
SSRG International Journal of Electrical and Electronics Engineering Volume 11 Issue 2, 98-106, February 2024
ISSN: 2348-8379/ https://doi.org/10.14445/23488379/IJEEE-V11I2P111 © 2024 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Designing A Low Power LeNet Convolutional Neural

Network Accelerator for FPGA in IoT Edge Computing

Alshima Alwali1, Peter K. Kihato1,2

1Department of Electrical Engineering (Computer Option),

Pan African University, Institute for Basic Sciences, Technology and Innovation (PAUSTI), Nairobi, Kenya.
2Department of Electrical and Electronic Engineering, Jomo Kenyatta University of Agriculture and Technology (JKUAT),

Nairobi, Kenya.

1Corresponding Author : alwali.alshima@students.jkuat.ac.ke

Received: 21 November 2023 Revised: 14 December 2023 Accepted: 21 January 2024 Published: 16 February 2024

Abstract - With an emphasis on the Xilinx Artix XC7A200T FPGA, in this paper, a Convolutional Neural Network (CNN) tailored

explicitly for FPGA deployment is designed and implemented. The method adapts the LeNet-1 model using a hardware

description language; this choice is motivated by the model’s minimal size, making it suitable for edge computing devices. With

its parameterized module structure, the architecture, known as ‘LeNet,’ offers significant flexibility and adaptability. The design

focuses on the modular architecture and diversity of Processing Elements (PEs), crucial for parallel processing in

computationally demanding CNN tasks. Convolutional, pooling, and fully connected layers are customized to leverage the

FPGA’s capabilities. Multiple filter banks are utilized for effective input processing and feature extraction. The pooling layers

are specifically designed to reduce feature dimensionality complexity, thereby improving data fluctuation handling and reducing
computational demands. The architecture stands out for its scalability and efficiency, utilizing five different processing units.

The parameterization of modules and their successful application on the MNIST dataset, a standard benchmark in Machine

Learning for handwritten digit recognition, further illustrate how the architecture may be adapted to different datasets and

applications. The implementation of the Xilinx Artix XC7A200T FPGA achieved a power consumption of 1.775 W at 100 MHz,

indicating that the design is energy-efficient and suitable for high-demand applications in resource-limited environments. This

paper details the module design, parameterization, and integration methodologies employed in the design process of adapting

the LeNet-1 model for FPGA.

Keywords - Convolutional Neural Networks, Edge computing, FPGA, LeNet-1, Performance analysis.

1. Introduction
Many domains use Convolutional Neural Networks

(CNNs), including semantic segmentation [1], object

detection [2], and image classification [3]. Modern

Convolutional Neural Nets (CNNs) include several layers and

are more computationally complex, making them challenging

to implement on embedded systems. In the domains of

Automotive Driver Assistance (ADAS) and data center

acceleration [4], using FPGA to speed CNN has garnered a lot

of interest. FPGA’s flexibility and ease of development allow
it to accommodate the continually evolving CNN models.

In an attempt to attain high precision, CNNs have been

trending toward layer additions, intricate architectures, and

intricate operations [5-7]. The enormous volume of

parameters and processes necessitates stringent memory

management and computational power. First introduced in [9],

a novel convolution design aimed to minimize the number of

parameters and computing burden of standard convolutions.

Xception [10], ShuffleNet [12], and MobileNetV2 [11] are

examples of new CNNs that substitute depthwise separable

convolution for traditional convolution. In order to retain a
high degree of accuracy, this significantly reduces the number

of processes and parameters required.

CNN is a computationally demanding task that uses a lot

of processing power. The target platform is chosen to be the

Graphic Processing Units (GPUs) because of their sufficient

performance. However, GPUs have a significant issue due to

power consumption. The highly parallel, scalable, and energy-

efficient computing substrate of FPGAs is driving up their use

for CNN acceleration [13].

There is still a significant difference between the CNN

model and accelerator design, even with recent attempts to
employ FPGAs to accelerate CNNs [14]. Large and

ineffective standard CNN models like AlexNet [15], VGG16

[5], GoogLeNet [16], and ResNet [8] are still targeted at some

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Alshima Alwali & Peter K. Kihato / IJEEE, 11(2), 98-106, 2024

99

FPGA accelerators. More computational and storage

resources are needed for those inefficient models than for the

compact, accurate models that are efficient. Getting high

performance out of an accelerator based on these inadequate

approaches is challenging.

Modern CNN-based accelerators like MobileNets and
ShuffleNets have only been able to reach respectable speeds

on image recognition jobs. Depthwise separable convolution

is usually used by these state-of-the-art CNNs in order to

reduce parameters and operations.

There are numerous types of systems available in the field

of AI/ML accelerators, ranging from modest designs to large-

scale business solutions, all of which are customized to meet

particular computing requirements.

In [17], Google’s TPU project aimed to reduce profound

neural network inference costs by 10x. It was developed as a

CPU and GPU ASIC replacement between 2013 and 2015.

This was done with systolic array-based hardware matrix
multiplication units. The original TPU, known as TPU v1,

used a 256 × 256 systolic array matrix multiplication unit for

some workloads and provided 30-80× more performance per

watt than current CPUs and GPUs.

Since then, TPU v2 and v3 have been launched. The TPU

versions 2 and 3 are designed for inference and training and

perform better than their predecessors. Bfloat16, a new

number format introduced in TPU v2, has the same dynamic

range as fp32 but poorer accuracy. Many Google products use

TPUs, including Search, Android, YouTube, and others [17].

Microsoft Project Brainwave [18] is a machine-learning
accelerator.

In contrast to Google TPU, Project Brainwave uses an

FPGA-Project Brainwave benefits from being programmable

and more agile than Google. In the study [22], Programmable

Logic (PL) is employed for speed and power consumption,

while a Processor System (PS) is used for process control.

This method integrates streams of training and inference data

by using High-Level Synthesis (HLS) tools to translate high-

level language descriptions into hardware Register Transfer

Level (RTL) formats.

Validation on the Xilinx HA device with the MNIST

dataset showed remarkable processing speeds, low power
consumption, and good accuracy, along with comparable

convergence rates to GPU models in only 78.04% of the

training period. For IoT edge computing, the B. Wang et al.

“Shenjing” accelerator [19] is a low-power, compact device.

By connecting a regular neural network to a spiking neural

network, SNN energy efficiency is possible.

This approach uses 1.26 mW, and MNIST inference

errors are 4%. “FANN-on-MCU” is another small neural

network accelerator [20] developed by X. Wang et al. for edge

computing in the Internet of Things. They used PULP, a

parallel ultralow-power RISC-V platform, to code their

approach, unlike previous research. Their architecture is 22x

quicker and 69% less energy-hungry than Cortex-M4.

In [25], SparkNet, a lightweight neural network
architecture, is created to decrease weight parameters and

computing demands on MINIST, CIFAR-10, CIFAR-100, and

SVHN datasets. Squeezenet’s minimal parameters and deep

separable convolution’s reduced processing help SparkNet

compress CNN 150x. SparkNOC, an FPGA-based accelerator

architecture, maps each network layer to dedicated hardware

units for pipelined operation.

SparkNOC, implemented on the Intel Arria 10 GX1150

FPGA platform, achieves high speed with convolutional layer

parallelism, on-chip RAM for intermediate result access, and

synchronized pipeline execution. In experiments, the

accelerator earned 337.2 GOP/s with 44.48 GOP/s/W energy
efficiency, beating GPU, CPU, and FPGA approaches.

Developing an efficient SparkNet architecture for edge

deployment, a parallelism allocation technique for FPGA-

based accelerators, and deploying SparkNet on FPGA with

higher performance and power efficiency are the main

contributions.”

This study presents a new FPGA-based accelerator

solution for the LeNet-1 Convolutional Neural Network,

utilizing the Verilog hardware description language. This

study aims to efficiently implement LeNet-1, a comparatively

more straightforward CNN model crucial for edge computing
applications.

In contrast to earlier efforts focusing on large-scale

solutions or specific architectures like Google’s TPU [17] and

Microsoft Project Brainwave [18], this research introduces a

parameterized LeNet module. This module features fully

connected and convolutional layers that are meticulously

instantiated, with adjustable filter sizes, channel counts, and

pooling layer parameters.

The uniqueness of this approach lies in the combination

of Processing Element (PE) and PE array modules optimized

for parallel processing. This results in a significant increase in

computational performance quantified in nanoseconds per
processing step.

Suited for real-time image recognition in IoT edge

computing environments, this approach not only addresses the

challenges of implementing CNNs on FPGAs but also marks

a notable improvement in executing computationally intensive

tasks. By bridging the current gap in FPGA-based CNN

accelerators, this work offers a scalable and energy-efficient

solution applicable in various technological contexts.

Alshima Alwali & Peter K. Kihato / IJEEE, 11(2), 98-106, 2024

100

2. Background
2.1. CNN Foundations

The 1980s and 1990s saw the start of Convolutional

Neural Network research. The first convolutional neural

networks were Lenet-5 and the time delay network.

Convolutional Neural Networks were developed quickly

around the turn of the 20th century, thanks to advancements in

numerical computing hardware and deep learning theory.

They are currently widely employed in several domains,

including computer vision and natural language processing

[15].

Bionic creatures’ mechanisms for visual perception are

built using Convolutional Neural Networks. The
Convolutional Neural Network organizes the layer data with

less processing, making feature extraction easier. The hidden

layer’s convolution kernel parameters and the absence of links

between network layers make this possible. The feedforward

portion of convolutional neural networks is frequently

employed for picture recognition and classification, and the

feedback section is used for network training when they are

utilized as supervised learning techniques. The majority of

users employ Convolutional Neural Networks and training

weight data to accomplish real-time jobs; hence, feedforward

calculation speed is more crucial. This article’s primary focus
is on the FPGA’s feedforward section acceleration in

convolutional neural networks.

The feature extractor and classifier are the two

components that make up the conventional neural network

architecture. The function of the feature extractor is to extract

the features from the input image. Since the feature map was

mapped to a different feature map, these images lack unique

properties. This is primarily because of the convolution core

sliding that contains most shapes.

The weight of the convolution kernel should be mapped

one-to-one between the input and output layers. A classifier is

what is created when the feature layer is transformed into an
output structure. Feature extractors frequently include

convolution and downsampling layers, like with Lenet-1, as

seen in Figure 1. One fully connected layer, two subsampling

layers, and two convolutional layers make up LeNet-1.

2.2. Acceleration of FPGA

FPGA clocks typically operate at a few hundred MHz,

although the core frequency of a general-purpose CPU can

reach several GHz. However, the general-purpose CPU

typically performs better than the FPGA. For specific tasks,

including signal or image processing, a general-purpose CPU

may need a lot of clock cycles. However, through
programming, an FPGA may immediately build a specific

circuit. During this process, the logic blocks and connections

on the FPGA are configured to maximize pipelining and

parallel processes.

Furthermore, through memory use optimization, an

FPGA speeds up reading and writing processes, resulting in a

notable improvement in performance for particular tasks.

Fig. 1 Architecture of LeNet-1 [21]

Recent developments in FPGA optimization for faster

processing rates have mainly concentrated on the creative

creation and usage of practical algorithms and designs, as the
LeNet model proposed in this work serves as an example.

With skillful configuration, this Convolutional Neural

Network takes advantage of FPGAs’ parallel processing

capabilities. A modular design, which divides the model into

convolutional, pooling, and fully connected layers, is one of

the main optimization techniques.

This allows for parallel processing while streamlining

data flow and computation management. The model’s

pipelined architecture, which enables the simultaneous

execution of numerous calculation steps, dramatically reduces

latency and increases throughput. The FPGA’s strategic
memory management lets you get to weights and intermediate

data quickly. It also cuts down on latency and speeds up

convolutional processing by cutting down on data retrieval

times.

The LeNet model is characterized by its parameterization,

which lets you change things like the number and size of filters

and the number of neurons in fully linked layers. This makes

it scalable and adaptable to different FPGA sizes and

capabilities. By using the same hardware resources for many

layers at other times, sharing mechanisms allow for resource

optimization through optimal resource use and reduced

hardware requirements. To speed up processing, the model
also uses fixed-point arithmetic instead of floating-point,

which makes calculations easier and saves resources.

3. Accelerator Design
An extensive design overview of a hardware-accelerated

Convolutional Neural Network (CNN) aimed at practical and

high-performance computing applications is presented in this
research. The design features a stable architecture, as shown

in Figure 2, which integrates all the essential components of a

CNN onto an FPGA platform. This integration resolves

Input
28x28

Feature Maps
4@24x24

Output
10@1x1

Feature Maps
12@4x4

Feature Maps
12@8x8

Feature Maps
4@12x12

Alshima Alwali & Peter K. Kihato / IJEEE, 11(2), 98-106, 2024

101

significant problems with real-time processing, power

efficiency, and data management, making it practical for a

variety of uses, including real-time image analysis and

autonomous systems.

3.1. Architectural Design

The Processing Elements (PEs) are essential to the
convolutional layer’s effectiveness.

Fig. 2 Overview of accelerator design

These PEs are essential to the architecture’s ability to

process data in parallel. Fast matrix multiplication, a crucial

process in convolutional computations, is a skill that each PE

possesses. The solution allows for the simultaneous
processing of several data streams by arranging a total of five

PEs in an array. This arrangement offers a scalable and

flexible design that supports many CNN models while also

speeding up convolutional processes. For quick feature

extraction in real-time applications, the PEs are tuned for low-

latency operations. Their modular architecture improves the

reconfigurability and adaptability of the system to meet a

range of computational needs. Significant gains in

computational performance are achieved, along with the

preservation of power economy, by integrating these

Processing Elements (PEs)-a crucial feature for FPGA-based

devices.

By utilizing these PEs in a Processing Element Array, the

convolutional layers improve matrix multiplication

performance and data flow. After convolution, the

Accumulation Block (AB), Figure 3, consists of an adder to

add the incoming partial sum to its corresponding counterpart

and a FIFO to store partial sums previously kept in that block.

The time-synchronized addition process keeps on until every

block contains the entire convolved result. When no pertinent

data arrives from the systolic array, the contents of each block

are frozen. The Pooling and Activation Block (PAB), Figure

3, is made up of an activation unit, a memory element (FIFO),
and a comparator block, then processes the data. The

following inputs from the accumulation block are compared

to the matching item already kept in this block’s residual

FIFO, and the most significant value in the comparator block’s

output is one of these values. PAB employs an enhanced

Softmax Activation function alongside a specially designed

pooling method tailored to meet the requirements of the

application. This approach effectively reduces spatial

dimensions and introduces non-linearity. This strengthens the

network’s ability to identify complex patterns.

Fig. 3 (a) AB module, and (b) PAB module.

 Fig. 4 (a) PE dataflow, and (b) PE architecture.

The Fully Connected (FC) module in Figure 2 is essential

for combining information and enabling classification. The

FC serves as a point of convergence for the features retrieved

by the convolutional and pooling layers that came before it,

synthesizing the data into a format that makes sense for the

decision-making process. Its primary function is to classify the

input image by allocating it to one of the predefined classes

(0-9), especially in digit recognition tasks. Multiply-

accumulate activities, in which each neuron evaluates its

inputs against corresponding weights to produce a collection
of outputs, are the fundamental operations of the FC module.

A softmax function, which is common in classification

problems, is then used to convert these outputs into

probabilities, yielding an understandable and straightforward

conclusion. To further enhance the layer’s effective and well-

organized operation, the code incorporates well-considered

control logic that manages reset circumstances, regulates the

sequence in which operations are carried out, and indicates

when processing is complete.

IFM

CNN
Result

Filters

IFMB

IDB

WB

PE PAB

FC

AB

FIFO

AB Output

FIFO

PAB Output

Partial Sum
Po

Comp

(b) (a)

AB Output

Previous

Output

Reg

(Pi)

Po

Input

Data
(Ii)

Multiplier
Ii * W = P

EN Weight

(W)

Adder
Pi * P = Sum

Regs (PO)
PO

Regs (IO)
clk . rst IO

Reg

Reg

(a) (b)

Alshima Alwali & Peter K. Kihato / IJEEE, 11(2), 98-106, 2024

102

3.2. Processing Element

The critical element of the proposed FPGA-based

Convolutional Neural Network (CNN) architecture is the

Processing Element (PE) module, which is seen in Figure 4.

The PE Array module (Figure 5) successfully complements

the PE module in this design. The multiplier and adder blocks,
which carry out the primary computational operations, are

what define the PE module. Weights are applied to the input

data (Ii) in the multiplier block in order to get the intermediate

product (P). In the Adder Block, this product is joined with Pi,

the previous output, to create a total, which effectively

integrates the outcomes of the last and current processes.

Fig. 5 PE array

Two sets of registers are used in the PE module to control

data flow and synchronization. The clk (clock) signal ensures

timely processing, while the reset (rst) signal provides

initialization. The first set, Registers (Po), records the output

from the Adder Block. Po, the output from these registers,

represents one significant computational outcome. Ii directly

feeds a second set, Registers (Io), which is governed by clk

and rst. The synchronized version of the input data that these

registers output is called Io, and it is essential for further
system activities as well as for maintaining data integrity and

coherence with the module’s processing cycle.

An essential part of the architecture is the “PE Array”

module, which is a skillfully constructed array of Processing

Elements (PEs) that are necessary for convolutional

operations in neural networks. Each PE acts on a different set

of input data and weights. A very straightforward diagram of

this module (Figure 5) shows five connected rectangles with

structured labels, PE0 through PE4. Every rectangle, which

stands for a PE, is connected to provide smooth data flow,

which is essential for activities requiring sequential

processing. According to this architecture, each PE in the
array processes the inputs in a certain way before passing the

processed data to the next PE in line. This design, which is

visible in the schematic as well as the practical

implementation, illustrates a sequential data processing

system. A series of processing steps is formed when the output

of one PE is used as the input for the following.

Moreover, the PE Array module can be customized to

fulfill unique application requirements and accommodate

different bit widths. The PEs’ interconnectedness, which

results in one PE’s output becoming another’s input, creates a

seamless data flow that is necessary for sequential processing.

Intermediary wires help this flow, and the array’s general
configuration guarantees effective data transfer between the

PEs. The array’s embedded clock and reset signals allow for

operation resetting and synchronization, which improves

functionality overall.

This ingenious approach, which is especially well-suited

for the convolutional stages of neural networks, finds a

balance between the parallel processing powers of FPGA

structures and sequential data handling. The combination of

the PE and PE Array modules in the architecture provides a

high-performance computation technique for neural network

applications by fully utilizing FPGA technology. Essentially,

the PE Array module effectively communicates the concept of
complex computing processes common to sophisticated

digital systems, as well as serving as an example of a basic

idea in the domains of digital signal processing and neural

networks. Though it seems straightforward, this method

captures the core of practical, step-by-step data processing,

where each component builds on the work of the one before

it.

3.3. Memory Management

As Figure 2 illustrates, on-chip memory is essential to

improving system performance in the CNN accelerator. The

WB is used to store the filter weights required for convolution
operations. It is made to efficiently keep weights in a way that

facilitates high-throughput access, which is crucial for quick

convolution computations. The input feature maps, on the

other hand, are either the original input data or the outputs of

earlier layers and are stored in the IFMB. Taking into

consideration that feature maps alter as processing moves

forward, it is tuned for dynamic read/write operations. These

two elements are essential for decreasing off-chip memory

transfer delay and increasing data access speed. This is crucial

for FPGA systems in particular because memory bandwidth is

often a limiting factor. These buffers significantly improve

system performance by localizing important data inside the
FPGA, facilitating quick and effective computation that is

essential for real-time processing applications.

The Intermediate Data Buffer (IDB) is also integrated into

the design, which improves the data processing flow even

further. The IDB sequences data from the IFMB before

sending it to the Processing Elements (PEs). To provide

consistent data transport, each row of the IDB in this

configuration corresponds to a row of the processing elements.

The data traversal order, which essentially determines how the

data is fed into the PEs, is carefully followed when organizing

the data from the IFMB in the IDB.

Alshima Alwali & Peter K. Kihato / IJEEE, 11(2), 98-106, 2024

103

This configuration improves the use of the processing

elements and simplifies the data flow from IFMB to PEs,

improving the effectiveness and performance of the CNN

accelerator. The output Feature Map, or FM, is moved to off-

chip DRAM after first being kept in on-chip buffers. When

using deep learning models, this approach is crucial because
the network produces large volumes of data in these models.

For processing or storing, effective data management is

essential to avoiding overstuffing the device’s memory and

bandwidth.

Dynamic weight loading, efficient data compression, and

selective input data tiling are incorporated to enhance the

effectiveness of the concept further. These techniques are

crucial for getting over the built-in restrictions on bandwidth

and on-chip memory, guaranteeing that the architecture can

balance throughput, latency, and power efficiency while

meeting the demanding computational requirements of

contemporary Deep Learning applications. Maintaining this
equilibrium is essential for the accelerator’s incorporation into

more extensive systems, as every one of these elements is

critical to overall functionality.

4. Results and Discussion
This research utilized the Vivado software suite for the

design and synthesis of an FPGA-based CNN accelerator. Key
to the testing was the MNIST dataset, renowned in Machine

Learning for handwritten digit recognition. This choice

ensured the architecture’s applicability in real-world image

processing and neural network applications. The design was

rigorously tested using the high-performance Xilinx Artix

XC7A200T FPGA, known for its adaptability and cost-

efficiency. This platform provided the necessary environment

for reliable testing of functionality and performance.

Figure 6 illustrates the implemented design within

Vivado, highlighting the layout and configuration of various

components. The design’s resource usage is broken down in

Table 1. Notably, the total power consumption was measured
at 1.775W at 100MHz, as shown in Figure 7. This

consumption, comprising 1.638 W of dynamic power and 137

mW of static energy, was estimated using the Xilinx Power

Estimator (XPE). Remarkably, this represents a 55%

reduction in power compared to previous LeNet CNN designs,

which typically consumed around 3.22 W.

The FPGA CNN accelerator’s output underwent rigorous

verification against Python-based implementations,

showcasing minor differences attributable to distinct precision

handling and computing methods between the platforms, as

illustrated in Figure 8. Despite these variances, the design
demonstrated remarkable flexibility and resilience across a

variety of processing scenarios. The comparative analysis

evaluates the FPGA-based CNN accelerator against previous

models [23, 24], which also focus on LeNet CNN

architectures but employ different design strategies. A fixed-

point data format and numerous approximate accumulation

units were used in the work [23] to propose an FPGA-based

CNN accelerator.

Fig. 6 Hardware implementation in Vivado

Fig. 7 Power summary

This design, developed using high-level synthesis tools

on a Xilinx FPGA, optimized memory usage and network

latency by 66% and 50%, respectively, compared to floating-

point designs. It optimized data types and loop parallelization

and used FPGA logic resources for approximation operations
to achieve this efficiency. Their approach included an

approximate MAC operator and data size optimization by

trimming unused bits post-activation, with performance tested

across various bit widths.

On the other hand, [24] developed a CNN accelerator for

FPGA with the goal of identifying handwritten numbers in

MNIST. Their system utilized deep pipeline processing to

optimize parallelism at both coarse and fine granularity levels.

The design featured a structured circuit approach for easy

expansion of layers and neurons and improved classification

throughput by efficient internal memory organization in the
FPGA. This approach resulted in three times the acceleration

at 50MHz compared to traditional CPUs, with power

consumption taking up only 2% of CPU usage. They

emphasized a flexible memory management system, standard

interfaces for convolution and pooling layers, and a structured

design enabling easy CNN reconstruction and scalability.

Total On-Chip Power 1.775 W

Junction Temperature
Thermal Margin

Effective ӨJA

30.2°C
54.8°C

2.9°C/W

18.5W

Alshima Alwali & Peter K. Kihato / IJEEE, 11(2), 98-106, 2024

104

Fig. 8 Samples of contrasting XILINX and KERAS outputs

Table 1. Comparison of the use of FPGA resources

Model This Work [23] [24]

FPGA Artix-7XC7A200T ZynqXCZU9EG Artix-7XC7A20

Clock (MHz) 100 100 50

LUT 72,886 61,713 88,756

FF 36,252 27,863 42,038

DSP 141 123 571

IO 34 - -

Power (W) 1.775 1.673 14.13

The design, while not employing advanced techniques

like deep pipeline processing or structured circuit design, still

demonstrated superior performance compared to [24] and was

nearly equivalent to [23]. As detailed in Table 1, the approach

focused on effective resource utilization without the use of

high-precision DSP blocks. It achieved notable improvements

in memory usage, network latency, and power efficiency. This

comparison highlights the design’s strength in delivering high

performance and energy efficiency, validating it as a

competitive solution in the FPGA-based CNN accelerator

landscape.These comparisons and test results underscore the

efficiency of the FPGA-based CNN accelerator design,

-15

-25

-20

-30

-35

-40

-45

-50

-55

RMSE: 0.42

0 2 4 6 8

FC Layer Keras
FC Layer Xilinx

Comparison of FC Layers for Digit 0

-4

-2

-6

-8

-10

-12

RMSE: 0.26

0 2 4 6 8

FC Layer Keras
FC Layer Xilinx

Comparison of FC Layers for Digit 1

-35.0

-40.0

-37.5

-42.5

-45.0

-47.5

-50.0

-52.5

-55.0

RMSE: 0.49

0 2 4 6 8

FC Layer Keras
FC Layer Xilinx

Comparison of FC Layers for Digit 2

-40

-35

-45

-50

-55

RMSE: 0.51

0 2 4 6 8

FC Layer Keras
FC Layer Xilinx

Comparison of FC Layers for Digit 3

F
C

 L
ay

er
 O

u
tp

u
t

V
al

u
es

F
C

 L
ay

er
 O

u
tp

u
t

V
al

u
es

F
C

 L
ay

er
 O

u
tp

u
t

V
al

u
es

FC Layer Index FC Layer Index

FC Layer Index FC Layer Index

F
C

 L
ay

er
 O

u
tp

u
t

V
al

u
es

Alshima Alwali & Peter K. Kihato / IJEEE, 11(2), 98-106, 2024

105

particularly in terms of power consumption and performance.

The approach effectively combines optimized data formats

and parallelization strategies, presenting a significant

advancement in the field of FPGA-based neural network

implementation, especially suited for applications where

power efficiency and processing speed are paramount.

5. Conclusion
An FPGA-based CNN architecture accelerator designed

especially for the LeNet-1 architecture is implemented in this

work. The design is notable for using Vitis HLS in Vivado to

construct the layers and overall structure of the CNN

accelerator, achieving an accuracy of over 96%. Based on the

FPGA Xilinx Artix-7 XC7A200T, the design has been tested.
Amazingly, the accelerator achieves the needed throughput at

100 MHz with just 1.775 W of power consumption.

Accordingly, in terms of performance per watt, the suggested

approach performs better than current LeNet FPGA

implementations. Aside from these successes, the architecture

has also been effectively used with the MNIST dataset, a

standard benchmark for assessing Machine Learning models

when it comes to handwritten digit recognition. This

modification highlights the approach’s adaptability and
potency even further. Future improvements to the

performance assessment methodology will encompass the

incorporation of parallel data transfer for both the Input

Feature Map (IFM) and weights, permitting data accessibility

within a single clock cycle, and providing internal storage to

concurrently store the weights and biases. This will reduce

memory bottlenecks and improve the functionality of the

solution in CNN-embedded real-time applications.

Funding Statement
This study was supported by the African Union (AU).

References
[1] Kaiming He et al., “Mask R-CNN,” Proceedings of the IEEE International Conference on Computer Vision, pp. 2961-2969, 2017. [Google

Scholar] [Publisher Link]

[2] Shaoqing Ren et al., “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks,” Advances in Neural

Information Processing Systems, vol. 28, pp. 1-9, 2015. [Google Scholar] [Publisher Link]

[3] Olga Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge,” International Journal of Computer Vision, vol. 115, no.

3, pp. 211-252, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[4] Andrew Putnam et al., “A Reconfigurable Fabric for Accelerating Large-Scale Datacenter Services,” ACM SIGARCH Computer

Architecture News, vol. 42, no. 3, pp. 13-24, 2014. [Google Scholar] [Publisher Link]

[5] Karen Simonyan, and Andrew Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,” ArXiv, 2015.

[CrossRef] [Google Scholar] [Publisher Link]

[6] Christian Szegedy et al., “Rethinking the Inception Architecture for Computer Vision,” Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 2818-2826, 2016. [Google Scholar] [Publisher Link]

[7] Christian Szegedy et al., “Inception-v4, Inception-Resnet and the Impact of Residual Connections on Learning,” Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 31, no. 1, pp. 4278-4284, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[8] Kaiming He et al., “Deep Residual Learning for Image Recognition,” Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 770-778, 2016. [Google Scholar] [Publisher Link]

[9] Laurent Sifre, and Stephane Mallat, “Rigid-Motion Scattering for Texture Classification,” ArXiv, 2014. [CrossRef] [Google Scholar]

[Publisher Link]

[10] Francois Chollet, “Xception: Deep Learning with Depthwise Separable Convolutions,” Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 1251-1258, 2017. [Google Scholar] [Publisher Link]

[11] Mark Sandler et al., “MobileNetV2: Inverted Residuals and Linear Bottlenecks,” Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pp. 4510-4520, 2018. [Google Scholar] [Publisher Link]

[12] Xiangyu Zhang et al., “ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices,” Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6848-6856, 2018. [Google Scholar] [Publisher Link]

[13] Yongming Shen, Michael Ferdman, and Peter Milder, “Maximizing CNN Accelerator Efficiency through Resource Partitioning,” ACM

SIGARCH Computer Architecture News, vol. 45, no. 2, pp. 535-547, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[14] Kiseok Kwon et al., “Co-Design of Deep Neural Nets and Neural Net Accelerators for Embedded Vision Applications,” DAC '18:

Proceedings of the 55th Annual Design Automation Conference, pp. 1-6, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[15] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” Advances

in Neural Information Processing Systems, pp. 1-9, 2012. [Google Scholar] [Publisher Link]

[16] Christian Szegedy et al., “Going Deeper with Convolutions,” Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 1-9, 2015. [Google Scholar] [Publisher Link]

[17] Norman P. Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit,” Proceedings of the ACM/IEEE 44th Annual

International Symposium on Computer Architecture (ISCA), pp. 1-12, 2017. [CrossRef] [Google Scholar] [Publisher Link]

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mask+R-CNN+Kaiming+He%2C+Georgia+Gkioxari%2C+Piotr+Doll%C3%A1r%2C+Ross+Girshick&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mask+R-CNN+Kaiming+He%2C+Georgia+Gkioxari%2C+Piotr+Doll%C3%A1r%2C+Ross+Girshick&btnG=
https://openaccess.thecvf.com/content_iccv_2017/html/He_Mask_R-CNN_ICCV_2017_paper.html
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Faster+R-CNN%3A+Towards+Real-Time+Object+Detection+with+Region+Proposal+Networks&btnG=
https://proceedings.neurips.cc/paper_files/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html
https://doi.org/10.1007/s11263-015-0816-y
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=ImageNet+Large+Scale+Visual+Recognition+Challenge&btnG=
https://link.springer.com/article/10.1007/s11263-015-0816-y
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+reconfigurable+fabric+for+accelerating+large-scale+datacenter+services&btnG=
https://dl.acm.org/doi/abs/10.1145/2678373.2665678
https://doi.org/10.48550/arXiv.1409.1556
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Very+deep+convolutional+networks+for+large-scale+image+recognition&btnG=
https://arxiv.org/abs/1409.1556
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Rethinking+the+inception+architecture+for+computer+vision&btnG=
https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Szegedy_Rethinking_the_Inception_CVPR_2016_paper.html
https://doi.org/10.1609/aaai.v31i1.11231
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Inception-v4%2C+inception-resnet+and+the+impact+of+residual+connections+on+learning&btnG=
https://ojs.aaai.org/index.php/aaai/article/view/11231
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+residual+learning+for+image+recognition&btnG=
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://doi.org/10.48550/arXiv.1403.1687
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Rigid-Motion+scattering+for+texture+classification&btnG=
https://arxiv.org/abs/1403.1687
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Xception%3A+Deep+learning+with+depthwise+separable+convolutions&btnG=
https://openaccess.thecvf.com/content_cvpr_2017/html/Chollet_Xception_Deep_Learning_CVPR_2017_paper.html
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=MobileNetV2%3A+Inverted+Residuals+and+Linear+Bottlenecks+&btnG=
https://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=ShuffleNet%3A+An+extremely+efficient+convolutional+neural+network+for+mobile+devices&btnG=
https://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_ShuffleNet_An_Extremely_CVPR_2018_paper.html
https://doi.org/10.1145/3140659.3080221
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Maximizing+CNN+accelerator+efficiency+through+resource+partitionin&btnG=
https://dl.acm.org/doi/abs/10.1145/3140659.3080221
https://doi.org/10.1145/3195970.3199849
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Co-design+of+deep+neural+nets+and+neural+net+accelerators+for+embedded+vision+applications&btnG=
https://dl.acm.org/doi/abs/10.1145/3195970.3199849
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=ImageNet+classification+with+deep+convolutional+neural+networks&btnG=
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Going+deeper+with+convolutions&btnG=
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Szegedy_Going_Deeper_With_2015_CVPR_paper.html
https://doi.org/10.1145/3079856.3080246
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=In-datacenter+performance+analysis+of+a+tensor+processing+unit&btnG=
https://dl.acm.org/doi/abs/10.1145/3079856.3080246

Alshima Alwali & Peter K. Kihato / IJEEE, 11(2), 98-106, 2024

106

[18] Jeremy Fowers et al., “A Configurable Cloud-Scale DNN Processor for Real-Time AI,” 2018 ACM/IEEE 45th Annual International

Symposium on Computer Architecture (ISCA), Los Angeles, USA, pp. 1-14, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[19] Xiaying Wang et al., “FANN-on-MCU: An Open-Source Toolkit for Energy-Efficient Neural Network Inference at the Edge of the Internet

of Things,” IEEE Internet of Things Journal, vol. 7, no. 5, pp. 4403-4417, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[20] Chen Zhang et al., “Optimizing FPGA-Based Accelerator Design for Deep Convolutional Neural Networks,” FPGA '15: Proceedings of

the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 161-170, 2015. [CrossRef] [Google Scholar]

[Publisher Link]

[21] Yann LeCun et al., “Learning Algorithms for Classification: A Comparison on Handwritten Digit Recognition,” Neural Networks: The

Statistical Mechanics Perspective, vol. 2, pp. 261-276, 1995. [Google Scholar]

[22] Tianling Li, Bin He, and Yangyang Zheng, “Research and Implementation of High Computational Power for Training and Inference of

Convolutional Neural Networks,” Applied Sciences, vol. 13, no. 2, pp. 1-20, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[23] Mannhee Cho, and Youngmin Kim, “FPGA-Based Convolutional Neural Network Accelerator with Resource-Optimized Approximate

Multiply-Accumulate Unit,” Electronics, vol. 10, no. 22, pp. 1-16, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[24] Dan Shan, Guotao Cong, and Wei Lu, “A CNN Accelerator on FPGA with A Flexible Structure,” 2020 5th International Conference on

Computational Intelligence and Applications (ICCIA), Beijing, China, pp. 211-216, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[25] Ming Xia et al., “SparkNoC: An Energy-Efficiency FPGA-Based Accelerator Using Optimized Lightweight CNN for Edge Computing,”

Journal of Systems Architecture, vol. 115, 2021. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1109/ISCA.2018.00012
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+configurable+cloud-scale+DNN+processor+for+real-time+AI&btnG=
https://ieeexplore.ieee.org/abstract/document/8416814
https://doi.org/10.1109/JIOT.2020.2976702
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FANN-on-MCU%3A+An+open-source+toolkit+for+energy-efficient+neural+network+inference+at+the+edge+of+the+internet+of+things&btnG=
https://ieeexplore.ieee.org/abstract/document/9016202
https://doi.org/10.1145/2684746.2689060
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimizing+FPGA-based+accelerator+design+for+deep+convolutional+neural+networks&btnG=
https://dl.acm.org/doi/abs/10.1145/2684746.2689060
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Learning+algorithms+for+classification%3A+A+comparison+on+handwritten+digit+recognition&btnG=
https://doi.org/10.3390/app13021003
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Research+and+Implementation+of+High+Computational+Power+for+Training+and+Inference+of+Convolutional+Neural+Networks&btnG=
https://www.mdpi.com/2076-3417/13/2/1003
https://doi.org/10.3390/electronics10222859
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FPGA-Based+Convolutional+Neural+Network+Accelerator+with+Resource-Optimized+Approximate+Multiply-Accumulate+Unit&btnG=
https://www.mdpi.com/2079-9292/10/22/2859
https://doi.org/10.1109/ICCIA49625.2020.00047
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+CNN+Accelerator+on+FPGA+with+a+Flexible+Structure&btnG=
https://ieeexplore.ieee.org/abstract/document/9178685
https://doi.org/10.1016/j.sysarc.2021.101991
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=SparkNoC%3A+An+energy-efficiency+FPGA-based+accelerator+using+optimized+lightweight+CNN+for+edge+computing&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1383762121000138

