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Abstract - This paper presents an optimal DG planning method using a Pareto-based Many-Objective Arithmetic Optimization 

Algorithm (MOAOA) to improve four technical metrics of the distribution system: mitigation of Electrical Energy Not Served 

(EENS), total voltage deviation minimization, enhancement of voltage stability index, and energy loss curtailment. The method 

is tested on a standard IEEE-33 bus distribution system and compared with other methods like MOPSO, MOGWO, and NSGA-

II. The study aims to address the challenges of improper DG integration in distribution networks.  

Keywords - Distributed Generation (DG), Arithmetic Optimization Algorithm (AOA), Multiobjective Particle Swam 

Optimization (MOPSO), Multi Objective Gray Wolf Optimization (MOGWO), Non Dominated Sorting Genetic Algorithm 
(NSGA-II) Distribution system, Optimal siting and sizing. 

1. Introduction  
The persistent surge in demand for electrical power 

coupled with the extensive evolution of distribution networks 

has rendered the effective management of the distribution 

system a matter of paramount significance in contemporary 

research and discourse. Further, in recent years, worldwide 
attention has been focused on the problems that accompany 

traditional fossil fuel power plants. This has prompted power 

utilities across the globe to explore the option of Distributed 

Generators (DGs) integration in distribution systems. These 

DGs have unique characteristics such as environmental 

pollution mitigation, power distribution network loss 

minimization, system reliability enhancement, voltage profile 

improvement and deferment of new construction requirements 

for the energy facilities [1].   

Nevertheless, the efficacy of DG interconnection within 
distribution systems is predominantly contingent upon the 

specificities of the DG location and size. Improper planning 

(location and size) of DG may culminate in counterproductive 

results [2]. The non-optimal planning of DGs is linked to the 

proliferation of power losses, stability issues, and reverse 

power flow within the distribution network. Thus, it is 

imperative to optimize the planning of DGs within the 

distribution network strategically. 

The planning problem associated with DGs typically 

entails the optimization of multiple objectives aimed at 

boosting the overall performance of the distribution system. 

Given the complex, many-objective, mixed-integer, non-

linear, and non-concave nature of the DG planning problem, 

numerous researchers employ nature-inspired metaheuristic 

optimization algorithms to tackle this challenge effectively.  

Authors in [3] applied a Genetic Algorithm (GA) to locate 

and size DGs considering multiple objectives. Multiple DGs 

are planned in the distribution network [4] using a particle 

swarm optimization algorithm. The investigation also 

addressed the DG planning problem while considering various 

load models. 

2. Literature Review  
The authors employed the cuckoo search optimization 

algorithm to address the many-objective DG planning 

problem. In a study outlined in [5], an artificial bee colony 

algorithm is utilized to minimize real power loss while 

optimally siting and sizing DG installations. The utilization of 

a whale optimization technique, as detailed in [6], has been 

employed for the optimization of DG site selections and sizes, 
with a primary focus on real power loss reduction. This study 

places particular emphasis on incorporating diverse load 
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models into the optimization framework. A many-objective 

problem was delineated in  [7] wherein the objectives 

encompass the minimization of power loss and the 

enhancement of voltage profile. In reference [8], a weighted 

multiobjective multiverse optimization methodology has been 

proposed to address the DG planning problem. It is 
noteworthy that this investigation specifically considered the 

optimization of the Electrical Energy Not Supplied (EENS) 

objective in conjunction with several other technical 

objectives (real power loss, total voltage deviation, voltage 

stability index).  

Authors in [9, 10] explored the application of the butterfly 

optimization algorithm for planning DGs in the distribution 

network with the objective of minimising system real power 
loss and loadability. An approach to many-objective DG 

planning is introduced in [11], accounting for cost, emission, 

voltage deviation, and voltage stability as distinct objectives. 

The resolution of this multifaceted problem is achieved 

through the implementation of the artificial gorilla troops 

optimizer algorithm. The artificial humming bird algorithm 

[12] is applied to find the best location and size of DGs with 

an objective to minimize losses and total voltage deviation.  

The above-cited literature [7-12], while addressing 

multiple objectives, does not maintain the many-objective 

nature during the optimization process. The prevailing 

approach in the majority of these studies involves the 

utilization of a weighted-sum methodology to transmute the 

many-objective DG planning problem into a single-objective 

counterpart. Following the transformation, the problem is 

tackled using a single-objective optimization algorithm. The 

effectiveness of this approach relies on the predetermined bias 

weights assigned to each objective.  

However, it is noteworthy that, for a specific solution, 

these bias weights are predefined, potentially rendering the 

solution impractical for distribution utilities with divergent 

biases towards the objectives. Furthermore, imperfect 

solutions may be produced as a result of choosing the wrong 

bias weights [8]. Some researchers have used Pareto 

optimality based many-objective algorithms to address these 

concerns effectively.  

Pareto optimality-based many-objective algorithms are 

capable of optimizing multiple objectives simultaneously, 

thereby avoiding the need for converting the many-objective 

problem into a single-objective one. A game theory-based 

Pareto optimality approach is implemented in [13] for optimal 

DG planning in the distribution network. In [14], the authors 

developed a many-objective framework by using a 

Multiobjective Grey Wolf Optimization Algorithm 
(MOGWO) to solve the DG planning problem.  The following 

gaps were identified from the above discussions. The literature 

elucidates that a substantial portion of DG planning 

investigations overlooks the EENS objective. Despite being 

documented in select studies [8], it is noteworthy that these 

investigations, as previously highlighted, amalgamate the 

EENS objective with other parameters utilizing a weighted-

sum methodology. Studies utilizing the Pareto optimality-

based approach [13, 14] similarly omitted consideration for 

the EENS objective. Recognizing this research gap, this study 
proposes a many-objective DG optimal planning problem that 

takes into account energy loss, total voltage deviation, voltage 

stability index, and EENS as primary objectives. This study 

presents simultaneous optimization of all four considered 

objectives using a Pareto optimality-based Many-Objective 

Arithmetic Optimization Algorithm (MOAOA) [15].  

The best-compromised solution from the Optimal Pareto 

front generated by MOAOA is chosen through the Technique 

for Order Performance by Similarity to the Ideal Solution 

(TOPSIS). TOPSIS, [14] a widely utilized multi-attribute 

decision-making tool, plays a central role in aiding decision-

makers to identify an optimal solution from a given set of 
alternatives. Within the framework of the proposed many-

objective problem, TOPSIS effectively achieves a harmonious 

balance among energy loss, total voltage deviation, voltage 

stability index, and EENS. The contributions of this paper are 

as follows: 

1. Four main goals were covered in this investigation, 

including the reduction of EENS by using a Pareto-

optimality-based strategy for DG planning. 

2. There are two different kinds of DGs in the planning 

problem: Type-1 DGs, which are only capable of 

introducing actual power, and Type-2 DGs, which are 

able to supply both reactive and active power. 

3. Utilize TOPSIS’s expertise during the decision-making 

phase after the optimization process. The planning results 

for each weight combination are methodically presented, 
and several combinations of weights are methodically 

selected. 

4. The innovative application of MOAOA to tackle the 

intricacies present in the DG planning problem with four 

competing objectives is a significant feature of this study. 

The subsequent sections of the paper are delineated as 

follows: Section 2 introduces the formulation of the objective 

function. Section 3 provides a detailed exposition of the 

MOAOA and TOPSIS. Section 4 expounds upon the results 

and ensuing discussions. The concluding remarks are 

presented in section 5. 

3. Problem Formulation 

The proposed multiobjective methodology encompasses 

four vital technical objectives of the distribution network that 

aim to enhance the overall performance of the distribution 

network. It is noteworthy that all four objectives are 

minimized simultaneously using the proposed methodology.  
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3.1. Objective Functions 

3.1.1. Energy Loss 

The parameter of significant importance in gauging the 

efficacy of the distribution is the energy loss (𝐸𝑙𝑜𝑠𝑠) of the 

network. Efforts should be directed towards minimizing the 

𝐸𝑙𝑜𝑠𝑠 Within the network to the greatest extent possible. 

Hence, the 𝐸𝑙𝑜𝑠𝑠 This is taken as one of the minimization 

objectives of this study. It can be computed by using the below 

expression. 

𝐸1 = 𝐸𝑙𝑜𝑠𝑠 = 𝜆 × ∑ 𝐼𝑝
2𝑅𝑝

𝑛𝑏𝑢𝑠−1
𝑝=1          (1) 

Where 𝜆, 𝐼𝑝 , n bus and Rp respectively denote the 

conversion factor, current served by branch p and resistance 

of branch p.  

3.1.2. Electrical Energy Not Supplied 

The unmet energy demand, referred to as Electrical 

Energy Not Supplied (EENS), serves as a pivotal metric for 

assessing the reliability of services provided to consumers. 

𝐸𝐸𝑁𝑆 empowers network utilities to identify vulnerable buses 

and formulate corresponding operational procedures. The 

𝐸𝐸𝑁𝑆 of the distribution system, framed as a minimization 

objective, can be calculated using the equation outlined below: 

𝐸2 = 𝐸𝐸𝑁𝑆 = ∑ 𝑃𝐷,𝑚𝑈𝑚
𝑛𝑏𝑢𝑠
𝑚=1      (2) 

Where 𝑃𝐷,𝑚 and 𝑈𝑚 For a given bus 𝑚 respectively 

denote the power demand and the annual failure rate. It is 

customary to estimate the reliability of the system based on 

the average rate of failure (𝜏𝑠), annual time of outage (𝑈𝑠) and 

average outage time (𝑟𝑠). These parameters are computed as 

shown below [16]: 

𝜏𝑠 =  ∑ 𝜏𝑚𝑚 ,𝑈𝑠 =  ∑ 𝜏𝑚𝑟𝑚𝑚  ; 𝑟𝑠 =  
𝑈𝑠

𝜏𝑠
=  

∑ 𝜏𝑚𝑟𝑚𝑚

∑ 𝜏𝑚𝑚
   (3) 

Where 𝜏𝑚, 𝑈𝑚 and 𝑟𝑚 Respectively denote the average 
rate of failure, annual time of outage and average outage time 

for the component 𝑚 of the system. Enhancing the reliability 

of the distribution network is achievable through the reduction 

of line failure rates. The failure rate of a given line is typically 

influenced by the magnitude of the current it carries.  

The integration of DGs into the network serves as an 

effective strategy to diminish the current carried by the lines, 
thereby contributing to the reduction of line failure rates. This 

methodological approach aligns with the objective of 

improving the overall reliability of the distribution system. For 

any given line 𝑘, with the uncompensated failure rate 

𝜏𝑘
𝑢𝑛𝑐𝑜𝑚𝑝

and fully compensated failure rate 𝜏𝑘
𝑐𝑜𝑚𝑝

, the failure 

rate post DG accommodation is given by: 

𝜏𝑘
𝐷𝐺 =  

|𝐼𝑘
𝐷𝐺|

|𝐼𝑘
𝑁𝑂𝐷𝐺|

(𝜏𝑘
𝑢𝑛𝑐𝑜𝑚𝑝

− 𝜏𝑘
𝑐𝑜𝑚𝑝) + 𝜏𝑘

𝑐𝑜𝑚𝑝
    (4) 

Where 𝐼𝑘
𝑁𝑂𝐷𝐺 and 𝐼𝑘

𝐷𝐺  For a given line 𝑘, respectively, 

indicate the current served by the line before and after DG 

integration.  

3.1.3. Total Voltage Deviation 

The magnitude of bus voltage serves as a crucial 

parameter indicative of the power quality supplied to 

consumers. Improving the network voltage profile involves 
mitigating deviations in bus voltage. To achieve this goal, a 

minimization objective is formulated, focusing on reducing 

the Total Voltage Deviation (TVD) across the network. The 

bus voltage being 𝑉𝑚, 𝑇𝑉𝐷 is mathematically expressed as 

follows [13]: 

𝐸3 = 𝑇𝑉𝐷 =  ∑ (|1 − 𝑉𝑚|)2𝑛𝑏𝑢𝑠
𝑚=1       (5) 

3.1.4. Voltage Stability Index 
The demand on the distribution network undergoes 

frequent changes; consequently, the bus voltage may collapse 

if the loading exceeds the critical l*oading limit. In order to 

prevent such undesirable phenomena, utilities strive to 

maximize the Voltage Stability Index (VSI), and Stability 

Index (SI) of the distribution system. The 𝑉𝑆𝐼, which is taken 

as a maximization objective, is shown below in Equation [13]: 

𝐸4 = 𝑉𝑆𝐼 =  min (𝑆𝐼𝑛)    𝑛 = 2, 3, … . . , 𝑛𝑏𝑢𝑠     (6)                  

𝑆𝐼𝑛 = |𝑉𝑚|4 − 4[𝑃𝑚𝑋𝑚𝑛 − 𝑄𝑚𝑅𝑚𝑛]2 − 4[𝑃𝑚𝑅𝑚𝑛 +
𝑄𝑚𝑋𝑚𝑛]|𝑉𝑚|2   (7) 

Where 𝑃𝑚 and 𝑄𝑚 Indicate the real and reactive power 

respectively injected at bus 𝑚. 𝑅𝑚𝑛 and 𝑋𝑚𝑛 Respectively 

denote the resistance and reactance of the line joining buses 𝑚 

and 𝑛. 

3.2. Constraints 

The four specified objectives, slated for simultaneous 

optimization, are delimited by the ensuing following set of 

constraints: 

|𝑉𝐿𝐿|  ≤ |𝑉𝑚| ≤ |𝑉𝑈𝐿|            (8) 

|𝑉𝐿𝐿|  ≤ |𝑉𝑚| ≤ |𝑉𝑈𝐿|        (9) 

𝑃𝐷𝐺,𝐿𝐿  ≤  𝑃𝐷𝐺 ≤  𝑃𝐷𝐺,𝑈𝐿        (10) 

Where 𝑉𝐿𝐿 and 𝑉𝑈𝐿 Denote the minimum and maximum 

limits of the bus voltage, respectively. 𝑃𝑠𝑠, 𝑃𝑇,𝐷𝐺 , 𝑃𝑇,𝐷 and 

𝑃𝑇,𝑙𝑜𝑠𝑠 Respectively indicate sub-station injected power, total 

power supplied by the DGs, total power demand on the 

distribution system and the total distribution system 

losses. 𝑃𝐷𝐺,𝐿𝐿, 𝑃𝐷𝐺 and 𝑃𝐷𝐺,𝑈𝐿 Respectively represent the 

lower limit of the DG rating, rated power of the DG and upper 

limit of the DG rating.  
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4. Many-Objective Optimization Methodology 
4.1. Arithmetic Optimization Algorithm 

The Many-Objective Arithmetic Optimization Algorithm 

(MOAOA) [15] represents a recent advancement in the 

domain of multiobjective optimization derived from the well-

known AOA. AOA exhibits the capability to address 

optimization problems without necessitating the computation 

of their derivatives. In AOA, two variables, namely Math 

Optimizer Probability (MOP) and Math Optimizer 

Accelerated (MOA), are adjusted prior to the position update 

of the solutions.  

𝑀𝑂𝐴 (𝑡) = 𝑀𝐼𝑁 + 𝑡 × (
𝑀𝐴𝑋−𝑀𝐼𝑁

𝑡𝑀𝐴𝑋
)       (11) 

𝑀𝑂𝑃(𝑡) = 1 − (
𝑡

𝑇
)

1

𝛼
          (12) 

Where 𝑡, 𝑡𝑀𝐴𝑋, 𝑀𝐼𝑁, 𝑀𝐴𝑋 and 𝛼, respectively, denote 

the present iteration, maximum iteration number, minimum 

limitation value, maximum limitation value and the parameter 

of sensitivity.  

The exploration phase of the AOA aims at exploring the 
search space in quest of locating the optimal solution. The 

division and multiplication operators guide this phase. The 

exploration phase of the AOA is mathematically modelled as: 

𝑥(𝑡 + 1) =  {
𝐵𝐸𝑆𝑇(𝑥) ÷ (𝑀𝑂𝑃(𝑡) + 𝛽)  × 𝑌,    𝑖𝑓 𝑟2 < 0.5

𝐵𝐸𝑆𝑇(𝑥) × 𝑀𝑂𝑃(𝑡) × 𝑌,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (13) 

 𝑌 = (𝑈𝐿 − 𝐿𝐿) × 𝜇 + 𝐿𝐿           (14) 

Where 𝑥(𝑡 + 1), 𝐵𝐸𝑆𝑇(𝑥), 𝛽, 𝑈𝐿, 𝐿𝐿, 𝜇 and 𝑟2  

respectively represent the candidate position at iteration 𝑡 + 1, 

current best position, small integer value, upper limit of the 

search area, lower limit of the search area, parameter of 

control and a random number. 

4.2. Concept of Pareto Optimality 

Pareto optimality facilitates an invaluable framework for 
handling many conflicting objectives simultaneously. The 

majority of the many-objective swarm intelligence-based 

algorithms rely on this concept to generate a Pareto front 

representing the inherent tradeoffs between the conflicting 

objectives. Mathematically, Pareto optimality is formulated as 

follows [13]: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒{𝑦1(𝑝), 𝑦2(𝑝), … . 𝑦𝐿(𝑝)}  (15) 

Such that 𝑝 ∈ 𝑃, where 𝑃 denotes the array of all feasible 

solutions and 𝐿 ≥ 2. One solution says 𝑝1 dominates other 

solution 𝑝2, provided the following two conditions are met: 

1. 𝑦𝑖(𝑝1) ≤ 𝑦𝑖(𝑝2) for all objectives 𝑖 ∈ {1,2, … , 𝐿} and 

2. 𝑦𝑗(𝑝1) < 𝑦𝑖(𝑝2) for at least one objective 𝑗 ∈ {1,2, … , 𝐿} 

 (16) 

If any of the stated conditions are not met, solutions 𝑝1 

and 𝑝2 do not share a dominant relationship; instead, they are 

incorporated into a non-dominant solution frontier commonly 

known as the Pareto front. The primary goal of any many-

objective algorithm is to trace this front effectively. In the 
proposed methodology, MOAOA is applied to generate the 

Pareto front. The detailed flowchart of the MOAOA-TOPSIS 

technique for optimal DG planning is depicted in Figure 1.  

4.3. Technique for Order Preference by Similarity to an 

Ideal Solution 

The best tradeoff solution from the Pareto front generated 

by the MOAOA is selected using the TOPSIS method. The 

various stages involved in this method in reference [14]: 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 

 
Fig. 1 Flowchart of MOAOA-TOPSIS approach 
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5. Results and Discussion 
This section addresses the improvement of distribution 

system technical metrics, including energy loss mitigation, 

total voltage deviation mitigation, voltage stability index 

maximization, and mitigation of EENS by optimal DG 

planning utilizing Pareto-based MOAOA & TOPSIS 

approaches. The IEEE-33 distribution test system is 

considered in this work. The following scenarios are 

considered. 

 Scenario-0: Without DGs. 

 Scenario-1: Optimal Planning of DGs operating with 

unity power factor. (Type-1 DGs). 

 Scenario-2: Optimal Planning of DGs operating with 0.9 
power factor. (Type-3 DGs). 

In scenario 0, the load flow algorithm is executed on a 

distribution system that does not have any DGs to get an initial 

glance at the system’s technical metrics. A thorough analysis 

of the improvement of the above-cited technical metrics 

resulting from optimal planning (or) deployment of DGs 

operating at unity power factor in the system is covered in 

scenario 1.  

In scenario 2, the improvement of the above-cited metrics 

resulting from optimal planning of DG units operating at 0.9 

power factor is covered. The optimal Pareto front between the 
competing objectives is determined using the Pareto-based 

Many-Objective Arithmetic Optimization Method 

(MOAOA). TOPSIS method is executed for deciding on the 

best tradeoff solution from the optimal Pareto front. The 

outcomes of the TOPSIS-MOAOA algorithm are compared 

with MOGWO, MOPSO and NSGA-II algorithms.  

The weights associated with the objectives 

𝐹1 (𝐸𝑛𝑒𝑟𝑔𝑦 𝑙𝑜𝑠𝑠), 𝐹2 (𝐸𝐸𝑁𝑆), 𝐹2(𝑇𝑉𝐷), 𝐹3(𝑉𝑆𝐼) are coined 

as 𝑤𝐸𝐿 , 𝑤𝐸𝐸𝑁𝑆, 𝑤𝑣𝑑 , 𝑤𝑣𝑠  in the third step of the TOPSIS 

method. All of the simulations were made in MATLAB and 

were run on a PC with 8 GB RAM with an Intel(R) Core (TM) 

i5-7200U CPU @ 2.50GHz processor. For all algorithms, a 

population size of 400, an archive size of 200, and a total 

number of 500 iterations have been taken into account. The 

remaining control parameters of all algorithms were initialized 

to the values quoted in [14].    

5.1. IEEE-33 Bus System 

Figure 2 depicts the single-line diagram of the IEEE 33-

bus radial distribution system.  The 33-bus system is described 

in depth in [17]. The system’s real and reactive power 

demands are 3.715 MW & and 2.300 MVAR. Base MVA and 

kV are 12.66 & 100. 

In scenario 0, load flow analysis is executed for the 

system’s initial evaluation in the absence of DGs. The results 

of the load flow show an energy loss of 1848.2 MWh, a TVD 
of 0.1338 p.u., VSI of 0.6672 p.u and an EENS of 5.7727*104 

kWh/year. The optimal Pareto fronts given by the MOAOA, 

MOPSO, MOGWO, and NSGA-II algorithms for scenarios 1-

2 are portrayed in Figure 3. The results of the TOPSIS-

MOAOA method (with equal weightage for scenarios 1-2, 

including DG locations, DG sizes and system technical 

metrics are presented in Table 1. 

 

 

 

 
 

 

 
 

 

 
 
 

 
 

Fig. 2 Single diagram of 33 bus system 

The following observations are drawn from the results 

listed in Table 1 for scenarios 1-2. In scenario-1, due to the 
connection of DGs operating up at optimal locations 14, 25, 

and 30 with optimal capacities of 1097 kVA, 820 kVA, and 

1583 kVA respectively, network energy loss curtailed to 

794.98 kW accounts for 57.03 % loss reduction, EENS is 

diminished to 4.376*104 kWh/year, TVD is reduced to 0.0012 

p.u and VSI is maximized to 0.9595 p.u.  

In scenario 2, the optimal connection of DGs operating 

with 0.9 pf at optimal locations 14, 24, and 30 with optimal 

capacities of 887 kVA, 1354 kVA, and 1531 kVA in the 

system results in energy loss mitigated to 173.43 MWh, 

accounting for 90.64 % loss reduction, EENS mitigated to 

4.251*104 kWh/year, TVD mitigated to 0.00029 p.u. and VSI 
maximized to 0.9768 p.u.  

In scenario 2, the system’s technical metrics show a better 

enhancement as a result of the optimal deployment of Type-3 

DGs working with 0.9 p.f. Figure 4 shows the voltage profile 

of the 33-bus system for the outcomes quoted in Table 1. From 

Figure 4, it has been perceived that the system voltage profile 

is improved in both scenarios. Better enhancement in the 
system voltage profile is attained due to optimal deployment 

of DGs working with 0.9 p.f. 

5.2. Comparative Analysis 

The comparison of the results produced by the MOAOA 

algorithm with those of the MOSPSO, MOGWO, and NSGA-

II algorithms is shown in Table 2. It is seen that the MOAOA 

algorithm performs better in all scenarios based on the data 

given in Table 2. 
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Fig. 3 MOAOA, MOPSO, MOGWO, and NSGA-II algorithms’ optimal Pareto fronts for scenarios 1-2 of the 33-bus system 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

Fig. 4 Voltage profile of IEEE-33 bus system for the outcomes of TOPSIS-MOAOA method (with equal weightage) for scenarios 0-2 

Table 1. Outcomes TOPSIS-MOAOA for scenarios 0-2   

Technical Metrics Scenario-0 Scenario-1 Scenario-2 

DG loc’s/DG Sizes (kVA) ----------- 

14/1097, 

25/0820 

30/1583 

14/0887 

24/1354 

30/1531 

𝑬𝒍𝒐𝒔𝒔 in MWh 1848.2 794.98 173.43 

TVD in p.u 0.1338 0.00184 0.00029 

VSI in p.u 0.6672 0.9517 0.9768 

EENS in (*104 kWh/year) 5.7727 4.376 4.251 

% 𝐸𝑙𝑜𝑠𝑠  Reduction ----------- 57.03 90.64 

Minimum Voltage in p.u 0.9038 0.9877 0.9942 
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Table 2. Comparison results of MOAOA, MOPSO, MOGWO & NSGA2  

Scenario 

No 

Optimization 

Technique 

DG loc’s/DG 

Sizes (kW) 

𝑬𝒍𝒐𝒔𝒔 

in MWh 

EENS in 

(*104 

kWh/year) 

TVD 

in p.u 

VSI 

in p.u 

1 

MOAOA 
14/1097, 25/819 

30/1583 
794.98 4.376 0.00184 0.9517 

MOPSO 
14/1073, 30/1516 

25/889 
802.74 4.482 0.00240 0.9452 

MOGWO 
14/1135, 25/911 

31/1432 
816.17 4.451 0.00194 0.9484 

NSGA2 
13/1177, 25/777 

30/1530 
796.94 4.549 0.00177 0.9506 

2 

MOAOA 
14/798, 24/1218 

30/1377 
173.43 4.2517 0.00029 0.9768 

MOPSO 
14/823, 24/1206 

30/1358 
175.82 4.2897 0.00032 0.9745 

MOGWO 
13/831, 24/1011 

30/1373 
179.61 4.4068 0.00026 0.9542 

NSGA2 
11/996, 25/924 

30/1300 
184.70 4.3862 0.00043 0.9664 

 

 

6. Conclusion  
This study uses a novel MOAOA algorithm for optimal 

distribution system planning of DG problems. It investigates 

four technical parameters: energy loss reduction, total voltage 

deviation minimization, enhancement of voltage stability 

index, and EENS minimization. IEEE-33 bus radial 

distribution test system is considered. The optimal pareto front 

is generated using MOAOA, and the best tradeoff solution is 

selected using the TOPSIS method. The optimal planning of 

DGs with unity pf results in a 57 % loss reduction in both test 

systems, and the optimal planning of DGs with 0.9 pf results 

in a 90 % loss reduction. The optimal planning of Type-3 DGs 

operating with 0.9 pf results in better enhancement in all the 

technical metrics. The MOAOA algorithm outperforms the 

MOPSO, MOGWO, and NSGA2 algorithms in terms of 
reaching the most effective solution. 
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