

on neural nonprojective models 4]. In a projective dependency 

tree, every subtree's yield is a contiguous sentence substring. 

Identifying tagging issues and problems in annotation are 

closely connected to dependency parsing in several ways. 

These are crucial for improving the accuracy and efficiency of 

parsing systems. Dependency parsing relies heavily on 

accurate Part-of-Speech (POS) tags to determine the syntactic 

structure of sentences [5].

http://www.internationaljournalssrg.org/
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Fig. 1 Dependency graph in projective dependency parsing 

Fig. 2 Dependency graph in non-projective dependency parsing

Malayalam, a Dravidian language spoken predominantly 

in the Indian state of Kerala, presents unique challenges for 

NLP due to its rich morphology and flexible word order. 

Dependency parsing is crucial for many NLP applications, 

including sentimental analysis, machine translation, and 

information extraction. The relationship between words in 

Malayalam does not reflect the position in a sentence [6]. 

Dependency parsing is particularly important, enabling an 

accurate representation of the sentence structure by focusing 

on the functional relationships between words rather than their 

position. Malayalam's script and morphological richness 

necessitate robust parsing techniques for complex sentence 

constructions, such as compound verbs, inflected nouns, and 

agglutinative formations. Dependency parsing helps 

disambiguate these structures, clearly understanding who is 

doing what and to whom in a sentence. This understanding is 

vital for advancing NLP applications in Malayalam, enabling 

more effective processing, analysis, and generation of text in 

the language. 

 

1.1. Historical Evolution of Parsing Techniques 

Dependency parsing techniques have evolved 

significantly, with tailored approaches emerging for 

agglutinative languages due to their unique morphological 

characteristics. Traditional rule-based parsers were among the 

earliest methods, relying on handcrafted rules to parse 

sentences, but they struggled with scalability and linguistic 

diversity. Statistical parsers, such as the Maximum Entropy 

and Conditional Random Field-based models, improved 

generalization by learning from annotated corpora, yet they 

often fell short in handling complex agglutinations. Neural 

network-based approaches, particularly transition-based and 

graph-based dependency parsers, have shown promise by 

leveraging deep learning to capture intricate syntactic 

dependencies. For agglutinative languages like Malayalam, 

specific adaptations have been made, such as incorporating 

morphological features, suffix splitting, and subword 

embeddings to manage the rich morphology effectively. 

Hybrid methods that combine rule-based techniques with 

statistical or neural models have also been developed to 

balance linguistic insights with computational efficiency. 

Recent advancements include multilingual parsers, such as 

UDify and multilingual BERT-based parsers, which benefit 

from cross-linguistic data to improve performance on 

underrepresented languages. These advancements underline 

the importance of integrating linguistic features and 

leveraging modern machine learning techniques to tackle the 

challenges posed by agglutinative languages. 

2. Literature Review 
In order to address free word order and rich morphology, 

Nayana et al. [7] introduced a dependency parser approach for 

Malayalam. The authors used a malt parser and LIBSVM 

algorithm to incorporate phrase tags and parts of speech. NLP 

for Malayalam marks advancement using this system, but the 

sentence structure is more complicated and needs further 
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improvement.Using Paninian grammar, Aparna et al. [8] 

developed a Malayalam dependency parser that constructs 

integer programming constraints from grammatical 

constraints. This method introduced a linguistic parsing for 

Malayalam’s flexible word order. Krishnakumar et al. 

introduced a method for identifying objects and subjects in 

Malayalam. The authors compared MALT and MST parsers, 

emphasizing the importance of extensive training data for 

precise parsing. While the results are promising, the study 

would benefit from a deeper analysis of the parsers' 

performance on complex sentence structures. El-Morsy [10] 

developed an Arabic Open Information Extraction (AOIE) 

system that uses dependency parsing to extract relation tuples 

from Arabic text, tackling the language’s morphological 

complexity. The system is domain-independent and scalable 

but struggles with certain clause types, indicating room for 

improvement.  

Al-Ghamdi et al. [11] created the first syntactically 

annotated corpus for Classical Arabic poetry, facilitating 

linguistic analysis of this complex form, and initial 

dependency parsing experiments showed the corpus's value. 

Halabi et al. [12] examined the impact of varying dependency 

relations on Arabic parsing performance, advocating for 

language-specific treebanks like I3rab. The study emphasizes 

empirical approaches for developing linguistic resources, 

though more detailed improvements from optimized 

dependency relations are needed. Zmigrod et al. [13] 

highlighted the distinction between dependency and spanning 

trees in dependency parsing, introducing an efficient 

algorithm to enforce dependency tree constraints. While the 

study addresses a crucial aspect of parsing, further research is 

needed to explore its practical implications. Zsibrita et al. [14] 

presented "magyarlanc," a toolkit for processing Hungarian 

texts, including dependency parsing. The tool is valuable for 

Hungarian and other morphologically rich languages, though 

language-specific features may limit its application. Alves et 

al. [15] investigated the use of typological approaches to 

improve Croatian dependency parsing with the Udify tool. 

The study found that combining Croatian with certain 

languages significantly improves parsing, though the 

limitations of typological approaches and linguistic resources 

pose challenges. 

3. Method 
The utilized dataset for this study comprises 9031 

sentences from Malayalam Treebank Data_IIITH [16]. At the 

dependency parsing level to manually annotate data, this 

treebank is designed as an electronic repository to capture 

textual relationships. Both parts of speech and chunk level 

data are encoded within the treebank. Within the selected 

treebank, the Paninian karaka theoretical model is 

incorporated. Initially, SSF denotes the treebank, then 

undergoes CoNLL conversion. In order to satisfy the MST 

need, the CoNLL is transformed into MST format. This 

conversion makes incorporating the MST parser easier for 

another set of analyses. In conducting experiments with MST 

Parser version 0.2, the dataset was divided into 80% for 

training and 20% for testing. The data was formatted 

specifically for the parser, with each sentence laid out across 

three or four lines in a space-separated format. Extensive 

experimentation was performed to optimize the graph-based 

parser, which included fine-tuning various settings. The MST 

Parser supports two training modes, projective and non-

projective and allows adjustments for the k-best parse size and 

feature scope. 

3.1. Dataset Construction and Pre-Processing 

In this study, the datasets were carefully chosen for 

training and testing to ensure thorough coverage of the 

linguistic diversity of the Malayalam language. According to 

Universal dependency principles, the Malayalam treebank 

was the primary dataset. The dataset consists of 5000 tokens 

spread across 5000 sentences from literary works and news 

articles. To consider the rich agglutinative nature of 

Malayalam, the dataset includes compound words, syntactic 

notations, and inflectional forms. Sentences were tokenized 

and annotated with head dependent relationships, parts of 

speech tags and morphological features. Cleaning the noisy 

text and splitting the complex words into sub-words are the 

pre-processing steps to meet the parser's needs better. 

3.2. LysFast Parser  

In a transition-based parsing framework, the initial 

configuration consists of an initial stack, a buffer holding 

remaining input words, and a set of dependency arcs that are 

initially empty. The parser transitions from one configuration 

to another based on a defined set of rules, including the Shift 

transition, which moves the next word in the buffer to the top 

of the stack or Reduce, which adds a dependency arc between 

two words atop the stack. LysFast is based on transition-based 

parsing, where any sentence's dependency structure is 

gradually built into a series of state transitions. It is very 

adaptive to languages with elaborate morphology and flexible 

syntax, such as Malayalam. Extract a rich set of features from 

the current state of the stack, buffer, and partially constructed 

dependency tree that ensure accurate predictions. Lexical 

information such as word forms and lemmas are used along 

with part-of-speech tags, plus morphological features such as 

case markers and verb inflections unique to the Malayalam 

language. These features will enable a better decision-making 

process for parsing Malayalam, mainly because its syntactic 

variations are considerable. 

 

3.3. Neural Network Parser 

We have used encoding sentences into dense vector 

representations and embedding them in predicting 

dependency relationships between words. This approach 

allowed our parser to learn and generalize from large amounts 

of annotated data, effectively capturing local and global 

syntactic dependencies. The parser mapped every word in the 

sentence into a high-dimensional vector and captured 
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semantic and syntactic information based on the word's 

context within the large corpus. We tried some pre-trained 

embeddings, such as Word2Vec and FastText, but most of the 

learning and training happened during the parsing process in 

our implementation. These word embeddings helped us give 

continuous, dense representations of words and helped our 

model deal with variability and ambiguity inherent in natural 

language.We employed the multi-layer neural network 

architecture to process the sequence of word embeddings and 

to predict dependency relations. This allowed us to capture 

long-range dependencies and more complex sentence 

structures. We also looked into using Transformer-based 

architectures where self-attention mechanisms are applied to 

simultaneously capture the relationships between all pairs of 

words in a sentence. Our parser predicted the dependency 

relations between words after encoding the sentence in the 

neural network. We used a feedforward neural network, which 

is a multi-layer perceptron. It inputs the hidden states of word 

pairs and produces scores for potential dependency arcs. Our 

model was trained to predict each word's head and the type of 

dependency relation, such as subject or object. Our predictions 

were graph-based, where the parser scores all possible arcs 

and selects the highest-scoring arcs to form the dependency 

tree. 

3.4. UU Parser 

UU Parser was a rule-based approach along with 

statistical techniques, enabling the parser to analyze and 

predict dependency relations within sentences efficiently. In 

our study, the UU Parser highly depended on a rule-based 

system to perform morphological analysis, which is highly 

important for languages like Malayalam, where inflectional 

morphology is rich. We defined an entire system of linguistic 

rules for adequate identification and categorization of the 

morphological properties of words such as tense, number, and 

case. This is significant to ensure that the parser correctly 

identifies words' syntactic roles in a sentence. Besides rule-

based morphological analysis, statistical models were 

employed to predict word dependency relations.  

The UU Parser had a probabilistic model that 

approximated the probability of dependency arcs based on a 

dependency-annotated tree bank. As such, it combined output 

from the rule-based morphological analyzer and the 

predictions of the statistical model for better syntactic 

structure determinations of sentences. It gave us the best of 

two worlds: a rule-based system's accuracy and statistical 

methods' flexibility.  

To improve the performance of the UU Parser, lexical 

resources in the form of an exhaustive Malayalam dictionary 

and part-of-speech tagger were incorporated. The extra 

context that such resources brought was helpful in 

disambiguating words that might have multiple meanings. The 

lexical resources were extremely useful when dealing with 

out-of-vocabulary words and infrequent morphological forms. 

3.5. Turbo Parser 

Turbo Parser uses graph-based modeling of dependency 

parsing. It represents sentences as graphs where nodes are 

words and edges are dependencies. This allows the parser to 

handle complicated syntactic relationships by reducing them 

to a maximum spanning tree problem. This paper used the 

approach to efficiently compute the most likely dependency 

structure of Malayalam sentences, known for free word order 

and complex syntactic features.  

A maximum spanning tree algorithm at the core identifies 

the optimal dependency structure for any input sentence. The 

algorithm applies the principle of making the sum of weights 

as large as possible for a dependency tree based on scores 

assigned to potential dependency arcs. We used this algorithm 

so that the parser could also capture the syntactic 

dependencies in Malayalam, even when the dependencies 

were ambiguous or overlapping. The Turbo Parser has feature-

based learning in its parsing mechanism. It uses a rich set of 

features, such as word embeddings, part-of-speech tags, and 

syntactic cues, for predicting dependency relations between 

words. We extracted and utilized these features to train the 

parser on a Malayalam-specific dependency-annotated 

corpus. This feature-based approach helps the parser 

distinguish between more subtle syntactic patterns and 

relationships while improving overall accuracy. 

4. Results and Discussion 
For each configuration, models were developed that 

significantly improved the qualitative metric of LAS, UAS, 

and Labeled Accuracy (LA). The percentage of correct head-

dependent relation identification that is irrelevant to labels is 

known as UAS. This gives a metric of how effective syntactic 

structure is even in a complex word-building language such as 

agglutinative. A better UAS score indicates that the parser is 

doing a good job of capturing basic syntactic dependencies, 

which is quite important in languages with rich morphology. 

LAS extends the UAS score by adding the correctness of the 

dependency labels beside the structure. For Malayalam, where 

words are usually associated with many morphological 

variations and syntactic nuances, LAS must see how well the 

parser could assign the right syntactic roles and semantic 

labels to dependencies other than structural accuracy.  

BLEX emphasizes lexicalized dependencies and checks 

how well a parser attaches the specific words correctly to other 

words in a sentence. The parser is not language dependent, so 

no special adjustments were required in language, and the best 

configuration for Malayalam was identified through these 

experiments. Efficiency is an important aspect of the design of 

the LysFast Parser, especially when handling large-scale text 

data. The parser is optimized to minimize overheads on the 

computation process, thereby enabling it to process sentences 

rapidly without losing accuracy. Table 1 illustrates the Lys-

FASTPARSE Dependency Parser results for cross-validation 

compared with the baseline and optimisation methods. 
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Table 1. Parsing accuracy for Lys-FASTPARSE 

Performance Parameters Baseline Optimization 

LAS F1 Score 56.60 56.60 

MLAS Score 48.58 48.58 

BLEX Score 48.58 48.58 

     Table 2. Parsing accuracy for neural parser 

Parameters Order 1 Order 2 

LAS 0.46 0.47 

UAS 0.72 0.73 

 

 The metrics used to evaluate the performance include the 

LAS F1, MLAS Score, and BLEX scores. These scores 

indicate how well the parser identifies syntactic dependencies 

and labels morphological features. The LAS F1 Score, which 

stands for Labeled Attachment Score, measures the accuracy 

of the correct head and the dependency label assigned to each 

word in the sentence. In this case, the LAS F1 Score is 56.60 

for both the baseline and optimization approaches, indicating 

that the optimization process did not improve the baseline 

performance in terms of syntactic dependency parsing 

accuracy. The MLAS Score, or Morphology-Aware Labeled 

Attachment Score, considers the accuracy of the syntactic 

dependencies while also considering the correctness of 

morphological features such as part-of-speech tags. Here, the 

MLAS Score remains constant at 48.58 for both the baseline 

and optimization methods. This suggests that the optimization 

did not enhance the parser's ability to identify and utilize 

morphological features in the parsing process correctly. 

Finally, the BLEX Score, which stands for Labeled 

Attachment Score, evaluates the performance by considering 

both the syntactic dependencies and the correctness of 

lemmatization (i.e., the base forms of words). The BLEX 

Score also remains unchanged at 48.58 for both approaches. 

This indicates that the optimization efforts did not improve the 

parser's performance in terms of accurately identifying and 

using lemmas along with syntactic dependencies. Table 2 

compares the performance of two parsing models or 

configurations (Order 1 and Order 2) based on two key 

metrics: LAS and UAS. For Order 1, the LAS is 0.46, and the 

UAS is 0.72; for Order 2, the LAS is slightly higher at 0.47 

and the UAS at 0.73. This indicates that Order 2 performs 

marginally better than Order 1 in correctly assigning syntactic 

heads and labels (as shown by LAS) and identifying syntactic 

heads regardless of the labels (as shown by UAS). The small 

increments suggest an improvement in parsing accuracy with 

the second configuration. The analysis of the parsing 

performance of the UU parser shown in Table 3 across 

different categories of words reveals variations in accuracy for 

several key metrics: the number of correct heads, correct 

dependencies, and instances where both the head and 

dependency were correctly identified. Out of 13,680 words, 

the parsing system achieved 78% accuracy in identifying the 

correct heads, 53% accuracy for correct dependencies, and 

48% for both being correct simultaneously. Nouns and proper 

nouns performed well in head accuracy, achieving 83%, but 

showed lower accuracy in dependency assignment with 45% 

and 46%, respectively. Verbs demonstrated a balanced 

performance, with 75% accuracy for heads and 72% for 

dependencies, resulting in 68% accuracy for both.

Table 3. Overall accuracy over CPOSTAGs in UU parser 

Category Words Right Head % Head Right Dep % Dep Both Right % Both 

Total 13680 10643 78% 7202 53% 6611 48% 

N 6232 5186 83% 2820 45% 2571 41% 

V 4599 3427 75% 3319 72% 3123 68% 

PN 949 787 83% 437 46% 398 42% 

CC 450 268 60% 187 42% 143 32% 

AVY 423 219 52% 230 54% 187 44% 

ADV 381 295 77% 5 1% 5 1% 

RPD 234 169 72% 60 26% 52 22% 

NST 102 69 68% 21 21% 17 17% 

QTF 80 66 82% 31 39% 29 36% 

V_VM_VF 53 29 55% 28 53% 28 53% 

PSP 48 31 65% 13 27% 12 25% 

PNQ 36 32 89% 10 28% 10 28% 

NUM 26 22 85% 8 31% 7 27% 

CCP 19 8 42% 8 42% 5 26% 

CL 18 16 89% 16 89% 15 83% 

CC_CCS 14 9 64% 3 21% 3 21% 

ADJ 5 3 60% 3 60% 3 60% 

INTF 3 2 67% 1 33% 1 33% 

UNK 3 3 100% 0 0% 0 0% 

V_VM_VNF 3 0 0% 0 0% 0 0% 

DEM 1 1 100% 1 100% 1 100% 
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Table 4. Error rate and its distribution over CPOSTAGs in UU parser 

Category Words Head Err % Head Err Dep Err % Dep Err Both Wrong % Both Wrong 

Total 13680 3037 22% 6478 47% 2446 18% 

N 6232 1046 17% 3412 55% 797 13% 

V 4599 1172 25% 1280 28% 976 21% 

PN 949 162 17% 512 54% 123 13% 

CC 450 182 40% 263 58% 138 31% 

AVY 423 204 48% 193 46% 161 38% 

ADV 381 86 23% 376 99% 86 23% 

RPD 234 65 28% 174 74% 57 24% 

NST 102 33 32% 81 79% 29 28% 

QTF 80 14 18% 49 61% 12 15% 

V_VM_VF 53 24 45% 25 47% 24 45% 

PSP 48 17 35% 35 73% 16 33% 

PNQ 36 4 11% 26 72% 4 11% 

NUM 26 4 15% 18 69% 3 12% 

CCP 19 11 58% 11 58% 8 42% 

CL 18 2 11% 2 11% 1 6% 

CC_CCS 14 5 36% 11 79% 5 36% 

ADJ 5 2 40% 2 40% 2 40% 

INTF 3 1 33% 2 67% 1 33% 

UNK 3 0 0% 3 100% 0 0% 

V_VM_VNF 3 3 100% 3 100% 3 100% 

DEM 1 0 0% 0 0% 0 0% 

V_VM_VINF 1 0 0% 0 0% 0 0% 

However, categories like adverbs and conjunctions had 

significantly lower performance in dependency accuracy, 

indicating areas needing improvement. While some 

categories, such as unknown words and demonstratives, 

showed perfect accuracy in the few instances present, these 

results are not broadly indicative due to the small sample sizes. 

The error analysis for parsing is tabulated in Table 4 across 

various word categories, highlighting distinct challenges and 

variations in performance.Of 13,680 words, 22% had head 

errors, 47% had dependency errors, and 18% had both errors, 

indicating areas where the parsing system struggles. Nouns 

and proper nouns displayed relatively low head error rates of 

17% but faced higher dependency error rates at 55% and 54%, 

respectively. Verbs had a higher head error rate of 25% and 

moderate dependency errors at 28%. Conjunctions and 

adverbs faced significant difficulties, with conjunctions 

showing 40% head errors and 58% dependency errors, while 

adverbs had 48% head errors and 46% dependency errors.  

Notably, categories like adverbs and particles exhibited 

nearly complete dependency errors, with 99% and 73%, 

respectively, underscoring the parsing system's challenges 

with these words. Smaller categories, such as unknown words 

and demonstratives, had perfect head accuracy but high 

dependency error rates, though these results are based on very 

few instances and may not be statistically significant. The 

performance metrics for the parsing system are tabulated in 

Table 5 and, based on direction-specific dependencies, reveal 

varying levels of accuracy and precision. Figure 3 illustrates 

the precision and recall metrics for binned HEAD directions, 

highlighting the parser's accuracy in predicting syntactic 

dependencies based on the direction of the HEAD to its 

dependents. For dependencies directed "to_root," the system 

correctly identified 1,148 out of 1,872 instances, achieving a 

recall of 61.32% and a precision of 61.65%.  

This indicates a moderate ability to identify root 

dependencies correctly. For dependencies going "left," the 

system showed a high recall of 90.76% by correctly 

identifying 953 out of 1,050 instances, but with a precision of 

43.50%, indicating a significant number of false positives. 

Conversely, for "right" dependencies, the system performed 

very well, with a recall of 88.42% and a precision of 98.81%, 

correctly identifying 9,512 out of 10,758 instances and 

showing very few false positives. No "self" dependencies 

made recall and precision metrics not applicable (NaN).  

These results suggest that while the system identifies 

rightward dependencies with high precision, it struggles with 

leftward dependencies, as evidenced by the lower precision in 

that category. Figure 4 displays the precision and recall 

metrics for binned HEAD distances, demonstrating the 

parser's performance in predicting dependencies based on the 

varying distances between the HEAD and its dependents. 

When considering dependencies at a distance of 1, the system 

excelled, achieving a high recall of 92.24% and precision of 

93.14%, correctly identifying 6,691 out of 7,254 instances, as 

shown in Table 6.
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Fig. 3 Precision and recall of binned HEAD direction 

  
Table 5. Precision and recall of binned HEAD direction 

Direction Gold Correct System Recall (%) Precision (%) 

to_root 1872 1148 1862 61.32 61.65 

left 1050 953 2191 90.76 43.50 

right 10758 9512 9627 88.42 98.81 

self 0 0 0 NaN NaN 

Table 6. Precision and recall of binned HEAD distance 

Distance Gold Correct System Recall (%) Precision (%) 

to_root 1872 1148 1862 61.32 61.65 

1 7254 6691 7184 92.24 93.14 

2 2370 1808 2218 76.29 81.51 

3-6 1872 1246 2008 66.56 62.05 

7-... 312 66 408 21.15 16.18 

 

 
Fig. 4 Precision and recall of binned HEAD distance 

0

20

40

60

80

100

120

to_root left right self

B
in

n
ed

 H
E

A
D

 d
ir

ec
ti

o
n

Axis Title

Precision and Recall of Binned HEAD Direction

Recall (%) Precision (%)

0

10

20

30

40

50

60

70

80

90

100

to_root 1 2 3-Jun 7-...

B
in

n
ed

 H
E

A
D

 d
is

ta
n
ce

Precision and recall of binned HEAD distance

Recall (%) Precision (%)



P.V. Ajusha & A.P. Ajees / IJEEE, 11(12), 375-385, 2024 

 

382 

Performance decreased at a distance of 2, with a recall of 

76.29% and precision of 81.51%, correctly identifying 1,808 

out of 2,370 instances. The system's effectiveness dropped 

further for dependencies at distances between 3 and 6, where 

it correctly identified 1,246 out of 1,872 instances, resulting in 

a recall of 66.56% and a precision of 62.05%. The system 

struggled significantly with long-distance dependencies (7 or 

more), achieving a recall of only 21.15% and a precision of 

16.18%, with just 66 correct identifications out of 312 

instances. This analysis highlights the system's strong 

performance in handling short-distance dependencies but 

considerable challenges with longer dependencies.  

Figure 5 illustrates the error words identified by the UU 

Parser, highlighting instances where the parser struggled to 

predict the dependencies correctly, likely due to the complex 

morphological features of the Malayalam language. Table 7 

highlights the focus words where most parsing errors occur. 

The word "NULL / CC" shows dependency errors, and 92 are 

both errors. Lastly, the adverb "തന്നെ" shows 14 head 

errors, 52 dependency errors, and 13 both errors. These focus 

words contribute significantly to the overall parsing errors, 

indicating areas where the parsing system might need 

improvement. 

 

Table 7. The most frequent error words in the UU parser 

 any head dep both 

NULL / CC 307 182 263 138 

ആണ് / V 209 201 199 191 

എെ് / AVY 109 96 105 92 

തന്നെ / RPD 53 14 52 13 

ആയി / V 45 41 36 32 

 
Fig. 5 Error words in the UU parser 

The errors identified in the dependency analysis are 

primarily related to incorrect dependency relationships 

between words, particularly after the focus word (the word of 

interest in each error). Here is a concise explanation for each 

of the top 10 errors. 

 Dependency "k1" instead of "k2" 

This error occurs when the system incorrectly assigns a 

dependency relationship ("k1") instead of the correct 

dependency ("k2") after the focus word, and it has happened 

289 times. It often involves nouns (N) or verbs (V), indicating 

a systematic misinterpretation of syntactic relationships. 

 Dependency "k2" instead of "k1" 

Conversely, this error reflects instances where the system 

incorrectly assigns "k2" instead of "k1" after the focus word, 

typically with nouns (N) or verbs (V). During testing, this 

error occurred 276 times. 

 Dependency "pof" instead of "k1" 

Here, the system erroneously assigns "pof" (postposition) 

instead of "k1" (first case marker) after the focus word, and 

this happened 272 times. 

 Dependency "pof" instead of "k2"  

This error mirrors the previous one but involves "pof" 

instead of "k2" after the focus word, indicating an incorrect 

assignment of postpositional relationships. 

 Head = 0 instead of after the focus word 

This error occurs when the system incorrectly places the 

head dependency as zero (root) instead of correctly identifying 
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the relationship after the focus word, often observed with 

nouns (N) or verbs (V). 

 Dependency "k1" instead of "k1s" 

Here, the system assigns "k1" instead of the correct "k1s" 

(noun sub-case marker) after the focus word, indicating a 

specific error related to noun case marking.  

 Dependency "k2" instead of "pof"  

This error involves the incorrect assignment of "k2" 

instead of "pof" after the focus word, usually seen with nouns 

(N) or verbs (V) 129 times. 

 Dependency "pof" instead of "k1s"  

This error indicates the incorrect assignment of "pof" 

instead of "k1s" after the focus word, particularly in cases 

involving noun sub-case markers, which happened 126 times. 
 Dependency "k7" instead of "k7p"  

This error reflects cases where the system assigns "k7" 

instead of "k7p" after the focus word, suggesting a 

misinterpretation of syntactic relationships, often with nouns 

(N) or verbs (V). 

 Dependency "k7" instead of "k4" (101 times) 

Lastly, this error occurs when "k7" is incorrectly assigned 

instead of "k4" after the focus word, indicating a systematic 

error in identifying syntactic dependencies, particularly with 

nouns (N). Such errors were reported in 101 times. These 

errors highlight common challenges in accurately parsing 

dependency relationships, especially in languages with rich 

morphosyntactic features like Malayalam. Improving the 

precision of dependency parsing algorithms would require 

refining the rules and features to identify and classify these 

relationships based on linguistic context and syntactic 

structures. Figure 6 shows the parsing accuracy of the Turbo 

Parser, presenting the performance metrics. Lys-

FASTPARSE, while generally stable in performance, 

struggled with complex compound words and agglutinative 

forms typical of Malayalam. These forms often involve the 

concatenation of multiple morphemes, leading to difficulties 

in correctly identifying head-dependent relationships. 

Additionally, the parser faced challenges with rightward 

dependencies, where the syntactic structure was not captured 

as effectively as leftward or root dependencies. Errors often 

involved misidentifying the syntactic head in constructions 

with heavy inflectional morphology. The Neural Network-

based parser showed improvements in parsing accuracy, but it 

still faced errors related to morphological ambiguities. In 

particular, it struggled with parsing sentences involving 

nominal compounds and verb conjugations. This parser, 

which depends on feature learning, also had difficulty 

correctly predicting the relationships between words in 

sentences with non-canonical word orders, as is common in 

Malayalam. While it performed better on simpler structures, 

its accuracy dropped significantly in complex syntactic 

constructions, such as postpositions or relative clauses.The 

UU parser performed well in simpler syntactic structures but 

encountered challenges with long-range dependencies and 

sentence structures involving multiple subclauses, which are 

prevalent in Malayalam. In particular, the parser often fails to 

capture the relationships between the verb and its arguments 

in passive voice constructions, a common syntactic feature in 

Malayalam. Errors in handling subject-object agreement were 

also frequent in sentences with complex subject-predicate 

relations. The Turbo Parser demonstrated the best overall 

performance, but it still encountered challenges with parsing 

intricate syntactic constructions typical of Malayalam, such as 

complex relative clauses, multi-word compounds, and the 

flexibility of word order. Additionally, it occasionally 

misidentified the syntactic head in long-distance 

dependencies, especially when dealing with nested clauses or 

when multiple compound words were involved. Moreover, the 

parser showed difficulty in accurately labeling the 

dependencies in sentences with elliptical constructions, which 

are frequent in conversational Malayalam. 

 
Fig. 6 Parsing accuracy of turbo parser 
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Table 8. Parsing results of Turbo parser 

Performance parameters Baseline Optimization 

Labeled   attachment score 66.89 % 66.88 % 

Unlabeled attachment score 87.12 % 87.83 % 

Label accuracy score 70.66 % 70.58 % 
 

Table 9. Comparative performance of the parsers 

Parser Comparison 
UAS p-

Value 

LAS P-

Value 

Statistical 

Significance 
Conclusion 

Lys-FASTPARSE vs. 

Neural Network 

> 0.05 
 

> 0.05 
 

Not significant 
 

No significant difference in performance. 
 

Lys-FASTPARSE vs. UU 

Parser 
 

< 0.05 
 

< 0.05 
 

Significant UU Parser outperforms Lys-FASTPARSE. 

Lys-FASTPARSE vs. 

Turbo Parser 
 

< 0.01 
< 0.01 

 

Significant 
 

Turbo Parser significantly outperforms Lys-

FASTPARSE. 

Neural Network vs. Turbo 

Parser 
 

< 0.01 
 

< 0.01 
 

Significant 
Turbo Parser significantly outperforms Neural 

Network-based parser. 

UU Parser vs. Turbo Parser 
 

> 0.05 
 

> 0.05 
 

Not significant 
 

No significant difference in performance. 

Table 8 presents the performance metrics of a dependency 

parsing model, comparing the baseline configuration with an 

optimized configuration. LAS, which measures the accuracy 

of both the head and the dependency label, shows a slight 

decrease from 66.89% in the baseline to 66.88% in the 

optimized version. The UAS, which measures only the 

accuracy of the head, improved from 87.12% to 87.83% after 

optimization. Finally, the LAS, indicating the correctness of 

the dependency labels alone, shows a minor decrease from 

70.66% to 70.58%. These results suggest that while the 

optimization improved the accuracy of the head attachments, 

it had a negligible impact on the labeled attachment accuracy 

and a slight negative impact on the label accuracy. 

5. Conclusion 
This study provides an in-depth exploration of 

dependency parsing methodologies applied to the Malayalam 

language, with a focus on evaluating the performance of 

various parsers, including Lys-FASTPARSE, a Neural 

Network-based parser, UU parser and the Turbo Parser. The 

findings underscore the importance of morphological analysis 

in enhancing the accuracy of dependency parsing, particularly 

for Malayalam, which is characterized by rich morphological 

and syntactic complexity. The analysis reveals that while the 

Lys-FASTPARSE maintained stable performance metrics 

across various optimization attempts, the Neural Network 

parser demonstrated a modest yet significant improvement in 

capturing sentence dependencies, as evidenced by slight gains 

in UAS and LAS scores. The Turbo Parser emerged as the 

most robust among the evaluated parsers, exhibiting high UAS 

and LAS scores and demonstrating a balanced approach 

between accuracy and computational efficiency. The detailed 

examination of precision and recall in handling binned HEAD 

directions, particularly in right-direction dependencies, 

highlights the parser's strength in navigating intricate syntactic 

structures, though challenges remain in accurately parsing 

left-direction and root dependencies. These findings highlight 

the necessity of customized parsing techniques for languages 

with intricate morphologies like Malayalam and emphasize 

the potential of combining rule-based and statistical 

approaches to achieve higher parsing accuracy. This study 

advances the understanding of dependency parsing for 

underrepresented languages and provides practical insights 

that can be applied to improve natural language processing 

systems, making them more adaptable and effective in 

processing diverse linguistic inputs. 
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