
SSRG International Journal of Electrical and Electronics Engineering  Volume 11 Issue 5, 1-11, May 2024 

ISSN: 2348-8379/ https://doi.org/10.14445/23488379/IJEEE-V11I5P101    © 2024 Seventh Sense Research Group® 
                   

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Original Article 

Facial Recognition of Sketch Images in Forensic 

Laboratories Employing Diverse Techniques 

Devendra A. Itole1, M.P. Sardey2, Milind P. Gajare3 

1,2,3Department of Electronics and Telecommunication, AISSMS IOIT, Pune, Maharashtra, India. 

1Corresponding Author : devendra.itole@aissmsioit.org   

Received: 01 March 2024  Revised: 02 April 2024  Accepted: 01 May 2024  Published: 29 May 2024

Abstract - The use of Differential Facial Recognition (DFR) over the past few years emerged as a challenging endeavor within 

the realms of biometrics and computer vision, grappling persistently with the complexities of illumination and pose variations. 

This scholarly investigation aims to propose innovative deep-learning architectures tailored to juxtapose non-visible facial 

depictions against an array of visible facial galleries. The taxonomy of thermal-to-visible recognition delineates into two distinct 

categories: feature-based methodologies and image synthesis paradigms. Notably, the latter enhances compatibility with 

existing recognition frameworks in both commercial and governmental sectors, bolstering efficacy in forensic examination. 

Additionally, the incorporation of soft biometrics, encompassing diverse traits such as age and gender, provides supplementary 

layers of information, thereby reinforcing the foundation of recognition algorithms. Novel strategies are introduced to navigate 

the intricate landscape of auxiliary training data in the LUPI scenario, pushing the boundaries of recognition performance. 

Additionally, a pioneering aggregation framework is conceived to enhance the robustness of landmark detection, while 

adversarial techniques amplify the efficacy of landmark detection mechanisms. Finally, this study scrutinises the opaque veil 

enveloping Generative Adversarial Networks (GANs), aiming to address concerns regarding mode collapse and diversity within 

the GAN framework. 

Keywords - Heterogeneous Face Recognition (HFR), Deep Learning Architectures, Thermal-to-Visible Recognition, Soft 

Biometrics, Generative Adversarial Networks (GANs).

1. Introduction  
In the vast and intricate realm of biometrics and computer 

vision, the pursuit of facial recognition emerges as a 

significant challenge, navigating through the complexities of 

human identification amidst a myriad of environmental 

factors. This pursuit, rooted in the nuances of facial 

illumination and pose variations, stands as a focal point of 

scholarly exploration at the convergence of technological 

innovation and forensic necessity. Scientific curiosity about 

algorithms for facial recognition has increased recently as a 

result of their ability to address the various problems that 

visible face imaging presents.  

This surge is driven by the need to transcend traditional 

recognition paradigms and delve into the uncharted territory 

of Heterogeneous Face Recognition (HFR). HFR, with its 

enigmatic domain spanning from infrared to polarimetric and 

millimetre-wave spectra, presents researchers with the 

daunting task of reconciling facial images from diverse 

domains amidst limited training data [1-2]. Infrared imagery, 

with its dual realms of reflection and emission, provides 

valuable insights into facial contours. The accessibility of rich 

facial information in the NIR and bands of shortwave infrared 

light, comparable to visible images, has spurred advances in 

NIR-to-visible recognition of faces. However, challenges 

persist in SWIR-to-visible recognition due to spectral 

disparities. At the heart of research lies the fusion of auxiliary 

facial information and Generative Adversarial Networks 

(GANs) [3].  

These networks, heralded for their prowess in synthetic 

image synthesis, play a pivotal role in distilling visible-like 

images from non-visible modalities. Bridging the gap between 

thermal and visible imagery remains a Herculean task, 

especially in the context of matching thermal facades with 

their visible counterparts. Forensic applications further 

underscore the importance of facial sketch recognition, 

particularly in cases where photographic evidence is lacking. 

These sketches, born from eyewitness accounts and forensic 

expertise, serve as crucial tools in identifying suspects, 

necessitating automated matching methodologies to scour law 

enforcement databases [4].  

The pursuit of thermal-to-visible recognition has gained 

momentum in recent years, bolstered by technological 

advancements. However, discerning thermal facades amidst a 
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gallery of vibrant visages poses a significant challenge, given 

the stark differences in texture and geometric nuances between 

thermal and visible imagery. Promising paths to improve the 

accuracy of thermal-to-visible identification are provided by 

emerging technologies that make use of the polarisation state 

of thermal emissions. 

 

 

 

 

 
 

 

 

 
 

Fig. 1 The conventional thermal and polarimetric states and visible 

spectrum  

The intersection of soft biometrics and hard biometric 

modalities emerges as a key area of exploration, highlighting 

the complementary nature of age, gender, ethnicity, and other 

facial attributes. Soft biometrics, with their cost-effectiveness 

and ease of acquisition, enrich recognition algorithms by 

providing auxiliary information to augment primary biometric 

data.  

Research endeavors to unravel the complexities of 

Heterogeneous Face Recognition, leveraging advancements in 

technology to bridge the gap between disparate facial 

domains. Through empirical validation and theoretical 

exploration, we Aim to chart a path toward more robust and 

effective recognition frameworks underpinned by the 

integration of soft biometrics and generative adversarial 

networks [5]. 

Investigators studying facial landmark recognition often 

employ Convolutional Neural Networks (ConvNets) to gather 

deep characteristics and regression coefficients for an entire 

training method. This method of updating landmark positions 

gradually is called a cascade technique. Using deep 

deformation networks, some researchers like Yu et al. have 

included geometric restrictions into CNN structures.  

Zhu et al. have investigated coarse search strategies to 

deal with inadequate initialisation, whereas To address 

initiation issues, A deep regressive design with two-step re-

initialisation has been presented by Lev et al. Zhu, together 

with others, has proposed an alternative method that addresses 

severe head postures and shape deformations: cascaded 

regressors [6].  

Certain landmark identification techniques concentrate 

on learning powerful heatmaps for location recognition, 

utilising complete training with ConvNets. For reliable 

recognition of facial landmarks, Balut et al. have used a 

residual framework. For human pose estimation tasks, Newell 

et al. and Wei et al. take into account the coordinates of the 

greatest response on heatmaps.  

A broader perspective would categorise the issue as 

acquiring structural models. Numerous studies aim to classify 

visual data based on various attributes of change, such as 

identity, mobility, and camera perspective, to represent the 

intrinsic structure of things. However, the physical features of 

these components remain hidden in implicit projections., 

rendering them undetectable. Some approaches treat 

structures like masks, depth, and landmarks as auxiliary data 

in a multitasking framework [7].  

Generative systems’ primary goal is to approach the true 

distribution of information, which has witnessed notable 

progress. Moreover, traditional generative models aim to 

reduce the difference between the information and modeling 

distribution’ Kullback-Leibler (KL) dispersion. They 

frequently generate undesired and perplexing samples.  

Conversely, when minimising the reverse KL divergence 

using Generative Adversarial Networks (GANs), the emphasis 

often lies on a single mode of the input, leading to mode 

collapse-a scenario where the generator produces images that 

are nearly identical to each other to address this issue, 

researchers have proposed using the Wasserstein distance, 

which has shown promise in avoiding mode collapse.  

However, approximating the Wasserstein distance using 

weight clipping can lead to pathological behavior. Modeling 

density functions in generative models present significant 

challenges, with implicit and explicit methods offering 

different approaches [8].  

While implicit methods like GANs and Variational 

Autoencoders (VAEs) model the data distribution implicitly, 

explicit models explicitly calculate probability densities. The 

specific details of the task at hand will dictate the most suitable 

approach from among these methods. It proposes a system 

incorporating soft biometric traits alongside facial images.  

 

 
 

 

 

 

 

 
 
 

Fig. 2 Highly linked pyramid network 
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Additionally, it addresses the LUPI problem and 

introduces an adaptive margin to enhance embedding space. 

Furthermore, it explores facial landmark detection through 

manipulated faces, aiding augmentation and self-supervised 

learning. Finally, it delves into theoretical aspects of 

generative adversarial networks, aiming to mitigate mode 

collapse issues [9]. 

The Pyramid Densely Connected Network is an 

architectural marvel meticulously crafted at the pinnacle of 

computational prowess. With its intricate lattice of 

interconnected layers, this revolutionary network epitomises a 

harmonious fusion of depth and breadth in neural 

architectures. Evoking the grandeur of ancient pyramids, it 

rises to prominence as a beacon of innovation in the realm of 

deep learning. With its densely interconnected nodes spanning 

multiple levels, it fosters unparalleled information flow and 

feature extraction, transcending the constraints of traditional 

network structures.  

As a testament to its ingenuity, it unveils a rich tapestry 

of hierarchical representations, facilitating the discernment of 

intricate patterns in complex datasets. This monumental 

creation heralds a new era in artificial intelligence, poised to 

redefine the boundaries of computational capabilities [10]. 

In the realm of forensic investigation, a conspicuous 

lacuna persists in the domain of facial recognition, particularly 

concerning the identification of suspects based on sketch 

images. Existing methodologies are fraught with limitations in 

accurately matching sketch depictions with real-life 

individuals, hampering investigative efficacy.  

This research endeavors to bridge this gap by elucidating 

novel techniques that augment the precision and reliability of 

facial recognition in forensic laboratories, thereby enhancing 

the pursuit of justice [11]. 

2. Literary Works 
The background provides a comprehensive understanding 

of the challenge in facial recognition from sketch images in 

forensic settings, highlighting the necessity for employing 

diverse techniques to enhance accuracy and efficiency in 

identification processes. Both cross-spectrum syntheses of 

image algorithms and cross-spectrum-based feature 

techniques are categories of methods used for thermal-to-

visible recognition of faces. While synthesis approaches create 

visible-like pictures from thermal inputs to conform to typical 

face recognition systems, feature-based methods match 

thermal probes with visible faces in a feature subspace.  

Modern methods create specific feature subspaces by 

training deep convolutional neural systems on large datasets. 

These networks outperform standard approaches in face 

verification tests, having been trained on millions of labeled 

photos. Researchers look to polarimetric LWIR thermal 

images to enhance cross-spectrum face identification [1]. 

Visual pictures are reconstructed using methods like Coupled 

Neural Networks (CpNN) and Deep Perpetual Mapping 

(DPM), which map thermal information to visual features. 

Furthermore, Generative Adversarial Networks (GANs) are 

employed in synthesis-based techniques to produce visible-

like, photo-realistic pictures from various modalities [12].  

Efforts in sketch recognition primarily focus on bridging 

the disparity between sketch and photo domains, with limited 

exploration of soft biometrics. Some approaches incorporate 

facial attributes for suspect identification, enhancing accuracy 

by narrowing mugshot galleries based on race, gender, and 

other soft biometric traits. 

When additional data is accessible for use in training but 

not for evaluation, LUPI poses difficulties. This additional 

data augments primary training data, akin to multitask and 

multi-view problems. However, the absence of auxiliary data 

during testing exacerbates the complexity of the task, 

requiring innovative solutions to address this disparity 

effectively [13]. 

PCA-based shape constraints were used in the past in 

landmark recognition techniques like active appearance 

models and active shape models. These approaches often 

employed cascade strategies to progressively refine landmark 

locations, albeit facing challenges in careful design and 

initialisation. 

With the emergence of ConvNets for feature 

representation, facial landmark detection has shifted towards 

extracting features using ConvNets and subsequently training 

regressors to map these features to landmark locations. 

However, ConvNets are sensitive to input perturbations, 

which can significantly impact predicted landmarks. 

Contrary to Variational Autoencoder (VAE) models, 

autoregressive models offer tractable likelihood and diverse 

sample generation. These models utilise autoregressive 

connections to model pixel distributions, with PixelCNN++ 

being a prominent example. However, GANs lack an explicit 

density function, posing challenges for density estimation and 

model evaluation. 

Efforts to mitigate mode collapse in GANs include the 

mini-batch discrimination trick, unrolling discriminator 

optimisation, and employing multiple generators to explore 

data modes comprehensively. Some approaches incorporate 

autoencoders as regularisers to penalise missing modes, while 

others use LSTM-based autoregressive models in 

discriminator functions to impose reconstruction loss on fake 

data. The effectiveness of these methods in balancing mode 

collapse and image quality remains a subject of inquiry [14]. 
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Through the synergistic amalgamation of heterogeneous 

datasets and the deployment of cutting-edge algorithms, 

Performance transcended prevailing paradigms by discerning 

subtleties in patterns and exhibiting adaptive prowess in 

navigating dynamic environments, thereby optimising 

efficacy and precision in outcomes. 

2.1. Face Recognition Assisted by Facial 

There has been a notable surge in research about 

Heterogeneous Face Recognition (HFR), driven by the 

imperative to correlate visible face images with counterparts 

captured in diverse domains such as infrared or polarimetric 

spectra. Substantial phenomenological disparities and a dearth 

of training data beset this endeavor. Notably, infrared images, 

characterised by reflection and emission categories, With a 

profusion of facial detail similar to visible images, the NIR 

and SWIR bands, in particular, produce excellent results in 

NIR-to-visible face identification.  

Learning to Multitask (MTL), a ubiquitous technique in 

computer vision and biometrics has been instrumental in 

addressing correlated tasks concurrently, fostering knowledge 

sharing between them. Leveraging MTL By making use of the 

implicit relationships between facial images and biometric 

characteristics, researchers have attempted to predict face 

qualities, including age, gender, and ethnicity [4]. 

This talk will present two different approaches to using 

facial features to improve face recognition performance. First, 

a framework for attribute-assisted sketch recognition is 

presented, which enhances deep sketch recognition by using 

relevant face traits. This method minimises the loss functions 

associated with face attribute recognition and sketch-photo 

verification while simultaneously learning common 

embedding characteristics of both sketch and picture images.   

While the verification job determines if a sketch-photo 

combination shows the same person, the identification task 

groups photos into sets of face attributes. Secondly, combining 

weight-sharing with specific weights Qualities To generate 

realistic characteristics for particular facial attributes, a 

directed mixed adversarial network model is given [15].  

The system, which is directed by face features, seeks to 

establish a common embed area between thermal and 

polarimetric modes via adversarial training.This discussion 

has several main contributions. First, a novel deep learning 

architecture that enhances sketch-photo identification 

performance by using face features is introduced. Second, the 

identification-verification model serves as the foundation for 

the collaborative function of loss formulation. Creates a more 

discriminative embedding subspace that is advantageous for 

improved recognition [16]. 

Thirdly, supplementary face features like skin and hair 

color are implicitly integrated with textural information 

gleaned from forensic drawings. Moreover, The idea of a 

polarimetric thermal-to-visible recognition algorithm that 

synthesises visible faces from polarimetric thermal 

photographs utilising facial features using AGC-GAN is a 

remarkable discovery.  

Finally, a ground-breaking contribution to the literature is 

the presentation of a multitasking framework for predicting 

facial properties from polarimetric thermal faces, tested 

against state-of-the-art methods and validated by extensive 

evaluation using the ARL polarimetric face dataset. 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3 P-DCNN and SA-DCNN incorporate the images 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4  Train size Vs Gallery and Probe 

The provided tabular exposition delineates a 

comprehensive overview of experimental setups, 

meticulously crafted to elucidate the intricate nuances of face 

recognition systems. Each setup, characterised by a distinctive 

moniker, encapsulates a constellation of vital parameters 

crucial for the experimental framework. Specifically, the table 

elucidates the delineation between testing and training 

datasets; each imbued with its unique corpus of facial images 

sourced from diverse repositories [17].  

The column labeled ‘Train Size’ indicates the dimension 

of the training dataset, providing insight into the quantity of 

data points used to refine the identification models. 

Correspondingly, the ‘Gallery Size’ and ‘Probe Size’ columns 

delineate the cardinality of the gallery and probe sets, 

respectively, signifying the number of reference and test 
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images employed for evaluation purposes. Through this 

meticulously constructed tabular representation, researchers 

can discern the intricate configurations underpinning the 

experimental landscape, fostering a nuanced understanding of 

the methodologies employed in face recognition research. 

3. Entire Face Aggregation for Sturdy Facial 

Landmark Identification on Geometrically 

Modified Faces 
The quintessential aim of facial landmark detection 

resides in the precise identification of predefined facial 

landmarks, including key locations like the nose tip, the 

corners of the eyes, and the eyebrow arches. Such steadfast 

landmark estimation forms an integral component within a 

gamut of intricate vision tasks, spanning from three-

dimensional face reconstruction to recognition of faces, facial 

recreation, and head position estimate. Still, this endeavor is 

enmeshed in a maze of difficulties due to the need to deal with 

non-rigid shape distortions, obstructions, and a rainbow of 

visual changes.  

The crux of many endeavors to tackle the face alignment 

conundrum hinges upon multitasking paradigms. Herein lies a 

paradox: while certain tasks necessitate a degree of invariance 

to minor deformations, others mandate a meticulous 

preservation of both global integration and local pixel-level 

detail [18]. This duality precipitates the emergence of novel 

architectural paradigms. These include stacking what-where 

auto-encoder, recombine systems, expanded convolution, and 

hyper-columns, all of which strive to preserve the integrity of 

pixel-level data. 

In this vein, introduce the Geometry Aggregated 

Network (GEAN), a veritable tour de force in the domain of 

facial alignment, adept at navigating the intricacies of rich 

facial expressions and capricious shape variations.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5 Aggregation on geometrically manipulated faces 

At its core lies a novel aggregation framework 

meticulously designed to optimise landmark locations 

directly, leveraging the singular potency of a solitary image 

sans the crutch of additional priors. This unique approach 

engenders robust alignment, transcending arbitrary face 

deformations with aplomb [19]. 

3.1. Aggregated Landmark Detector 
The aggregated landmark detector is a pioneering 

innovation poised at the apex of technical sophistication. 

Leveraging a meticulous fusion of cutting-edge 

methodologies, this ground-breaking system stands as a 

paragon of precision in the realm of facial landmark detection. 

With an astute amalgamation of curated image manipulations, 

it discerns subtle nuances in facial features, surpassing the 

limitations of conventional approaches.  

Armed with a refined understanding of semantic 

structures and individualistic characteristics, it deftly 

navigates the intricate landscape of facial visages [20]. 

Through a judicious orchestration of geometric 

transformations and ID embeddings, it unveils a tapestry of 

landmark features with unparalleled fidelity. This veritable 

tour de force heralds a new dawn in facial analysis, promising 

a paradigm shift in the realm of computer vision. 

 

 

 

 

 

 

 

 

 
 

Fig. 6 Aggregated landmark detector 
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sophisticated autoregressive model architecture from 
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To optimise the model, harness the power of the Adam 

optimiser, setting it up to be trained using a group size of 64, 

an error rate of 0.0002, and a first-order momentum of 0.5. For 

the activation functions, Use ReLU for the algorithm and 

Leaky ReLU for the discriminator, each with a slope of 0.2. 
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The initialisation of biases and weights commences from zero, 

while the application of an isotropic Gaussian distribution        

(N(0, 0.01)) ensures robust weight initialisation. This 

methodical method emphasises the dedication to attaining 

cutting-edge efficiency in the field of generating modeling 

[22]. 

To show the effectiveness of the structure, it conducted 

two distinct kinds of tests using the MNIST dataset. It also 

compared the approach to several popular GANs, such as 

GMAN, DCGAN, MGAN, SNGAN, WGAN, MIX+WGAN, 

DFM, Improved-GAN, ALI, BEGAN, MADGAN and 

SAGAN. It is crucial to highlight that because BigGAN and 

StyleGAN rely on larger models and different parameters, 

One cannot make a direct comparison between them. It 

employed the total amount of observed modes [23] and KL-

divergence [24] as evaluation standards to show how much 

better the strategy performed. Carried out quantitative tests on 

real-world datasets that are more complicated, such as 

CIFAR-10 [24] and STL-10 [23], to confirm the method’s 

efficacy in a range of circumstances.  

Many databases, including WSRI, UND X1, and Casia 

NIR-VIS 2.0, include face photos taken in a variety of settings, 

including lighting, expression, posture, and spectacle presence 

among the variables. In forensic labs, these varied datasets are 

crucial for creating reliable facial recognition software. 

Table 2 presents face verification performance on LFW 

and YTF datasets, showcasing various methods’ accuracy, 

model configurations, and training sizes, with top-performing 

techniques achieving high accuracy rates above 98% on both 

datasets. Table 3 evaluates the ATAM loss function’s impact 

on the person re-identification task, showcasing its 

effectiveness in enhancing accuracy compared to other 

methods, especially evident in the MGN + ATAM 

configuration achieving high Performance on both Market-

1501 and DukeMTMC-Re-ID datasets. 

Table 1. Dataset for model comparison 

Target 

Source 
Subjects Variations Database 

NIR 203 P, E, G, D Casia HFB 

LWIR 242 E UND X1 

S0, S1, S2 61 E, D 
Polarimetric 

Thermal 

NIR 726 P, E, G, D 
Casia NIR-VIS 

2.0 

MWIR & 

LWIR 
51 E, D NVESD 

MWIR 65 E WSRI 

 

Table 2. Facial validation using datasets from YTF and LFW 

Method Models 
Training 

Size M 
LFW YTF 

Deep Face 3 5 98.4 90.4 

FaceNet 1 201 98.7 94.1 

DeepFR 1 2.5 97.9 96.3 

DeepID2+ 25 301 98.5 92.2 

Center Face 1 0.8 98.3 93.9 

Baidu 1 1.4 98.1 - 

Sphere Face 1 0.6 98.4 94 

CosFace 1 6 98.7 96.6 

UniformFace 1 6.2 98.8 96.7 

AdaptiveFace 1 6 98.6 - 

Softmax 1 6 97.8 94.7 

SphereFace 1 6 98.6 95.6 

CosFace 1 6 98.5 95.2 

ArcFace 1 6 98.6 95.8 

ATAM 1 6 98.7 96.9 

Table 3. Evaluation of ATAM loss on Re-ID task 

Method 

Market-1501 
DukeMTMC- 

Re-ID 

Soft 

max 

Softmax

+ Triplet 

Soft 

max 

Softmax + 

Triplet 

PCB 93.8 81.6 83.3 69.2 

MGN 95.7 86.9 88.7 78.4 

JDGL 94.8 86 86.6 74.8 

APR 85.3 65.7 74.9 56.6 

AANet-50 94.9 83.5 87.4 73.6 

ResNet50 + 

AMSoftmax 
93.4 84.7 84.9 69.5 

ResNet50 + 

CircleLoss 
94.2 84.9 - - 

ResNet50 + 

ATAM 
96.1 87.5 88.8 78.3 

MGN + 

AMSoftmax 
- - 86.7 73.3 

MGN + 

CircleLoss 
97.1 88.4 - - 

MGN + 

ATAM 
98.1 89.3 90.6 80.1 
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4.1. HGAN: Hybrid Generative Adversarial Network 

Endeavor encapsulates a profound fusion of 

methodologies within the realm of Generative Adversarial 

Networks (GANs) aimed at surmounting the perennial 

challenge of mode collapse while concurrently enhancing 

likelihood estimation. At the heart of innovation lies a 

meticulously crafted GAN architecture, complemented by a 

judiciously devised training strategy, wherein the goal 

transcends mere mimicry of real data. Instead, it aspires to 

distill the explicit details revealed by an autoregressive model 

that is hidden inside its information distributions while 

concurrently engendering samples closely aligned with the 

veritable data distribution [4]. 

Paradigm-shifting technique seamlessly integrates 

explicit and implicit forms of learning, as demonstrated by the 

Hybrid GAN (HGAN) architecture. By combining an 

additional autoregressive model with adversarial learning, The 

method produces a single objective function by efficiently 

bridging the gap between implicit and explicit density 

parameter estimations. The HGAN generation has two 

objectives in this context: First, it navigates the intricate 

curves of the data probability density by using the perceptive 

observations given by the autoregressive model; second, it 

traverses the adversarial learning terrain to accurately mimics 

the complex subtleties of real-world data. 

 

 

 

 

 

 

 

 

 

 
 

Fig. 7 HGAN framework with an autoregressive model proposed 

The approach’s skillful use of the complementing 

statistical features included in data extracted from the 

autoregressive model is essential to its effectiveness. Through 

the use of a GAN’s discriminative power, the method avoids 

mode collapse by diversifying the estimated density function 

and skillfully navigating the many modes present in the data 

distribution. Input is multifaceted:  

 A ground-breaking adversarial model that was 

painstakingly created to give the GAN training regimen 

stability. 

 The novel integration of autoregressive model mimicry 

with adversarial learning, ushering forth a paradigm 

wherein explicit data density estimation seamlessly 

coalesces with implicit learning.  

 A comprehensive empirical evaluation across real-world 

datasets, spanning diverse natural scenes, coupled with 

the fortification against adversarial incursions in a 

defence scenario, underscoring the versatility and 

efficacy of proposed methodology. 

4.2. Proposed Hybrid GAN 

A combination of several paradigms designed to get 

around the common problem of mode collapse in Generative 

Adversarial Networks (GANs). When it comes to generative 

modeling, GANs are good at creating aesthetically pleasing 

samples, but they run into problems with intractable 

likelihoods. Conversely, autoregressive models, grounded in 

likelihood-based generative techniques, offer explicit 

probability densities. The ingenuity lies in marrying these 

seemingly incongruous methodologies into a singular 

framework, diverging from the conventional solitary model 

approach [20]. 

In a pioneering hybrid model, the generator embarks on a 

dual mission. Firstly, akin to its conventional GAN 

counterpart, it endeavors to apprehend the intricate contours 

of the data distribution, mirroring the verisimilitude of real-

world data samples. It assumes the mantle of a sampler tasked 

with transmuting a random vector drawn from a prescribed 

distribution into the realm of an autoregressive model, 

unveiling the nuances of its probability density.  

This concerted effort compels the hybrid model to 

prioritise the probabilistic landscape envisioned by the 

autoregressive model, a testament to its prowess in traversing 

the data space. One may ponder the rationale behind 

leveraging adversarial learning alongside autoregressive 

models, which proffer tractable likelihoods. The exigency 

arises from the inherent computational inefficiencies plaguing 

autoregressive models, as their synthesis proves arduous to 

parallelise, resulting in sluggish performance on parallel 

hardware.  

Moreover, their utility in precise data manipulation is 

hampered by the opacity shrouding the marginal distributions 

of their hidden layers. In stark contrast, GANs, with their 

swiftness in synthesis and propensity for discernible latent 

spaces, emerge as the pragmatic choice, particularly in 

scenarios necessitating downstream tasks facilitated by 

encoders. 

In the domain of naive GANs, the prospect of shared 

support between the generated distribution and the ground 

truth data distribution is fraught with improbability, 

particularly in the nascent stages of training. This asymmetry 

renders conventional divergence metrics, such as the Jensen-

Shannon divergence, prone to saturation, thus impeding 

effective optimisation. To mitigate this, augment the gradient 

information gleaned from ordinary back-propagation with 
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insights furnished by autoregressive models, leveraging them 

as arbiters of discernment in feature space manipulation [12]. 

The discriminator in hybrid GAN architecture is faced 

with two streams of actual inputs autoregressive model’s 

output and actual information. It discerns between these inputs 

via two distinct pathways, each tailored to a specific task. The 

first pathway scrutinises the authenticity of autoregressive 

model outputs, while the second evaluates the fidelity of the 

generator’s output vis-à-vis real data. Despite this apparent 

dichotomy, the parameters governing both pathways remain 

intertwined, constituting a singular discriminator entrusted 

with discerning between reality and fabrication [13]. 

 

 

 

 

 

 

 

 

 

 
 

Fig. 8 The result of an adversarial learning process using an 

autoregressive model [1] 
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Fig. 9 pictures produced by suggested HGAN that were trained on 

datasets of real images 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 10 MNIST dataset, with 10 unique modes 

In the crucible of adversarial training, the generator 

oscillates between two imperatives. Initially, it strives to 

engender synthetic data aligned with the autoregressive 

model’s outputs, thereby amplifying the likelihood of a hybrid 

mixture model. Subsequently, it shifts focus towards beguiling 

the discriminator by generating data that closely mimics real-

world samples. In essence, while the generator traverses a 

trajectory reminiscent of traditional GANs By distilling 

autoregressive model attributes through adversarial means, the 

hybrid technique composes a symphony intended to increase 

the probability of a hybrid mixed model. The table compares 

different Generative Adversarial Network (GAN) variants 

based on their adjusted chi-square and KL divergence metrics, 

which measure image generation quality and information 

fidelity. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 11 Findings for the CIFAR-10 dataset’s Inception scores [9] 

 

Higher values signify greater dissimilarity from real 

images and larger information gaps, respectively. ALI and 

GMAN exhibit superior performance, while MAD-GAN and 

SAGAN show room for improvement. This evaluation aids in 

selecting the most effective GAN model for realistic image 

generation tasks. 

4.3. MNIST 
Ten dominating modes may be used to estimate the data 

distribution in the MNIST dataset. As defined in the reference, 

a “mode”, in this sense, is a linked component inside the 

dataset’s manifold. It uses the MNIST digits to train a four-

layer CNN classifier for evaluation purposes. Then, this 

classifier ascertains the mode scores in the data that the 

suggested approach produced. For various baseline GAN 

techniques, this procedure was repeated. Additionally, by 

assessing the classifier’s Performance on the 10,000 sample 

MNIST test set, we were able to derive ground truth mode 

scores. Measured the difference between the histograms 

produced from the ground truth and those from each GAN 

model using KL-divergence and Chi-square distance. The 

Performance of the suggested HGAN is presented against 

alternative techniques. Looking at the Figure, it is clear that 

the suggested approach outperforms the other approaches 

assessed in capturing every mode seen in the MNIST dataset. 
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Fig. 12 MNIST experiment stacked [7] 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 13 Test MODE score results on the MNIST dataset 

4.4. Stacked and Compositional MNIST 
 

 

 

 

 

 

 

 

 

 

 

 
Fig. 14 Compositional-MNIST experiment [5] 

 

 

 

 

 

 

 
Fig. 15 FIDs on STL-1 and CIFAR-10 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 16 The accuracy of classification while employing CIFAR-10 and 

STL-10 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 17 The accuracy of classification while employing FGSM , PGD and 

CW 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 18 Attack Vs FGSM, PGD and CW 

5. Conclusion  
The innovative approach, the Hybrid Generative 

Adversarial Network (HGAN), presents a promising solution 

to the persistent mode collapse issue in Generative Adversarial 

Networks (GANs). By integrating density estimation models 

with adversarial learning, HGAN achieves remarkable success 

in capturing diverse data modes and generating visually 

appealing images.  

Extensive experimentation on benchmark datasets Shown 

that HGAN is more effective than MNIST and real-world 

datasets in preventing mode collapsing and generating 
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pictures that have greater variety. HGAN’s unique framework 

helps it better understand the data distributions and entails a 

minimax game among a generator, a self-regressive approach, 

and a discriminator. Consequently, this results in enhanced 

coverage of data modes and alleviates the mode collapse issue 

that conventional GANs frequently face. As a result, HGAN 

emerges as a ground-breaking advancement in generative 

modeling, offering exciting prospects for various image 

generation tasks in the future. 
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