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Abstract - Signal analysis is often challenging due to the complexity of signals, which comprise multiple components that can 

overlap in frequency and be affected by noise and interference. In many cases, only partial information about these components 

is available, making signal analysis even more difficult. This paper presents a method to decompose such complex signals using 

Integrated Variational Decomposition Models. The procedure begins with generating a partially completed multicomponent 

signal based on radar equations. Then, the signal is transformed into a time-frequency representation using the Short-time 

Fourier Transform (STFT). Then, a technique called compressive sensing, specifically Rapid Iterative Shrinkage Thresholding 

Network (RISTN), is utilized to restructure the time-frequency representation by solving a sparse regularization problem. The 

Instantaneous Frequencies (IF) are subsequently estimated using the Simplified Variational Mode Decomposition (SVMD) 

algorithm. Finally, the individual components of the overlapped nonstationary multicomponent signal are isolated using an 

algorithm called Extended Variational Chirp Component Decomposition (EVCCD). The proposed method outperforms existing 

methods in terms of Root Mean Square Error (RMsE), Mean Squared Error (MSE), Root Mean Absolute Error (RMAE), and 

computational time, achieving better values such as -15.829 dB, -31.062 dB, 0.034 dB, and 0.90282 respectively. 

Keywords - Compressive sensing, EVCCD, Integrated variational decomposition models, Multicomponent signal, Non-

stationary signal, Radar equations, RISTN, STFT, Signal analysis, SVMD, Time-frequency representation, Variational 

decomposition.

1. Introduction 
The micro-Doppler (m-D) effect is a phenomenon 

observed when a target or its structures exhibit micro-motion 

dynamics such as vibration, rotation, or bulk translation. 

These dynamics result in frequency modulation, producing 

time-varying sidebands around the target's Doppler frequency. 

This effect is significant in radar signal processing, providing 

valuable information about the target's movement and 

characteristics. Typically, multicomponent m-D signals are 

echoes from multiple micromotion targets or various 

micromotion sections of a single target [1-3].  

The challenge arises when overlapping components 

contain multiple m-D signatures from different parts or 

targets, making the decomposition of multicomponent m-D 

signals a compelling research area. For instance, swaying a 

person's limbs or the rotational frequencies of different space 

targets illustrate such micromotion parts and targets. 

Nonparametric techniques are favoured over parametric 

ones due to their time efficiency and robustness in extracting 

m-D signatures. These techniques rely on the Time-Frequency 

Representation (TFR) of signals, making the understanding of 

micromotion features in the TF domain crucial for the success 

of TFR-based approaches. However, two main issues hinder 

the practical extraction of micromotion features: 1) m-D 

component signal overlap and 2) incomplete radar echo 

sampling [5, 6].  

Incomplete data can result from random corruption or 

removal of samples due to radar malfunctions or severe 

interference. When different micromotion components of a 

target are packed into one range cell or a cluster of similar 

range cells, their multicomponent m-D signals overlap or 

cross in the TF domain. 

Sparse signal processing methods based on compressive 

sensing have been suggested to address the challenges posed 

by micromotion targets, including denoising and 

reconstruction of incomplete or distorted data. These methods 

primarily focus on TFR reconstruction rather than 

decomposing multicomponent m-D signals [1, 7, 8].  

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Yet, decomposing multicomponent m-D signals can 

reveal extensive information about various micromotion 

targets. The m-D signal, being a type of cyclostationary signal, 

works well with nonstationary signal processing approaches. 

To implement various multicomponent nonstationary signal 

decomposition methods such as Adaptive Chirp Mode Pursuit 

(ACMP), Variational Nonlinear Chirp Mode Decomposition 

(VNCMD), and Variational Modal Decomposition (VMD), it 

is essential to maintain separation or non-overlapping of 

multicomponent in the TF domain. Several studies have 

proposed this requirement [9-13].  

The Ridge Path Regrouping (RPRG) technique 

successfully separated overlapping m-D signals in the TF 

domain for regular modulation. Thus, the Short Temporal 

Variational Mode Decomposition (STVMD) method is 

effective for accurately decomposing overlapping m-D signals 

with irregular modulation in the Instantaneous Frequency (IF) 

domain. For multicomponent m-D signal decomposition, 

signal separation approaches based on the timescale-chirp rate 

operator, Fractional Fourier Transform (FFT), and chirplet 

transform have been utilized. However, these techniques 

depend on complete m-D signal samples with multiple 

components. Consequently, the goal of TFR reconstruction 

using partial data is to use the incomplete data to extract 

multicomponent m-D signals. 

Xin Huang et al. [18] proposed a multicomponent 

collaborative time-frequency state-space method to 

decompose vibration signals. The technique used a 

multicomponent proportional model to accurately specify the 

synchronization of high-frequency and rotating-frequency 

components. This structure allowed for the precise dissection 

of multicomponent vibration signals in scenes with varying 

speeds by feeding the IF change curves of various components 

into the Vold-Kalman filter technique. Experimental findings 

showed this technique effectively achieved precise IF tracking 

and signal decomposition. However, the model's assumptions 

and sensitivity to noise limited accurate vibration signal 

decomposition, particularly in complex scenarios.  

Empirical Mode Decomposition (EMD) has been 

suggested by Quentin Legros et al. [3] as a method for 

estimating IF and amplitude in multicomponent signals. The 

primary goal of this algorithm was to address the challenge of 

evaluating the modes' IF and amplitude in the presence of 

noise in nonstationary multicomponent signals. In a Bayesian 

structure, a new observation model was created for the signal 

spectrogram to manage complex configurations with 

overlapping elements or noise. An expectation-maximization 

approach with stochastic variations was employed to estimate 

the model parameters. The outcomes showed that this 

algorithm reduced the complexity of the problem and used 

acceptable computational time to assess mixture weights. 

However, the algorithm would need to expand the approach 

for chirp rate estimation and generalization for 

hyperparameter estimation. 

Jamal Akram et al. [19] proposed a new method for 

estimating the IF of multicomponent signals in the time-

frequency domain based on crossing signatures. This 

technique recursively determined the IFs of the signal 

components using time-frequency filtering and Eigen 

decomposition of time-frequency distributions to separate 

them from the original mixture. Experimental results proved 

this method was better, but nonstationary and cross-

component interference made it challenging to correctly 

separate the signal components. Additionally, computational 

complexity issues hindered real-time applications and limited 

feasibility.  

Lu Yan et al. [20] introduced a mechanically variable 

nonstationary signal separation approach based on IF 

estimation. The objective was to achieve a densely 

concentrated time-frequency energy using Multi-Scale Chirp 

Sparse Representation (MSCSR) for IF identification, 

extraction, and Trending. An adaptive time-varying filter was 

constructed using the recovered Intermediate Frequency (IF) 

to separate the nonstationary fast signal. A rapid IF fluctuation 

experiment validated the efficacy of this approach for robust 

time-varying signals, showing it could effectively extract 

rapid oscillation IF with an error of less than 10%. However, 

the approach had limitations such as low computational 

performance, limited noise resistance, and reduced accuracy.  

Lei Tang et al. [21] introduced an LMSST with Adaptive 

Window Width (AWW) to identify time-varying structures at 

instantaneous frequencies. Combining a window width 

optimization algorithm and autoregressive power spectrum-

based variational modal decomposition (AR-VMD), an 

adaptive technique was formed to calculate the window width 

of ALMSST. The AR-VMD broke down the complex signal 

into its constituent parts, and the window width optimization 

technique used the Renyi entropy as an evaluation index to 

choose the optimal window width for each mono-component 

signal. Simulation and experimental results showed that 

ALMSST effectively found the IFs of structures that change 

over time. However, spectral leakage and windowing artifacts 

could hinder the reliable recognition of IFs in nonstationary 

signals. 

Existing techniques for decomposing multicomponent 

micro-Doppler signals face several concerns, making it 

challenging to handle overlapping signals and incomplete 

data. Handling complex signals with crossing fingerprints is 

difficult because multicomponents must be either non-

overlapping or physically separated in the time-frequency 

domain. Techniques include Adaptive Chirp Mode Pursuit 

(ACMP) and synchro-squeezed wavelet transform. 
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SST are vulnerable to noise and inaccurate Time-

Frequency Representations (TFRs) when dealing with partial 

data. These limitations make it challenging to correctly 

decompose multicomponent micro-Doppler signals, 

especially when incomplete data samples or signals overlap. 

Additionally, current methods for deriving micromotion 

characteristics from TFRs can be hindered by the signal 

overlapping of micro-Doppler components and inadequate 

radar echo sampling. Both nonparametric and parametric 

approaches struggle with incomplete data samples, which may 

be corrupted or missing due to interference or radar failures.  

The problem of signal overlapping in the time-frequency 

domain further complicates the decomposition process, 

resulting in overlapping signals that are difficult to 

differentiate using conventional approaches. These limitations 

highlight the need for sophisticated decomposition techniques 

to handle the complexity of multicomponent micro-Doppler 

signals with incomplete and overlapping components. The 

major objectives of the proposed work are: 

1. To introduce a novel method for multicomponent signal 

decomposition using Integrated Variational 

Decomposition Models. 

2. To offer a compressive sensing approach to address the 

sparse regularization problem for TFR reconstruction. 

3. Using an Extended Chirp Component Decomposition 

algorithm to isolate the individual components of 

overlapped nonstationary multicomponent signals. 

4. To compare the experimental outcomes with existing 

methods to determine the superiority of the proposed 

work. 

The residual content of the paper is organized as follows: 

Section 2 describes the proposed model in detail. Section 3 

examines the overall performance of the proposed model with 

existing techniques discussed with graphs. Finally, the 

complete conclusion of the proposed model is presented in 

Section. 

2. Proposed Methodology 
Signals are often multicomponent in practice, meaning 

they may be expressed as linear combinations of separate 

signals (components). Multicomponent signals consist of 

overlapping components where the frequency ranges of 

various components may intersect. Also, they are susceptible 

to noise and interference from various sources. In addition, 

they may be sparse or incomplete, meaning that only partial 

information about the signal components is available. As a 

result, it is difficult to decompose multicomponent signals 

when dealing with incomplete and noisy data. Using 

Integrated Variational Decomposition Models, this research 

will present a method for multicomponent signal 

decomposition, which will address this issue. Figure 1 

displays the proposed methodology workflow. 

 

 

 

 

 

 

 

 

Fig. 1 Architecture for proposed work 

Here, the incomplete multicomponent signal will be 

initially generated using the narrowband radar equations from 

a micromotion target. After that, the STFT will be used to 

obtain the TFR of the input signal. After that, a sparse 

regularization problem will be formulated for TFR 

reconstruction. This problem will be solved using a 

compressive sensing approach, namely, RISTN. After the 

reconstruction of TFR, the IF will be estimated using the 

SVMD algorithm. After estimating the IF, the individual 

component of the overlapped nonstationary multicomponent 

signal will be isolated by introducing an EVCCD algorithm.  

The above-described technique is detailed below.  

2.1. Signal Generation Mode 

The point-scattering model is an appropriate match for the 

fake metal targets and high-frequency electromagnetic 

settings. Due to imperfect sampling, a micromotion target is 

formed from the multicomponent signal received by a 

narrowband radar. Figure 6 shows the result of the following 

mathematical expression for this signal. 
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Here, the variable x  represents the number of 

components, which has been defined earlier in the letter. The 

symbol x(k) denotes the available sampling while x(k)
{0,1},ps(k) representing each scattering point's instantaneous 

amplitude. The term ps(k)>0;φs  mentioned for the initial phase 

and ts(t) is the IF. Lastly, η(k) characterizes the additive noise. 

The instantaneous amplitude x(k){0,1},ps(k) and 

intermediate frequency ts(t) are smooth and slowly varying 

functions, which implies that they change gradually over time.  
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These functions satisfy the condition, 

)()(,)( ktktkp sss   

Where,  is a small positive constant. 

2.2. STFT Using TFR 

Because of its linearity, the STFT is a popular TFR 

technique for micromotion modulation, even though G(k) is a 

nonstationary signal. The STFT of echo G(k) can be 

exemplified as: 

dtkthkRtGtkSTFT )2exp()()(),(      (3) 

Here, Rσ indicates the window function, which has two 

possible expressions: a Hamming window and a Gaussian 

window, is used in this symbol. The window's length is 

represented by the symbol σ, which ensures that the windowed 

signals are adequately stationary. 

The STFT of the signal with missing data can be defined 

using the matrix formulation below: 

1
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Here, the matrix of Fourier transform is represented as 

  ,...,diag and  ; JjgI  , jg is denoted as the time step; 

and jg=1; B
Jj WWWC ],....,....[ 1 is the sliding Gaussian window, 

where,  )(),...(),....,1( IwiwwdiagW jjj
j 

 and ],1[ Ii ;

 )(),...(),...,1( IdidddiagD   is the imperfect sampling matrix, 

 1,0)( id ; g0 is the optimal signal that contains all the 

necessary information, BIgiggg )](),...(),...,1([ 0000  ; B)( is 

denoted as the transpose, and  diag is denoted as the 

diagonalization operator. 

Effective techniques exist for estimating IFs. 

Nevertheless, the effectiveness of these techniques depends on 

the TFR's caliber. Because of the lack of data, the TFR was 

defocused, denoted by 0E . Denoising and reconstructing the 

well-focused TFR can be achieved by modeling the signal 

with partial data g  using, 

iDFg E    (5) 

Here BIgiggg )](),...(),...1([ ; F is denoted as the 

pseudo-inverse of C ; and i is additive noise vector; 

BIii )](),...(),...1([  . The entire information of TFR is 

mentioned as. In order to extract g  from partially sampled 

data, (5) can be thought of as an optimization issue. 

2
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Typically, there are only a certain number of strong 

scatters dispersed around the target. Here is a different way to 

rewrite the optimization model from (6) using these spars 

prior: 
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Here, ,10  d
d

E are regularization terms; the 

regularization parameter, λ>0, has the ability to balance the 

two-goal terms. Given the optimization model in eqn. (7) since 

,10  d the 1v -norm has the best convex approximation, it 

becomes, 
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The regularization-related Equation (8) can be rewritten 

as a linear programming issue.  Finally, the STFT generate the 

TFR signal, and its output is shown in Figure 7. 

2.3. Sparse Regularization Problem Optimized Using RISTN 

The sparse regularization problem can be efficiently 

solved by the RISTN method. The proposed RISTN to solve 

the (8) is formulated as: 
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Here, it represents the intermediate variables of the 

outcome )(kp , )1( ku , and )(kE ; )(kG is denoted as the gradient 

operator, τθ(k) stands for the proximal nonlinear operator, )(k

is identified as the momentum update scalar. 

By utilizing a trained network as a proximal operator in 

(10), RISTN minimizes the non-differentiable section, and by 

utilizing gradient information in (9), it minimizes the smooth 

differentiable part. The previous two iterations are combined 

in a two-step linear fashion to create the update (11).  

The RISTA net detail is described in the following, and 

the RISTN model includes the three models: gradient descent 

model p(k), proximal mapping module E(k), and momentum 

module u(k+1). 
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2.3.1. Gradient Descent Module p(k)  

Since the preceding layer's output was u(k), this layer 

updates the reconstructed TFR using the gradient descent 

operation of Equation (9), which is the closed-form numerical 

solution to the data consistency subproblem. Specifically, it 

seeks to decrease 2

2
rWu   by finding a more precise 

estimate. Because the physical model is associated with the 

data consistency term, it stabilizes the solution by imposing a 

physical constraint. The theoretical discussion focuses on 

learning with a well-established forward operator, which has 

the potential to reduce the maximum error bounds. 

When dealing with situations involving Gaussian noises, 

the Equation of (9), when let WG k )(  be a vector with 

1
)( EEZ  , simplifies to. The RISTA was motivated by 

ISTA and suggested that, instead of establishing the matrices' 

weights, ISTA should learn them: 
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converge, Equation (9) meets the required condition. The 

weight G(k) in Equation (9) is a linear operator with the same 

dimensions as G(k). It may be expressed as the multiplication 

of a scalar μ(k) and a matrix G


, which is autonomous of the 

layer index k . 

GG kk


)()(
   (14) 

Here, G


is denoted as the small consistency with W. The 

matrix G


 is constructed in advance by explaining: 
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Minimizing the Frobenius norm of WG B
 under-linear 

restrictions is the goal of Equation (12). This is an easy-to-

solve standard convex quadratic program. After G


 is solved 

beforehand, end-to-end training is used to determine step size 

μ(k). 

2.3.2. Proximal Mapping Module E(k) 

When applied to an intermediate result p(k), the proximal 

operator's thresholding in a certain transform domain attempt 

to eliminate artifacts and noise. To capture complicated TFR 

characteristics in practice, the current sparse transformation 

needs to be fine-tuned. RISTN aim to acquire an extra stretchy 

demonstration )( and threshold )(k from training data. 

A RISTN )(  is a four-linear convolutional operator 

with a ReLU in the middle. Xo filters, measuring 3 x 3, are 

represented by the first convolutional operator, whereas oX  

filters, measuring 3 x 3 x Xo, are represented by the remaining 

three convolutional layers. It is assumed that Xo = 32 is the 

default. The advantages of residual learning can be inherited 

by establishing a skip connection from the input to the output. 

Recent research has shown that batch-normalizing layers are 

increasingly prone to introducing undesirable artifacts as the 

network gets deeper and more complex, which is why batch 

normalization is not used. 

The sparse transform is invertible mathematically, or 
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, where N  is the uniqueness operator. Motivated 

by the sparse auto encoder's loss utility, which defines the 

transform )(M loss as, 
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Where symY  represents a lack of regularity in inversion, 

while spaY  represents a constraint that is not densely 

populated. In the RISTA-Net, the parameters  )(  are shared 

across iterations, but )(k the value used for shrinkage 

thresholding is a parameter that can be learned. 

Due to the changing variance of noise and artifact over 

the iterations, the variable )(k  is permitted to change at each 

level of the cascade. 

2.3.3. Momentum Module u(k+1) 

The original ISTN can be made faster by adding a 

momentum term, just like RISTN, which converges in 

function values  )/1( 2kA  at a faster pace than )/1( 2kA  ISTN. 

The faster convergence rate of the method compared to ISTA 

is due to its intelligent selection of update weights for the two 

prior findings, eliminating the need for further gradient 

evaluation.  

In RISTN, this benefit is achieved by adjusting the 

persistent update weights  )(kz  of Equation (11) using a 

learnable parameter p(k), which is automatically cultured from 

the training dataset. 
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The loss utility for RISTN is defined as: 

spasymmsetotal EEEE 21     (17) 

The variable Emse represents the MSE loss between the 

projected yield of RISTN and the crushed truth IFs. Lastly, 

train the network with a consistent set of hyperparameters for 

various tasks. The value λ2 is reduced since the thresholding 

algorithm produces a comparable outcome. Finally, the 

RISTN model solves the sparse regularization problem in TFR 

reconstruction. 

2.4. SVMD Using IF  

Following the reconstruction of TFR, IF estimation is 

executed using the SVMD technique. In cases where IFs do 

not intersect, the traditional SVMD approach is still 

applicable. However, in the TFR domain, most 

multicomponent signals exhibit overlap.  

To overcome this, a modified SVMD approach, 

integrating IF tracking and regrouping, is suggested. In 

SVMD, VMD is introduced to derive Intrinsic Mode 

Functions (IMF) and frequencies from the stable window 

signal of STFT. The IMF and frequencies are subsequently 

monitored and reassembled utilizing the Kalman filter for 

Intermediate Frequency (IF). 

In the TFR domain, the location and speed of IF are 

described by the linear state space model. For simplification 

purposes, a one-dimensional constant velocity chosen 
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Here, skT , is denoted as the velocity, ,/1 cs vR  the 

sampling frequency is denoted as cv , with a measurement 

represented as w.  

),,0(~ PIT ),0(~ qIm is denotes the process and 

measurement noise respectively, with P  as the process 

covariance and the covariance of the noise observation is 

mentioned as q. 

At intersections, a Kalman filter is used to anticipate the 

condition of the following frame in order to prevent 

Identification (ID) switching. The initial center frequency 

setting does affect the SVMD outcome, which is a relief. The 

decomposition result aligns with the starting value, facilitating 

IF tracking and regrouping and accelerating algorithm 

convergence.  

This is achieved by pre-setting the next time's initial value 

according to the Kalman filter's prediction result. In particular, 

the algorithm's validity is greatly affected by the estimation of 

the filtering parameters p and q . 

Similar to VMD, the SVMD method takes α the 

punishment parameter, ρ the scaling factor for updating the 

Lagrangian multipliers, S the number of modes, and the 

tolerance of the stop conditions as input parameters. The 

purpose of this study is not to address all the parameters; 

nevertheless, some of these parameters are associated with the 

ADMM solver; for more information on these parameters 

[16].  

For example, the study requires that the number S be 

manually fixed before it can be used. The two most crucial 

parameters in the SVMD method are α and ρ. Along with the 

augmented Lagrangian technique for signal decomposition 

from overlapping sources, the anticipated center frequencies 

act as a priori knowledge. The window signal can be expressed 

as the Fourier transform operator applied to a reshaped matrix, 

 ),,(Re HHyshapeDTFTE pk    (21) 

Here, DTFTp{.} is denoted as the Fourier transform 

operator, and redesign ),,( nmU is a nm matrix whose 

elements are taken column-wise form U. Figure 9 displays the 

results, while Table 1 shows the initialization of the IFs and 

the TFR reconstruction.  

Table 1. TFR reconstruction and IFs initialization 
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      End while 

Obtained window signal via in-equation 

  ),,(Re HHyshapeDTFTE pk   

Input kE to SVMD method 

Obtained initial IFS by SVMD method 
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2.5. Individual Component Signal Decomposition  

After estimating the IF, the individual component of the 

overlapped nonstationary multicomponent signal will isolated 

by introducing an EVCCD algorithm. Afterwards, an 

optimization model is created and used to reconstruct the 

complex envelope using ADMM because it has a smooth prior 

and shows sparsity in the time-frequency domain.  

Furthermore, the phase error is estimated using the least-

square error criterion. A low-pass filtering operator is used to 

smooth down the IF estimation error generated by unwrapping 

the phase ambiguity operator. The problem of iterative 

optimization can be expressed as follows. 





x

k

p
k

p
k

p
kk

p
k

kLkGkR
RRtsLGGAR

1

2

2

min

,,
.

~
  (22) 

Here, p is denoted as the repetition counter, kR is denoted 

as the separate constituent; the complex envelope, 

G
kkkk ImimmL )](),.......,(),.....1([  

Where,  

)exp()( kmim kk    
 i

t
h

k
p

k
twhdiagG 1 ))(2exp(   is 

the phase error; 
h

k
w is the IF error; and the phase of 

initialization     i
t kk

twhdiagG 1 ))(2exp(
~

 . 

The EVCCD method is presented to remove p
k

R ; the 

complex envelop p
k

L can be demonstrated by Fourier series; 

and 

p
k

p
k

SNL   

Where,  

 Bk
T

k
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k
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k
k nnnmmmN

)()()(
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0

,....,...,,....,...., are the 

Fourier coefficients, and the element configuration 
)12(  TICS can be designated as below: 


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Here, FIWw R /0  , RW is the sampling rate, *F , and 

F=2. A time-frequency filter bank, abbreviated as 0Iw , is 

fundamental to the EVCCD technique. Modifying the 

optimization function in Equation (22) looks like this: 

2

2

2

2

min PPp
N NNWR    (24) 

Here,  

],...,.....,[
1

p
q

p
k

pp WWWW  , ,
~

SGGAW
p

kk
p

k


Bp
q

P
k

pp NNNN ],...,....[
1

 , and 02  is a weighting 

factor. The answer to Equation (24) is as follows, using the 

Tikhonov regularization method: 

  RWCWWN JpPJPP )()(
1

    (25) 

Here, J is denoted as the identity matrix. The following is 

an expression for the individual component signal: 

p
k

p
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p
k

p
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p
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SNGGANWR
~

   (26) 

In the end, EVCCD yields the individual component p
k

R . 

Equation (22)'s optimization function can be rewritten as 

follows because the complex envelope 
kL  has a smooth prior 

and is sparse in the time-frequency domain. 
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In this case, XO  and 𝛺 are two distinct matrices of 

second order; the fidelity term is represented by the first term, 

while the restrictions on kLO and kL , sparse and smoothness, 

are imposed, respectively, by the second and third terms. The 

issue given in Equation (27) can be reformulated in ADMM 

by performing the operation of variable splitting; this process 

then repeats the following three phases; 
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With the stopping criterion, 
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Here, y stands for the ADMM iteration counter, γ for a 

relative error, ρ for the update parameter, and e, as a whole, 

for the residuals throughout time. Ultimately, ADMM yields 

the intricate envelope 
)1( p

k
L .  

In order to estimate the phase error, since kG  is 

unfamiliar, designate a least-square-error model. 
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Here,  ))(exp( IydiagGk  ; the issue raised by (22) can 

be rephrased as follows: 
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Here, 
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valued scalar and )(i satisfies, 
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The following is an expression for the IF increment: 

dt

unwrapd
W k

k

))((

2

1 


   (35) 

Where the unwrapping phase ambiguity operator is 

represented by the letter )(unwrap . The IF estimate error is 

smoothed using the low-pass filtering operator to lessen the 

impact of noise. 
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The solution of (31) is,  
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Lastly, (32) yields the IF estimation error. Table 2 

describes the individual component decomposition technique, 

and Figure 10 displays the results of the EVCCD algorithm. 

 

Table 2. Decomposing components one by one 
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End while 

Output individual components kR and IFs kw  

 

The technique is a sequential optimization method 

consisting of two loops. The inner loop is responsible for 

forecasting the intricate envelope, while the outer loop is 

responsible for extracting individual constituents and 

Intermediate Frequencies (IFs).  
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The initial value of the phase error P
k

G 
)1(

 is established 

in the outer loop. The complex envelope 
p
k

SN
k

L 
)1(

 and the 

running total of the residuals 0)1( e  are initialized at the 

beginning of the inner loop. Finally, the EVCCD model 

separates the multicomponent signal into an indusial signal in 

a short time. 

3. Results and Discussion 
This section presents experimental analyses conducted on 

both the proposed decomposition algorithm and the existing 

decomposition algorithm. The performance of each model is 

compared and evaluated using the multicomponent signal to 

separate individual component signals. A range of metrics, 

including Root Mean Square Error (RMSE), Root Mean 

Absolute Error (RMAE), Mean Square Error (MSE), and 

Signal-to-Noise Ratio (SNR), are calculated for each model in 

real-life signals.  

The error of the suggested decomposition algorithm is 

then compared with existing decomposition algorithms such 

as Resonance-based Signal Decomposition (RSD), Chirplet 

Signal Decomposition (CSD), Recursive Variational Mode 

Decomposition algorithm (RVMD), and Improved Empirical 

Mode Decomposition algorithm (IEMD).  

The results offer a comprehensive overview and 

comparison of these metrics across various models. Table 3 

provides specifics about the system design of the suggested 

model. 

Table 3. Analysis of the suggested model’s system configuration 

Processor 
Intel(R) Core(TM) i5-3570 CPU @ 

3.40GHz   3.40 GHz 

Installed 

RAM 
8.00 GB (7.89 GB usable) 

System 

Type 

64-bit operating system, x64-based 

processor 

Pen and 

Touch 

No pen or touch input is available for this 

display. 

Edition Windows 10 pro 

Version 22H2 

 

3.1. Performance Metrics 

The proposed EVCCD method for individual component 

decomposition is evaluated based on several performance 

metrics. Here are the calculations for each metric: 

3.1.1. RMSE 

RMSE measures the discrepancy between the expected 

and observed values. This is calculated by finding the square 

root of the mean of the squared differences between the 

expected and observed values. 

3.1.2. RMAE 

The RMAE measures the difference between the expected 

and actual values of a signal. The mean of the absolute 

differences between the predicted and observed values is 

calculated. 

3.1.3. MSE 

The Mean Squared Error (MSE) is a measure that 

determines the average of the squared differences between the 

predicted and observed values. The calculation entails 

determining the mean of the squared differences between the 

anticipated and observed values. 

3.1.4. SNR 

SNR measures the strength of a signal relative to the noise 

present in the signal. In this context, it is used to evaluate the 

quality of the separated component signals.  

3.2. Comparative Analysis with Proposed and Existing 

Method 

Using the real-life multicomponent signal, this study 

proposed the EVCCD method against the existing 

decomposition method to correctly separate the individual 

component signal. Figure 2 and Table 4 illustrate the 

comparison between the proposed EVCCD method and an 

existing decomposition technique concerning MSE across 

various SNRs. 

 

 

 

 

 

 

 

Fig. 2 Analysis of MSE 

Comparing the suggested method to the current 

decomposition method, Figure 2 illustrates a prominent 

enhancement in MSE reduction. When related to the current 

procedure, the suggested method performs better. 

Specifically, the proposed method achieves a 31% reduction 

in MSE for individual component signals. This improvement 

is made possible by tackling the sparse regularization 

problem, a frequent problem in decomposition techniques. 

When a signal's length is significantly less than its number of 

non-zero coefficients, the sparse regularization problem 

occurs.  
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By addressing this problem, the proposed method can 

obtain less MSE and improve its performance because the 

existing decomposition algorithm has some limitations, such 

as obtaining many loss problems. Figure 3 and Table 5 present 

a visual representation comparing the proposed EVCCD 

method with an established decomposition technique 

regarding RMAE across varying SNRs. 

The performance of the suggested method and the current 

decomposition method for individual component signals is 

shown in Figure 3 in terms of RMAE reduction. When 

comparing the suggested method to the current decomposition 

method, there is a noticeable improvement in RMAE 

reduction. Specifically, the proposed method achieves a 

0.014% reduction in RMAE for individuals.

Table 4. Analysis of MSE with SNR in individual signals 

Methods 
MSE (SNR) (dB) 

0 2 4 6 8 10 

RSD -24.52 -37.64 -38.86 -39.34 -39.34 -39.52 

CSD -23.67 -29.50 -33.73 -39.56 -39.64 -39.62 

RVMD -17.77 -20.61 -22.98 -25.73 -29.81 -35.30 

IEMD -16.65 -18.22 -20.66 -22.61 -22.95 -24.15 

Proposed -31.06 -39.39 -43.15 -44.89 -45.77 -46.28 

 
Table 5. Analysis of RMAE with SNR in the individual signal 

Methods 
RMAE (SNR) (dB) 

0 2 4 6 8 10 

RSD 0.088 0.074 0.047 0.042 0.038 0.034 

CSD 0.085 0.067 0.038 0.03 0.024 0.025 

RVMD 0.061 0.05 0.038 0.03 0.023 0.022 

IEMD 0.056 0.048 0.038 0.027 0.019 0.017 

Proposed 0.052 0.045 0.035 0.024 0.018 0.013 

 

Table 6. Analysis of RMSE with SNR in individual signal 

Methods 
RMSE (SNR) (dB) 

-20 -10 0 10 20 

RSD -13.358 -14.672 -25.255 -25.234 -21.168 

CSD -14.881 -15.96 -25.555 -28.665 -31.421 

RVMD -14.582 -15.818 -29.055 -38.327 -42.655 

IEMD -14.782 -16.058 -30.657 -41.431 -46.131 

Proposed -15.829 -19.942 -36.448 -45.648 -49.49 

 

This improvement is due to the fact that the proposed 

method can accurately separate individual component signals, 

while the existing method cannot. Compared to the current 

strategy, the suggested approach can achieve greater results. 

Figure 4 and Table 6 present a graphical comparison 

between the proposed EVCCD method and an existing 

decomposition approach regarding RMSE across different 

SNRs. 

The performance of the suggested method and the current 

decomposition method for individual component signals is 

shown in Figure 4 in terms of RMSE reduction. When 

comparing the suggested method to the current decomposition 

method, there is a noticeable improvement in RMSE decrease. 

Specifically, the proposed method achieves a 45% reduction 

in RMSE for individual component signals. This improvement 

is due to the fact that the proposed method uses STFT to easily 

identify the TFR and estimate the IF of the signals. In contrast, 

the existing method has some complexity in generating the 

TFR.
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Fig. 3 Analysis of RMAE 

 

 

 

 

 

 

 

Fig. 4 Analysis of RMSE 

 

 

 

 

 

 

 

 

Fig. 5 Analysis of computational time 

Figure 5 and Table 7 present a comparison of 

computational time between the proposed and existing 

methods. The computing times of the suggested approach and 

the current method are contrasted in Figure 4. The proposed 

method can achieve a much lower computational time of just 

0.90284% compared to the existing method. This indicates 

that the suggested approach for dissecting signals into their 

constituent signals is far quicker and more effective. 

Table 7. Comparison between proposed and existing method 

computational time 

Methods Computational Time 

Proposed 0.90282 

IEMD 1.76779 

RVMD 3.76746 

CSD 8.05714 

RSD 11.1426 

 

The proposed method mentioned in the table is a signal 

processing technique that separates individual component 

signals from a multicomponent incomplete signal. This 

method is efficient as it requires less time to process the signal 

than other traditional methods. Figures 6 to 10 present the total 

result of the suggested approach. Upon further examination of 

Figures 6 to 10, it becomes evident that the proposed method 

adeptly and efficiently separates the multicomponent signal. 

 

 

 

 

 

 

 

Fig. 6 Original multicomponent signal 

 

 

 

 

 

 

 

Fig. 7 Time-frequency representation 
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Fig. 8 Reconstructed time-frequency representation 

 

 

 

 

 

 

 

Fig. 9 Instantaneous frequency 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 Multicomponent signal to separate the individual signal

4. Conclusion 
This paper introduces the novel EVCCD approach for 

efficiently decomposing multicomponent incomplete signals. 

The EVCCD method processes signals by first applying STFT 

to obtain a time-frequency representation. This representation 

is then refined using Compressive Sensing, specifically 

RISTN, to solve a sparse regularization problem. The IF is 

estimated using the SVMD algorithm. The modelling and 

experimental findings demonstrate that the proposed EVCCD 

approach surpasses existing methods in terms of RMSE, MSE, 

RMAE, and computing time, achieving values of -15.829 dB, 

-31.062 dB, 0.034 dB, and 0.90282, respectively. The results 

underscore the potential of the EVCCD approach for signal 

decomposition and provide a good outlook for future study. 

Our future goals include enhancing the performance of the 

EVCCD approach, expanding its applicability to a broader 

spectrum of signals, and investigating its potential for real-

time applications. The goal is to provide a robust and efficient 

solution for decomposing complex signals, which can benefit 

various domains, including signal processing, communication 

systems, and biomedical engineering. 
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