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Abstract - This article describes the development of a torque controller for an Axial Flux Permanent Magnet Synchronous Motor 

(AFPMSM) using a Genetic Algorithm (GA) to optimize the two parameters of the PI controller. The GA aims to select the 

optimal set of two (Kp, Ki, Kd) for the PID controller, satisfying one of the objective functions IAE, ITAE, and MSE. After offline 

gene selection, regeneration, and mutation with upper and lower limit conditions, the two parameters of the PI controller are 

optimized to achieve the required torque and speed responses of the AFPMSM motor. The accuracy of the theory is validated 

through offline MATLAB/SIMULINK. The use of the genetic algorithm for optimizing the PID controller parameters has proven 

effective in achieving the desired torque and speed responses of the AFPMSM, demonstrating its potential for practical 

application in real-world scenarios. The optimized PID controller parameters can significantly improve the performance of the 

axial flux permanent magnet synchronous motor, leading to more precise torque and speed control. This approach offers a 

practical and efficient method for achieving desired motor responses, and it has the potential to be applied in various industrial 

and commercial applications. The use of genetic algorithms in motor control optimization demonstrates the continued 
advancements in control systems and their ability to meet the demands of real-world scenarios. 

Keywords - AFPMSM, GA, PID, Electrical Vehicle, QRF.  

1. Introduction  
Traction drive systems in different industries, such as 

transportation (electric cars, buses, marine applications, and 

civil and industrial machinery), need higher torque density and 
speed range for electric drive systems [1]. The permanent 

magnet axial magnetic motor (AFPMSM) is notable for its 

small size, high torque density, and minimal torque pulsation, 

making it a preferred choice for traction systems [2]. Research 

shows that the AFPMSM, which has permanent magnets in 

the rotor, effectively reduces losses in the magnetic circuit, 

leading to significantly lower rotor losses and improved 

performance and power density [3]. Furthermore, studies 

indicate that the multi-pole structure and axial flux of the 

AFPMSM require very little core material, achieving a high 

moment/weight ratio, with the added advantage of reduced 

noise and vibration compared to traditional AC and DC 
electric motors [4-6]. The design and manufacturing of 

AFPMSM with easily adjustable air gaps further enhances its 

appeal across various applications.  

The AFPMSM is optimized for torque and speed control 

through Direct Torque Control (DTC), Quasi Rotor Flux 

(QRF), and a combination of control algorithms, both linear 

(PI, LQR, Dead beat...) and nonlinear (sliding control, flat 

support, fuzzy logic...) [7, 8]. The research focuses on 

assessing these solutions’ effectiveness for torque and speed 

control, especially under dynamic load torque conditions, to 

minimize torque pulsation and achieve precise speed response 

[9-12]. Intelligent control solutions are being investigated to 

improve the torque response of AFPMSM, taking into account 

the impact of various physical properties of electric cars, such 

as brake pedal, foot pedal, throttle, road inclination, and wind 

resistance, to enhance electric vehicle performance and ensure 

sustainable control of electric car powertrains. However, 
despite these efforts, there is still a lack of published works in 

this area. This article outlines the design of a single-sided 

AFPMSM torque controller (one stator and one rotor) using 

the PID parameter optimization method with a Genetic 

Algorithm (GA). The controller aims to attain values (Kp_opt, 

Ki_opt, Kd_opt) that meet the objective functions within a 

limited search space. The PI controller is adjusted to the 

optimal Kp, Ki, and Kd coefficients without needing prior 

experience or a reference for determining optimal values for 

parameter fine-tuning [13-16]. The effectiveness of the GA-

PID controller will be compared with the PID controller 
through MATLAB/SIMULINK simulation. 

The article consists of five main parts. The first part 

discusses the necessity of researching to enhance the torque 

and speed response for AFPMSM applied to electric cars. Part 

http://www.internationaljournalssrg.org/
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2 presents the mathematical model of the electric car traction 

drive system. Part 3 details the mathematical equations for 

designing the GA_PID controller and demonstrates the 

theory’s accuracy. Part 4 showcases simulation results on 

current and torque responses between the GA_PID and 

traditional PID controller. Finally, the article concludes by 
highlighting the contributions of the research and suggesting 

future directions to improve and enhance torque response and 

sustainability of traction transmission systems in both theory 

and experimental implementation. 

2. AFPMSM Mathematical Model and Load 
2.1. Mathematical Model AFPMSM 

The 1-sided AFPMSM means that the AFPMSM motor 
has one stator and one rotor. Therefore, the AFPMSM can use 

the Permanent Magnet Synchronous Motor (PMSM) model 

[12]. However, the AFPMSM mathematical model has 

differences in stator winding parameter values, and the motor 

Back-EMF generated by a permanent magnet and an 

excitation coil does not differ. The stator voltage equation in 

the d-q reference system is calculated according to Equations 

(1), and (2). 

The application method is written as follows: 

0

sq

sq m sd
sd sd m m

sq sqsd
m sd sd

dL
R Lu idt

u idL
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The moment equation is determined as follows: 

𝑇𝑚 =
3

2

𝑃

2
(𝐿𝑠𝑑𝑖𝑠𝑑 + 𝜆𝑚)𝑖𝑠𝑞 − (𝐿𝑠𝑞𝑖𝑠𝑞)  (2) 

Since the information is a constant, the proportional 
description is convenient for the flow stator axis of rotation q. 

The Equation selects the electromagnetic module submission 

(3):  

𝑇𝑚 =
3

4
𝑃𝜆𝑚𝑖𝑠𝑞 (3) 

2.2. Mathematica Model of Electric Cars 

Drive wheel model as formula (4): 
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When the wheel presses against the road surface with 

force N and is driven by a torque of Twh, The vehicle will exert 

a force on the road surface F; Correspondingly, the road 

surface acts against the vehicle with a force of the same value 

in the opposite direction Ft.  

In this case, then Ft is the force of friction and is the useful 

force component that creates the movement of the vehicle at 

speed Vx  

. .t vF m g   (5) 

Applying Newton’s second law to the external force 

components acting on the vehicle body, we have the Equation 

(6):  

. .sin( )   ev

v t aero roll v

dv
m F F F m g

dt
     (6) 

2.2.1. Air Resistance 

 
2

2
 d F
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 (7) 

In some cases or simulations, we can consider wind speed 

0windv . Rolling resistance exists in case the tire is under-

inflated: 

roll r zYF f F  (8) 

cos( )zY vF m g   (9) 

3. Design of Torque Controller  
3.1. Design of PID Torque Controller  

The design of torque controllers for the AFPMSM motor 

becomes essential in high-performance applications. The 

design procedure for synthesizing and implementing current 

controllers for the AFPMSM is similar to current controllers 

for asynchronous motor drives. To design a torque controller 

for AFPMSM, it is necessary to clearly understand the 
interaction of the motor, inverter, and current controller. 

Therefore, assume the gain of the inverter is Kr and the time 

constant of the inverter is Tr, which is half the period of the 

Pulse Width Modulation (PWM) carrier frequency. Besides, if 

the desired performance of the current control loop is the same 

as the system is a first-order hysteresis. 

* 1

d i

d i

i K

i sT



  (10) 

3.1.1. Current Loop 
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The following approximations are valid near the vicinity 
of the crossover frequency. 

(1+sTa)(1+sTr)≅1+s(Ta+Tr)≅1+sTar  (12) 
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The current transfer function is rewritten as follows: 
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Where, T1 < T2 < Tm and based on further estimates, 

(1+sT2) ≅sT2 then the transfer function of he current loop is 

given by:   

𝑖𝑞

𝑖𝑞
∗ ≅=

𝐾𝑖

(1+𝑠𝑇𝑖)
  (14) 

Where, 𝐾𝑖 =
𝑇𝑚𝐾𝑟

𝑇2𝐾𝑏
;  𝑇𝑖 = 𝑇1          

3.2. Design of GA_PID Torque Controller  
First, the control object is considered a black box suitable 

for real applications. A behavioral identification cycle of the 

system is established based on the open-loop step response of 

the object. From this response, the Genetic Algorithm (GA) is 

applied to determine three parameters of the PID controller. 

These three parameters are the basis for limiting the search 

space of the Genetic Algorithm.  

The task of the Genetic Algorithm is to select the two sets 

{Kp, Ki, Kd} optimal for the PID controller, satisfying one of 

the objective functions IAE, ITAE, and MSE. These objective 

functions will calculate the difference between the set value 

and the actual value, so the objective functions of the 
controller adjustment process in this problem are defined as 

follows:  

IAE (Integral of Absolute Error): 

J1 = ∫ |e(t)dt|
∞

0
: Absolute error integration 

IATE (Integral of Time and Absolute Error):   

J3 = ∫ |e(t)dt|
∞

0
: Integral of time and absolute error. 

MSE (Mean Squared Error):  

J4 =
1

N
∑ |e(t)dt|∞

0 : squared error 

The Genetic Algorithm will be based on three sets of 

parameters of the PID controller and use the above three 

objective functions to calculate the error between the set and 

actual values.  

Based on the results, it is found that the objective function 

with the largest value will be selected to select the third set 
{Kp, Ki, Kd} optimized for PID controllers. The task of the 

applied GA algorithm is to find values {Kp_opt, Ki_opt, 

Kd_opt} optimization of the PID controller, for which the 

objective functions of the Genetic Algorithm are: min {Ji 

(1=1,2,3)}. In order to limit the search space of the Genetic 

Algorithm, we assume optimal values {Kp_optm Ki_ opt, Kd_ 

opt} lie around the value {Kp_Z_N, Ki_Z_N} achieved from 

the Genetic Algorithm. The corresponding search limits for 

the two parameters of the PID controller are as follows: 

Kp_Z_N Kp_opt  Kp_ Z_N (15) 

Ki_ Z_N Ki_opt Ki_ Z_N (16) 

Ki_ Z_N Kd_opt Kd_ Z_N (17) 

Where coefficients α and β are chosen so that the search 

space is large enough to contain the desired optimal value, 
simulation results on the engine speed control system model 

show α=0,02 and β=50 are satisfying.  

The Genetic Algorithm is supported by MATLAB 

software and is presented in detail in the MathWorks Inc., 

2020. In this context, the GA tool in MATLAB is introduced 

and is only used as a tool to solve optimization problems in 

order to achieve the following values.  

(Kp_opt, Ki_opt, and Kd_opt) satisfy the objective 

functions with the search space limited by (19) & (20). The 

parameters of the Genetic Algorithm in this study are selected 

as follows: evolutionary processive r 100 generations 
(generations = 100); population size 100 (population size = 

100); hybridization frequency 0,8 (Crossover Fraction = 0,8); 

The mutation probability is adaptively adjusted in the range 

from 0,001 from 0,01, upper limit ib = [0 0], lower border ub 

= [50 50], The search space is three elements Kp to Ki to Kd. 

The optimization time of three PID parameters with max 

chromosome is 100. 

4. Simulation Results and Evaluation  
4.1. Build Operating Modes for Electric Car 

The operating mode of electric cars is built as follows: 

 Initially, the car is stationary, velocity v = 0, and the 

accelerator and brake pedal do not act. 

 When the accelerator pedal impacts, the vehicle begins to 

accelerate, velocity v > 0 cubes, comparing state transition 

conditions. The torque set Te* is determined by adding the 

output value of the interpolation table between the 

accelerator and brake pedals.  

The traction drive system control structure for electric 
cars using AFPMSM motors integrates wheels, as shown in 

Figure 1.  

To evaluate the controller efficiency for traction drive 

systems for electric vehicles using wheel-integrated 

AFPMSM motors, the system was simulated on MATLAB 

with the following simulation scenario: 
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 Assumes an acceleration of wind speed of zero. 

 The car moves on a flat road, but at the time of t = 3.5s to 

4.3s, the vehicle goes downhill. 

 At time t = 0s, the car starts accelerating the accelerator 

pedal value, increasing from 0 to 1 after 0.45s. The torque 

reaches a maximum of 205 Nm and is maintained in 2s. 

 At t = 2s, the car starts to slow down, and braking reaches 

a value from 0 to 1 at time t = 3.5s; the torque gradually 

decreases to a value of -205 Nm and returns to a value of 

0 at time t = 4.66s. 

The AFPMSM motor drive system control structure 

applied to electric cars is shown in Figure 1. 

4.2. Evaluation of Simulation Results 
Two PID torque controllers are calculated with 

amplification parameters, PID-Isq integrals (Ki=1.0615e+3; 

Kp=1.0744, Kd=1.089). The results of searching for 

parameters of PID controllers using Genetic Algorithms, 

satisfying IAE, ITAE, and MSE quality standards, are 

presented in Table 1. 

Table 1. Comparison of PID controllers according to design standard 

Parameter PID GA_IAE GA_MSE GA_ITAE 

Kp 10.2 39.996 39.1382 40 

Ki 5.1 5.5288 5.5822 5.5880 

Kd 1 7.5 6 8 

The data in Table 1 reveals that the GA-PID controller, 

adjusted based on the two PID parameters in Table 1, 

demonstrates an MSE of 39.1382, an IAE of 39.996, and an 

ITAE of 40. The ITAE exhibits the highest value compared to 

the IAE and MSE. Consequently, this research will utilize 

GA_ITAE controllers to compare with the responses of 
traditional PID controllers.  

Moreover, it is evident that the values of the PID 

controller’s parameters, attained by the Genetic Algorithm, 

significantly differ from those obtained by PID alone. This 

emphasizes the difficulties in fine-tuning the controller to the 

optimal modular standard. Although the Genetic Algorithm 

streamlines the optimization of three PID parameters using the 

MATLAB tool, its implementation is more direct.  

However, the time needed for results depends on the 

microprocessor circuit configuration. Nevertheless, this 

concern has been effectively resolved through high-speed 

microprocessor equipment. The results of PID_ITAE’s 
genetic algorithm to optimize the three parameters of 

traditional PID torque controllers are shown in Figure 2. 

The stator current responses of the torque controller are 

GA_ITAE_PID compared with that of the PID controller 

shown in Figures 3, and 4. The evaluation of the criteria of the 

torque control stator current response of PID and 

GA_ITAE_PID controllers is presented in Table 2.

  

 
Fig. 1 The AFPMSM motor drive system control structure 
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Fig. 2 Results of PID_ITAE Genetic Algorithm to optimize the three parameters of PID 
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 (b) Current response isq 

Fig. 3 Current stator responses of PID controller 
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(b) Current response isq 

Fig. 4 Current stator responses of GA_ITAE_PID controller 

 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 
Fig. 5 The torque response of the PID controller 
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Fig. 6 The torque response of GA_ITAE_PID controller 

Table 2. Stator current response assessment results of PID and GA_ITAE_PID controllers 
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Stator Current isq 
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Table 3. Evaluation results of torque and speed response of PI and GA_ITAE_PID 
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The simulation results of Figures 3, and 4 show that the 
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matches that of a traditional PI controller. The PID and 
GA_ITAE_PID controllers exhibit strong performance, with 

the GA_ITAE_PID controller demonstrating superior 

overregulation and response time results. However, to validate 

the true effectiveness of this controller, the research team will 

conduct extensive research and assessment of the 

GA_ITAE_PID torque controller in scenarios where the motor 

parameters Ld and Lq vary, and the system encounters 
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failures. This will also consider the impact of potential future 

interference. This implementation will involve both offline 

and real-time simulation. The research team will also 

investigate the robustness of the GA_ITAE_PID torque 

controller in the presence of various disturbances, such as 

sudden load changes and input voltage variations. 
Additionally, the controller’s performance will be evaluated 

under different operating conditions, including high-speed and 

low-speed operation, as well as during transient states.  

This comprehensive analysis aims to validate the 

controller’s effectiveness and reliability in real-world electric 

vehicle applications, ensuring its capability to handle diverse 

and challenging scenarios. 
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Appendix 1 

Lsd and Lsq 
The synchronous inductance on the shafts d 

and q. 
B1 The friction coefficient. 

λm The flux. J The moment of inertia. 

isd , isq The stator current on the shafts d and q.  The rotor speed (rad/s). 

P The number of polar pairs. aeroF  Aerodynamic drag or air resistance. 

TL The load moment. rollF  The rolling friction force of the wheel. 

F The vehicle’s traction. vm  The total mass of the vehicle 

  
The angle of inclination of the road on which 

the vehicle is moving. 
  Adhesion coefficient. 

tF  The vehicle’s traction. 
 The mass density of air. 

 


