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Abstract - This research presents an innovative system architecture for heart disease prediction that integrates Improved 

Stochastic Gradient Descent (ISGD) with a Decision Tree (DT) classifier. The ISGD-DT model addresses challenges in existing 

predictive models, such as imbalanced datasets, limited generalizability, and suboptimal accuracy, by leveraging hierarchical 

layers, graph databases, and decision trees for robust classification outcomes. Validated using benchmark datasets from the 

UCI Machine Learning Repository, including the Cleveland and Hungarian heart disease datasets, the model demonstrates 

superior performance with accuracy rates of 93.17%, 88.39%, and 96.29% across different datasets. These results highlight the 

model's reliability and robustness, making it a valuable tool for improving predictive modeling in healthcare. This research 

underscores the potential of combining advanced optimization techniques and classification algorithms to enhance the accuracy 

and applicability of medical prognostics. 
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1. Introduction 
The heart is vital for human health, playing a critical role 

in circulating oxygenated blood and regulating key bodily 

functions. Cardiovascular Diseases (CVDs), including 

Coronary Heart Disease (CHD), remain the leading cause of 

death globally, accounting for approximately 17.9 million 

fatalities annually, as reported by the World Health 

Organization (WHO). The prevalence and mortality rates 

associated with CVDs underscore the urgent need for effective 

diagnostic and predictive solutions [1]. Despite advancements 

in Artificial Intelligence (AI) and Machine Learning (ML), 

current heart disease prediction models face significant 

challenges, including imbalanced datasets, limited 

generalizability, and suboptimal accuracy. These limitations 

hinder their clinical applicability, leading to biased forecasts 

and reduced reliability in real-world scenarios. Several risk 

factors contribute to the development of cardiovascular 

diseases, including high BP, obesity, abnormal lipid profiles, 

diabetes, smoking, lack of physical activity, excessive alcohol 

consumption, and high cholesterol levels. The WHO projects 

that cardiovascular illnesses will remain a leading cause of 

death well into the future, presenting a significant threat to 

human health, potentially even beyond 2030. In this context, 

ML offers significant potential for transforming healthcare, as 

noted by KSL Prasanna et al. [2]. ML's advanced data 

processing capabilities exceed human ability, leading to 

innovative solutions for complex healthcare challenges. In 

recent years, Artificial Intelligence (AI) applications, 

particularly ML, have been increasingly used to identify 

cardiovascular disorders with speed and precision. Despite 

progress, there is still a pressing need to refine predictive 

prototypes and address research gaps, such as the challenge of 

imbalanced datasets, which can lead to biased forecasts. 

Researchers have explored various methodologies, including 

NN and DL techniques, to develop hybrid models that enhance 

forecast accuracy [3–12]. While these studies provide 

valuable insights, the differences in datasets, models, and 

outcomes highlight the complexity of predicting 

cardiovascular diseases.  

Although improvements have been made, further 

research is essential to advance existing models and enhance 

overall prediction accuracy. The growing use of DL in this 

field emphasizes the ongoing need for continued exploration 

to improve the reliability and applicability of prediction 

models, ultimately leading to more effective clinical 

interventions and improved patient care. In our study, datasets 

from the UCI repository, including the Cleveland and 

Hungarian heart disease datasets, were utilized to further 

explore this critical area of research. Existing predictive 

models for heart disease often face significant challenges, 

including: 

http://www.internationaljournalssrg.org/
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 Imbalanced datasets: Many models struggle to provide 

accurate predictions due to the uneven distribution of 

disease and non-disease cases. 

 Limited generalizability: Predictive accuracy varies 

across different datasets and patient populations, limiting 

clinical applicability. 

 Integration issues: Inefficient use of diverse data types, 

such as structured clinical records and unstructured 

patient data, hampers comprehensive analysis. 

 Suboptimal accuracy: Current models do not achieve the 

reliability needed for effective clinical decision-making. 

2. Literature Survey 
Siddiqui S. et al. [13] examine the application of ANN 

and BN in classifying diabetes and cardiac illness. Alic, B. et 

al. [13] utilize the Levenberg-Marquardt learning method, a 

type of multilayer feed-forward neural network, as an ANN 

method to test the hypothesis that it can enhance the precision 

of diabetes and heart illness diagnosis by providing more 

reliable statistical data. Ozcan M et al. [14] suggested a novel 

cardiac illness forecast model based on random forest. This 

model outperformed the benchmark multivariate regression 

ideal and other models like CART, NB, Bagged Trees, and 

AdaBoost. Researchers designed the model to assess the 3-

year risk of heart illness. The study employed the random 

forest algorithm on a substantial dataset to assess the 

likelihood of cardiovascular illness in eastern China. Kasbe, T 

et al. [15] GD is a technique that commonly optimizes 

multiple loss functions, particularly linear functions. This 

context has utilized stochastic gradient descent to address the 

root-finding aspect of cardiovascular disorders. SGD selects 

random samples for each iteration using a batch, representing 

the sample size instead of the entire dataset.  

Each iteration computes the gradient using specific 

batches. Using GDS for diagnosing cardiovascular illness 

yielded a relatively high accuracy rate of 84.39%. Li, Y., 

Sperrin, M et al. [16] deem the identification of cardiovascular 

illness crucial for life-saving purposes. The DCD-DEML 

approach, which employs back-propagation, obtained a 

diagnostic precision of 92.45% in identifying cardiovascular 

disease. This accuracy is superior to the DCD Mamdani Fuzzy 

Inference System and the DCD ANN. Hashi, E. K et al. [17] 

Medical practitioners desire a comprehensive diagnostic tool 

for accurately identifying cardiac failure based on the 

provided information. The implemented fuzzy expert system 

comprised three main components: fuzzification, a rule base, 

and defuzzification. This system was built utilizing 

MATLAB's Fuzzy Logic Toolbox and operated on the 

Mamdani Fuzzy Inference System framework. The 

measurements of precision and sensitivity yielded high values, 

specifically 94.50% and 90.19%, respectively. Patro, S. P. et 

al. [18] found that auto-prognosis significantly improved the 

accuracy of cardiovascular risk forecasts compared to other 

high-performing systems. This method was established using 

data collected from over 400,000 members of the UK 

Biobank, with 450 parameters recorded for each individual. 

The approach was developed to investigate new 

cardiovascular risk variables without any preconceived biases 

systematically. An evaluation was conducted to compare the 

therapeutic validity of the auto-prognosis model with the 

classic Framingham model. The auto-prognosis algorithm 

accurately forecasted outcomes for 3,357 out of 4,801 

cardiovascular patients. Poornima V. et al. [19] have 

extensively researched machine learning systems for 

forecasting cardiac illness. Algorithms such as Naïve Bayes 

(NB), Logistic Regression (LR), Decision Tree (DT), and 

Random Forest (RF) were applied to the dataset from the UCI 

Machine Learning Repository. The analysis revealed that the 

RF system achieved a maximum precision of 90.16% in 

forecasting heart illness. Buchan K. et al. [20] advanced a 

hybrid classifier to forecast heart illness. They selected the 

attributes using the orthogonal local preservation forecast 

method. Artificial Neural Networks (ANN) carry out 

categorization. The neural network architecture consisted of 

four neurons in the input layer, one hundred in the hidden 

layer, and five in the output layer. The connection weights 

between neurons ranged from -10 to 10. The Group Search 

Optimization (GSO) technique and the Levenberg-Marquardt 

(LM) algorithm were applied to optimise the network. The 

final weights were selected from the two sets generated by the 

LM and GSO methods. The authors could verify the results' 

precision by utilizing three datasets—one from Cleveland, 

Hungary, and Switzerland. The structure achieved an accuracy 

rate of 98% on the Hungarian dataset, and on the Switzerland 

dataset, it reached 87%. On the Cleveland dataset, it reached 

94%.  

Budholiya K. et al. [21] predicted the occurrence of 

illness by considering risk factors such as elevated cholesterol 

levels, a lack of physical exercise, hypertension, and an 

unhealthy dietary pattern. The novelists used computerized 

medical accounts, which consist of unstructured data. 

Mdhaffar A. et al. [22] utilized NLP and ML methods to 

generate forecasts from unstructured data. The novelists 

utilized the i2b2 Heart Illness Risk Issues Challenge dataset, 

which consisted of 296 patient records with diabetes. Kevin 

Challa, N. P. et al. [14] Heart illness and diabetes share certain 

risk factors that accelerate diabetes's progression. This was a 

challenge for the academics. For NLP purposes, the novelists 

used Apache cTAKES. Using the data obtained from 

cTAKES, the model was developed using Principal 

Component Analysis (PCA) and mutual information for 

feature selection. Following the feature selection process, 

Maximum Entropy (MaxEnt), Support Vector Machine 

(SVM), and Naïve Bayes (NB) classifiers were employed to 

perform the classification task, achieving an F1-Score of 

77.4%. Louridi N. et al. [23] proposed a framework for 

implementing a stacked collective prototype. A stacked 

prototype was constructed using XGBoost, Gradient Boosting 

(GB), and Random Forest (RF) classifiers, with 

dimensionality reduction executed using Particle Swarm 
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Optimization (PSO). The algorithm reached a precision of 

93.55% on the Statlog dataset, 86.49% on the Cleveland 

dataset, and 91.18% on the Hungarian data collection. Bashir 

S. et al. [24] created an HRF using a linear technique to 

classify heart illness. A DT selects a feature based on the 

entropy value. The Cleveland data collection system achieved 

a precision rate of 88.7%. The researchers used the Mean, 

Mode, KNN, and MICE algorithms Tomar, D et al. [25] 

Olaniyi E. O et al. [26] to fill in the missing data. Additionally, 

the dataset underwent class balancing. The stacking algorithm 

obtained an accuracy of 95.83%. Jothi, K et al. [27] created a 

predictive algorithm for heart illness utilizing the collective 

mechanism. The researchers conducted experiments on five 

datasets. A 1 or 0 class label designates the presence or 

absence of illness respectively. The inter-quantile range 

approach was utilized for outlier detection. Various 

classification techniques were applied, including Support 

Vector Machines (SVM), Decision Trees (DT), Naïve Bayes 

(NB), and memory-based classifiers. To enhance accuracy, 

the outputs of these classifiers were combined using the 

majority vote method. This approach achieved precision 

levels of 86.81% on the Cleveland dataset, 81.15% on the 

SPECTF records, 82.35% on the SPECT dataset, 86.21% on 

the Eric records, and 88.26% on the Statlog records. 

Manogaran G. et al. [28] developed a system based on least-

squares twin SVMs, employing F-scores for attribute 

selection. Experiments using the Statlog dataset yielded an 

accuracy of 85.59%. Deepa, N. et al. [29] proposed a 

technique utilizing Multilayer Perceptrons (MLP) and SVM, 

with the MLP trained using the back-propagation method. The 

MLP had a 0.32 knowledge rate.  

Table 1. Comparison table 

S.no Datasets Limitations Methods Accuracy 

1 Cleveland 

The model's limitations include not 

incorporating patients' medical and social 

factors, excluding unstructured data, and 

lacking comprehensive data for broader 

generalization. 

Regression Tree (CART) algorithm, a 

supervised machine learning. 
87%, 

2 Cleveland 

The paper highlights the complexities of 

heart disease diagnosis, emphasizing the 

impact of human biases, the limitations of 

expert judgment, and the need for 

advanced data mining to improve 

decision-making in healthcare. 

The research uses the AllPossible-

MV algorithm for missing value 

imputation, the C4.5 decision tree for 

rule generation, and hill climbing for 

rule subset optimization, and it 

evaluates performance with 10-fold 

cross-validation. 

86.3% accuracy 

in testing and 

87.3% in 

training. 

3 

Heart 

disease 

dataset 

The research highlights the importance of 

data quality in decision-making, identifies 

limitations in existing heart disease 

analysis methods, and emphasizes the 

need for hybrid technologies to improve 

results and address current constraints. 

Naïve Bayes, BO-SVM, KNN, and 

SSA-NN 
93.3% 

4 

UCI 

Cardiac 

Dataset 

The paper highlights limitations in data 

source customization, the need for further 

exploration of feature combinations, 

concerns about scalability and resource 

requirements in real-time prediction 

systems, and the lack of analysis of 

dataset characteristics' impact on 

prediction performance. 

The paper uses a DTRF classifier 

with SGB optimization for heart 

disease prediction, employing data 

preprocessing, bootstrapped training, 

and performance evaluation based on 

precision, recall, F1 score, and 

accuracy. 

precision of 

86%, recall of 

86%, F1-score 

of 85%, and 

accuracy of 

96% 

5 

UCI 

Machine 

Repository 

The research with a limited dataset of 

1025 instances highlights concerns about 

model accuracy and misdiagnosis, 

suggesting future work with larger 

datasets and more attributes to improve 

heart disease diagnosis. 

Support Vector Machine (SVM), K-

Nearest Neighbor (KNN), Naïve 

Bayes (NB), Artificial Neural 

Network (ANN), Random Forest 

(RF), and Gradient Descent 

Optimization (GDO) 

Accuracy of 

98.54%, 

sensitivity of 

99.43%, and 

precision of 

97.76% 

6 

Heart 

disease 

dataset 

The research faced limitations due to 

reliance on a single dataset, lack of 

traditional confidence intervals, and 

impractical bootstrap sampling, with 

future studies encouraged to use broader 

datasets for enhanced robustness. 

SMOTE, ADASYN, SMOTE-

Tomek, and SMOTE-ENN, logistic 

regression, decision trees, random 

forest, gradient boosting, XGBoost, 

CatBoost, and Artificial Neural 

Networks (ANNs) 

recall rate of 

88% and an 

AUC of 82% 
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The SVM reached a precision rate of 87.5%, while the 

MLP achieved a precision rate of 85%. Nawaz, M. S. Aet al. 

[30] used decision trees and KNN classifiers to resolve cardiac 

illness forecasting. The KNN technique achieved a precision 

of 67%, while the DT algorithm achieved a precision of 81%. 

3. Proposed Methodology 
Researchers extensively use the UCI Heart Illness dataset 

and the Kaggle Heart Illness dataset, which combine data from 

Statlog, Cleveland, and Hungary, to predict heart illness. Both 

offer essential cardiovascular health attributes, including age, 

BP, cholesterol levels, and types of chest discomfort, which 

facilitate creating and assessing machine learning models for 

forecasting heart illness risk. Figure 1 illustrates the ISGD-DT 

model's procedures.  

The process began with three preparation stages: format 

conversion, data transformation, and data normalization. 

Following these preparatory steps, sample selection and 10-

fold cross-validation were performed. Data classification was 

conducted using the ISGD-DT model, which combines 

Improved Stochastic Gradient Descent (SGD) with Decision 

Trees (DT) for effective categorization. The ISGD-DT model 

was evaluated using a benchmark dataset, with results 

analyzed across multiple epochs. 

3.1. Improved Stochastic Gradient Descent (ISGD) 

Improved Stochastic Gradient Descent (ISGD) is a 

widely used optimization technique in ML and DL. ISGD is 

an efficient optimization technique that necessitates real-time 

monitoring and utilizes memory storage. For example, 

consider a collection that contains several instances. 

Typically, improved stochastic gradient descent processes 

more observations for each iteration. The calculation of 

variables can be enhanced to facilitate rapid evaluation of web 

learning with new observations by processing individual data 

points simultaneously in the Improved Stochastic Gradient 

Descent (ISGD) method. A random input a and a scalar output 

b, represented as a pair (a, b), compose each z sample. 

When the correct answer is y, the loss function Q (b, b) 

evaluates the detection cost. It chooses a family F of functions 

ggkk (a) with a weight vector k. The function gg E can 

minimize the loss function RR (c, k) = P (ggkk (a), b) on 

instances. The laws of nature are invariably determined based 

on observations derived from a sample c1... cn, independent 

of the unknown distribution eQ(C).  

𝑑(𝑔) = ∫ 𝑚(𝑔(𝑎), 𝑏)𝑒 𝑄(𝐶)𝐹𝑜(𝑔) =
1

𝑜
∑ ℓ(𝑔(𝑎𝑗), 𝑏𝑗)  

𝑜

𝑗=1
    (1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Proposed ISGD-DT method 
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The empirical risk is Fo (gg). The targeted risk E (gg) 

calculates the expected generalizing operation for each 

subsequent event. Statistical learning theory suggests that 

constraining a selected family F leads to decreased empirical 

risk rather than projected danger. Typically, Gradient Descent 

(GD) is used to reduce the empirical risk En (ggkk). Using a 

gradient, every iteration incrementally raises the weight k. 

ks+1 = ks − γ
1

o
∑ ∇kR(cj , ks)                           

o

j=1
 (2) 

The symbol 𝛾𝛾 represents a carefully selected learning 

rate. When functions exhibit sufficient regularity, achieving 

linear convergence is possible if the initial estimate k0 is near 

the optimal value and the learning rate 𝛾𝛾 is low. Log t, which 

represents the remaining error, denotes linear convergence. 

ks+1 = ks − 𝜏𝑠
1

o
∑ ∇kR(zj , ks)

o

j=1
                  (3) 

The Newton model commonly implements the Second-

order Gradient Descent (2GD) technique. By maximizing the 

regularity concerns, 2GD achieves quadratic merging when 

the provided value k0 is close to the optimal value. When the 

cost is quadratic, and the transformation matrix is correct, the 

method achieves its highest value after just one iteration. 

Otherwise, these returns will be satisfactory if they are 

sufficiently smooth 𝑙𝑜𝑔𝑙𝑜𝑔 𝜌 ∼ 𝑡. The ISGD method is a 

substantial popularization strategy. Each subsequent iteration 

computes the gradient by replacing the gradient descent of Fo 

(ggkk) with a singular value Cs. 

    ks+1 = ks − γ𝑠∇kR(zj , ks)                   (4) 

The ISGD model deliberately processes instances, 

recalling them from earlier iterations. The models are taken 

from ground truth spreading, and Improved Stochastic 

Gradient Descent (ISGD) is optimized accordingly. Table 1 

illustrates an Improved Stochastic Gradient Descent (ISGD) 

approach for traditional machine learning methods. Primarily 

used for Perceptron, Adaline, and K-means mapping. 

Conventional optimization approaches were employed to 

configure the Support Vector Machine (SVM) and Lasso 

models. In both cases, a hyper-parameter controls the 

regularization term. RR SVM and RR lasso. Due to RR means 

being a non-convex function, the K-means algorithm 

converges to a local minimum. The predicted update rule 

includes 2GD learning parameters to guarantee rapid 

convergence. When you use the Improved Stochastic Gradient 

Descent (ISGD) algorithm on these parameters and ensure 

they are positive, you get solutions with fewer non-zero 

elements. The stochastic approximation literature extensively 

researches the convergence of Improved Stochastic Gradient 

Descent (ISGD). When outcomes converge, they tend to have 

reduced learning values to meet the restrictions of the 

equations ∑𝑠 𝛾𝛾2  < ∞ and∑𝑠 𝛾𝛾𝑡 < ∞. The Robbins-

Sigmund theorem enables the achievement of nearly certain 

convergence despite challenging circumstances, such as when 

the loss function is non-smooth. The noisy approximation of a 

positive gradient slowed down ISGD's convergence speed. 

Reducing the learning value gradually minimizes the variance 

of a parameter estimate wt. If learning rates decline, it takes 

longer for the variable estimate, k s, to reach the best answer. 

When the Hessian matrix of a cost function has conditionally 

positive eigenvalues, the fastest convergence speed can be 

achieved by using learning rates 𝛾𝛾𝑡 ∼s−1. The rate at which 

the desire to remain error-free decreases is proportional to 

time, where D(Б) ∼ s −1. Theoretical convergence values are 

commonly detected   ∼ s−1. The rate at which the desire to 

remain error-free decreases is proportional to time, where D 

(Б) ∼ s −1. Theoretical convergence morals are commonly 

detected. The purposes of D (𝜌) ∼ s−1/2 generally converge. 

Convergence is observed experimentally during the final stage 

of job optimization.  The factor is not considered significant, 

t, as the optimization procedure ends before achieving the 

necessary solution. 

3.2. Second-Order Improved Stochastic Gradient Descent 

(2ISGD) 

Second-order Improved Stochastic Gradient Descent 

(2ISGD)uses a positive definite matrix s to get close to the 

inverse of the Hessian matrix and add the gradients. 

   ks+1 = ks − γ𝑠𝜏𝑠∇kR(zj , ks)                    (5) 

The variation unexpectedly fails to reduce stochastic 

noise and does not improve wt. As constants rise, the 

anticipated residual error decreases, following a D(𝜌) ∼ s−1 

pattern at its most optimal. DGS's optimisation model 

becomes progressively slower compared to the general batch 

approach. Several fields, including biomedical research, 

commerce, criminology, ecology, engineering, and 

healthcare, use Decision Trees (DT) as a classification 

method. Decision Trees (DT) are classified as generalized 

linear methodology. Generalized linear methods evaluate the 

regression function when dealing with binary parameters, 

while decision tree approaches apply to continuous variables. 

These methods compare the dependent parameter y with many 

predictor values to determine the required value. A DT is a 

discriminative classifier that directly studies the mapping from 

input 𝑥 to output 𝑦 by creating the following probability (b | 

a). DT's parametric technique is outlined here. The modest 

function can represent the decision tree as a sigmoid function 

according to Equation (6), among other models. 

 𝜎(𝑎) =
1

1+𝑒−𝑧                      (6) 

It is referred to as a loss function, which quantifies the 

difference between the predicted outcomes and the actual 

values in a model, the 0–1 losses for a specific method. 

𝐿𝑜𝑠𝑠
0

1
(𝑧) = { 1,

0,
𝑖𝑓 𝑧 < 0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

            (7) 

Let 𝑦𝜀{−1, 1} and z=b.kSa. If 𝑦 and 𝑤𝑇x have the same 

sign, z is positive; otherwise, it is negative. 
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       (𝑏 = −
1

𝑥
) =

1

1+𝑒𝑥𝑝(𝑘𝑜+∑ 𝑘𝑗𝑎𝑗

𝑒

𝑗=1
)
              (8) 

                  𝑞(𝑏 =
1

𝑥
) = 1 − 𝑞(𝑏 = −

1

𝑥
)              (9) 

The primary function of decision trees is to minimize k, 

resulting in a decrease in the maximum value of 0 − 1 loss 

compared to training themes. 

𝑚𝑖𝑛 ∑ 𝑙
0

1
(𝑏𝑗 . 𝑘𝑆. 𝑎𝑗)

𝑜

𝑗=1
        (10) 

𝑘 = [𝑘1, 𝑘2, 𝑘3, … … … … … . 𝑘𝑛] ← 

𝑎𝑟𝑔𝑘𝑚𝑎𝑥 𝛱𝑤𝑄(𝑏(𝑤)|𝑎𝑤 , 𝑘)         (11) 

Graphing the 0/1 loss function transforms the regression 

approach into a logistic function. The values range from 0 to 

1, while z varies from -∞ to +∞. 

  𝑙log(𝑧) = log(1 + 𝑒−𝑧)     (12) 

Moreover, the gradient descent rule is applied to weight 

k. The primary goal of constructing decision trees is to manage 

continuous features and effectively handle nominal and 

missing values. Its illustrates the distribution of logistic losses 

that commonly occur. Regularization incorporated into the 

learning process helps prevent overfitting by filtering out the 

irregular features in the dataset. R1 and R2 mostly achieve 

regularization, leading to sparsity in reducing complexity. A 

decision tree algorithm that focuses on regularization learns a 

mapping (k) that reduces the logistic loss on the training data 

by adding a regularization term. Regularization in decision 

trees involves utilizing a higher figure of likelihood functions, 

as defined in Equation (13). 

            𝑚𝑖𝑛
𝑘

∑ 𝑙log(𝑏(𝑗). 𝑘𝑆. 𝑏𝑗) + 𝜆 ∥ 𝑘 ∥ 2
2

𝑜

𝑗=1

        (13) 

Equation (13 consists of the training log-loss function and 

the model struggle. The 𝜆 derived from model complexity 

serves as a regularization parameter. It calculates the 𝑤 

variables that need to be increased. By utilizing Equation (13) 

as a cost function, the outcome of a suggestion may reduce 

over-fitting. Choosing a large value for 𝑤 results in smoothing 

and can cause under-fitting. By regularly applying 𝐿1 

regularization, many techniques lead to reducing variables to 

0, resulting in a sparse parameter vector in the simulation 

results.  

3.3. Experimental Findings and Performance Assessment 

An extensive analysis was conducted on Datasets 1 and 2 

to confirm the effectiveness of the proposed technique. False 

Positive Rate, False Negative Rate, sensitivity, specificity, 

accuracy, and F-score are the measures utilized for analyzing 

the results. Table 3 displays the presentation metrics used to 

evaluate the outcomes of the suggested examples. 

Table 2. Comparison table structure       

Model Datasets Accuracy Precision F-Measure 

ISGD-DT 
Dataset-1 86.61 91.52 93.17 

Dataset-2 81.82 81.82 88.39 

Random Forest (RF) 
Dataset-1 86.11 85.98 58.66 

Dataset-2 75.53 75.12 63.55 

Support Vector Machines (SVM) 
Dataset-1 85.16 85.16 55.86 

Dataset-2 79.10 78.22 67.55 

Naïve Bayes (NB) 
Dataset-1 86.44 86.44 55.88 

Dataset-2 78.22 78.22 68.10 

K-Nearest Neighbor (KNN) 
Dataset-1 86.60 86.60 57.39 

Dataset-2 75.88 75.88 64.14 

XGBoost 
Dataset-1 85.96 85.96 55.99 

Dataset-2 75.98 75.98 63.66 

 Table 3. Metrics for evaluating performance 

S. No. Variables Notation 

1 FPR 
𝐹𝑃

𝐹𝑃 + 𝐹𝑁 

2 FNR 
𝐹𝑁

𝐹𝑁 + 𝐹𝑃 

3 Sensitivity 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 

4 Specificity 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 

5 Precision 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 
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6 F-Score 
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 

7 Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 

Table 4. Confusion matrix generated using ISGD-based DNN on dataset 1 

Specialists 

Epochus-100 Epochus-200 Epochus-300 Epochus-400 Epochus-500 

Heart 

Illness 

Non-

Heart 

Illness 

Heart 

Illness 

Non-

Heart 

Illness 

Heart 

Illness 

Non-

Heart 

Illness 

Heart 

Illness 

Non-

Heart 

Illness 

Heart 

Illness 

Non-

Heart 

Illness 

Heart 

Illness 
2840 20 2840 20 2840 20 2840 20 2840 20 

Non-Heart 

Illness 
483 10 483 10 483 10 483 10 483 10 

 

3.4. Analysis of Results on Dataset 1 

Testing was conducted on Dataset 1 by varying the 

number of epochs in increments of 100, 200, 300, 400, and 

500, as presented in Table 4. The results remained consistent 

across 100, 200, 300, 400, and 500 epochs. 2,860 incidents 

were correctly identified as churn, with no instances classified 

as non-heart illnesses. The classification outcomes are derived 

from the confusion matrix and organized according to various 

metrics, including false positive rate, false negative rate, 

sensitivity, specificity, precision, and F-score. It is 

recommended that these evaluation parameters be used to 

assess the model's performance comprehensively; false 

positive and negative rates have low values in this case. 

Simultaneously, the sensitivity, specificity, precision, and F-

score rates must be elevated. Table 5 and Figure 2 display the 

categorization results achieved with varying numbers of 

epochs. The analysis of the table and figure reveals that the 

false negative rate is 15.09, the sensitivity is 87.06%, the 

accuracy is 86.55%, and the F-score value is 93.17% when 

100 epochs are considered. Similarly, The same outcomes are 

observed when the classifiers are run for 200, 300, 400, and 

500 epochs.

Table 5. Performance of various iterations on dataset 1 

No. of Runs FPR FNR Sensitivity (%) Specificity (%) Precision F-Score 

Epchos-100 36.02 15.09 87.06 67.09 87.56 93.17 

Epchos-200 35.04 16.09 86.14 67.19 83.06 93.17 

Epchos-300 34.82 15.09 87.06 68.13 88.15 93.17 

Epchos-400 34.23 15.09 81.12 68.95 89.86 93.17 

Epchos-500 33.22 17.05 87.06 67.15 86.55 93.17 
 

 
Fig. 2 Performance evaluations for dataset 1 
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3.5. Analyzing the Results from Dataset 2 

An experiment was conducted on the applied dataset, 

varying the number of epochs in increments of 100, 200, 300, 

400, and 500, as shown in Table 6. For 100 epochs, 4,733 

cases were correctly identified as churns, and 879 instances 

were accurately classified as non-diseases. With 200 epochs, 

4,699 cases were correctly identified as churns, while 949 

instances were correctly labeled as non-diseases. At 300 

epochs, the same results were observed, with 4,699 churn 

cases and 949 non-disease instances correctly identified. For 

400 epochs, 4,706 churn cases and 963 non-disease instances 

were accurately classified. Finally, after 500 epochs, 4,718 

instances were correctly categorized as Diseases, and 966 

cases were accurately labeled as non-diseases. The results 

indicate that as the number of epochs increases, the 

complexity of the classifier's presentation also rises.

Table 6. Confusion matrix generated using ISGD-DT for dataset 2 

Specialists 

Epochus-100 Epochus-200 Epochus-300 Epochus-400 Epochus-500 

Heart 

Illness 

Non-

Heart 

Illness 

Heart 

Illness 

Non-

Heart 

Illness 

Heart 

Illness 

Non-

Heart 

Illness 

Heart 

Illness 

Non-

Heart 

Disease 

Heart 

Illness 

Non-

Heart 

Illness 

Heart 

Illness 
998 879 958 949 959 949 998 879 958 949 

Non-Heart 

Illness 
4733 455 4699 577 4699 478 4733 455 4699 577 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Confusion matrix generated using ISGD-DT for dataset 2 
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Table 7. Performance of various iterations on dataset 2 

No. of Runs FPR FNR Sensitivity (%) Specificity (%) Accuracy F-Score 

Epchos-100 35.02 18.10 83.06 66.89 80.25 87.84 

Epchos-200 35.04 17.28 84.41 66.91 80.15 87.55 

Epchos-300 34.82 17.91 84.66 67.88 81.44 87.71 

Epchos-400 34.23 17.26 84.58 67.91 81.87 88.58 

Epchos-500 33.22 17.12 84.87 67.53 81.53 88.77 

 
Fig. 4 Performance evaluation on dataset 2 

Table 7 and Figure 4 display the categorization results 

achieved with varying numbers of epochs. The table reveals 

that the false positive rate is 35.02, the false negative rate is 

18.10, the sensitivity is 83.06%, the specificity is 66.89%, the 

precision is 80.25%, and the F-score is 87.84% when 100 

epochs are considered. The following performance metrics 

were observed after 200 epochs: The model achieved a false 

positive rate of 35.04, a false negative rate of 17.28, a 

sensitivity of 84.41%, a specificity of 66.91%, a precision of 

80.15%, and an F-score of 87.55%. Similarly, the model 

achieves a false positive rate of 34.82, a false negative rate of 

17.91, a sensitivity of 84.66%, a specificity of 67.88%, a 

precision of 81.44%, an F-score of 87.71%, and 300 epochs. 

Over 400 epochs, the model demonstrates a false positive rate 

of 34.23, a false negative rate of 17.26, a sensitivity of 

84.58%, a specificity of 67.91%, a precision of 81.87, and an 

F-score of 88.58. After 500 epochs, it is noteworthy that the 

false positive rate is 33.22, the false negative rate is 17.12, the 

sensitivity is 84.87%, the specificity is 67.53, the precision is 

81.53%, and the F-score is 88.77%. The provided data clearly 

shows that using 500 epochs leads to a peak precision of 

88.77%, indicating a development in the classifier's 

performance as the number of epochs increases. 

3.6. A Comparative Analysis of Current Approaches for 

Practical Datasets 

Table 8 assesses prior models for datasets 1 and 2, using 

precision and F-measure as metrics. Next, we compare dataset 

1 and conventional methodologies, focusing on accuracy and 

F-measure. Table 8 and Figure 5 present the analysis. The data 

presented in the table indicates that the current methodology 

achieves a notable level of precision, specifically 85.16%, and 

an F-measure of 55.86%. The ISGD-DT technique performs 

an augmented classification task, yielding an accuracy rate of 

86.61% and an F-measure of 93.17%. Therefore, the 

aforementioned extensive experimental research confirms the 

effectiveness of the ISGD-DT method as a classification tool 

for heart illness prediction. According to the table, when 

applied to dataset 2, the previous models provided a superior 

accuracy of 79.10% and an F-measure of 67.55%.  

As a result, the ISGD-DT methodology has a remarkable 

classification efficacy, with an accuracy rate of 81.82% and an 

F-measure of 88.39%. Therefore, the experimental research 

has shown that the ISGD-DT framework is a suitable 

classification technique for forecasting heart illness. This 

training aims to classify heart illness using the ISGD 

technique and the DT classifier model. The integration of 

ISGD and DT can lead to an effective classification. The 

ISGD-DT model's performance is evaluated using a 

benchmark dataset, with results analyzed across various 

epochs. This paper describes the remarkable classification 

performance of the model, achieving accuracy rates of 

86.61%, 81.82%, and 95.63% for the three employed datasets. 

Furthermore, the F-measure for the aforementioned datasets is 

documented as 93.17%, 88.39%, and 96.29%, respectively. 
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Table 8. A comparative analysis between the proposed technique and existing approaches for applied datasets 

Techniques 
Dataset-1 Dataset-2 

Precision (%) F-Measure (%) Precision (%) F-Measure (%) 

ISGD-DT 91.52 93.17 81.82 88.39 

DT 85.98 58.39 75.12 62.99 

SVM 85.16 55.86 79.10 67.55 

NAÏVE BAYES 86.44 55.88 78.22 68.10 

KNN 86.60 57.39 75.88 64.14 

XG-Boost 85.96 55.99 75.98 63.66 

RF 86.11 58.66 75.53 63.55 

 
Fig. 5 Performance comparison between the ISGD-DT with existing approaches for dataset-1 

 
Fig. 6 Performance comparison between the ISGD-DT with existing approaches for dataset-2 
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4. Limitations and Future Scope 
This study introduces the Improved Stochastic Gradient 

Descent-Decision Tree (ISGD-DT) framework, designed to 

overcome the limitations of existing methodologies by:  

Leveraging advanced optimization techniques and robust 

classification algorithms. Utilizing hierarchical architecture, 

graph databases, and decision trees for enhanced data 

integration and predictive accuracy. Traditional models such 

as Decision Trees (DT), Naïve Bayes (NB), and Support 

Vector Machines (SVM) have achieved accuracy levels 

ranging between 75-86% on heart disease datasets. However, 

these models often lack robustness and fail to address issues 

like dataset imbalance and diverse data integration. The 

ISGD-DT framework improves upon these methodologies by 

integrating stochastic gradient descent for dynamic 

optimization and leveraging decision trees for accurate 

classification. With accuracy rates of 86.61%, 81.82%, and 

95.63% across three benchmark datasets and F-measures of 

93.17%, 88.39%, and 96.29%, it demonstrates significant 

improvements over traditional and hybrid approaches. 

 4.1. Dependency on Dataset Quality  

The model's performance is contingent on the quality and 

representativeness of the datasets used. The inclusion of 

diverse and larger datasets from different demographics could 

improve generalizability. Computational Requirements: The 

ISGD-DT framework involves computationally intensive 

processes, especially during model training with large 

datasets, which may limit scalability in resource-constrained 

environments. Handling of Unstructured Data: While the 

model integrates structured data effectively, it cannot process 

unstructured data such as clinical notes, which could provide 

additional insights. 

4.2. Real-Time Applicability 

The framework's real-time prediction capabilities in 

clinical settings require further validation to ensure reliability 

under varying conditions. Incorporating Real-World Data:  

Future studies could integrate Electronic Health Records 

(EHRs) and wearable device data to enhance the model's 

predictive accuracy and applicability. Unstructured Data 

Integration: Developing methods to incorporate unstructured 

data, such as textual clinical notes effectively, could provide a 

more comprehensive analysis. 

4.3. Optimization for Real-Time Use 

Improving computational efficiency and exploring cloud-

based solutions can make the model suitable for real-time 

clinical deployment. 

4.4. Personalized Prediction Models 

 Extending the framework to create personalized 

predictions based on individual patient characteristics could 

enhance clinical utility. 

5. Conclusion 
This study systematically explores research 

methodologies for predicting heart disease, explaining multi-

layered system architecture. The approach employs an 

Improved Stochastic Gradient Descent with Decision Tree 

(ISGD-DT) classifier model to enhance prediction accuracy. 

An effective classification technique was developed by 

integrating information systems and graph databases with 

decision trees. The model's performance was evaluated using 

a benchmark dataset, with results analyzed across multiple 

epochs. The ISGD-DT model demonstrated strong 

classification capabilities, achieving accuracy rates of 

86.61%, 81.82%, and 95.63% across three different datasets, 

along with F-measures of 93.17%, 88.39%, and 96.29%. 

These findings confirm the model's robustness and reliability 

as a predictive tool for heart disease classification. 

Data Availability  
https://archive.ics.uci.edu/dataset/45/heart+disease, 

https://www.kaggle.com/datasets/sid321axn/heart-statlog-

cleveland-hungary-final 
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