
SSRG International Journal of Electrical and Electronics Engineering Volume 11 Issue 5, 53-59, May 2024
ISSN: 2348-8379/ https://doi.org/10.14445/23488379/IJEEE-V11I5P106 © 2024 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Efficient Data Logging for One Wire Protocol Sensor in

IoT: A Hardware-in-the-Loop (HIL) Approach

Patnaikuni Dinkar R. Patnaik1, Sachin R. Gengaje2

1,2Department of Electronics Engineering, Walchand Institute of Technology, Maharashtra, India.

1Corresponding Author : pdrpatnaik@gmail.com

Received: 05 March 2024 Revised: 05 April 2024 Accepted: 03 May 2024 Published: 29 May 2024

Abstract - The Internet of Things (IoT) has changed how one uses technology by using many sensors that create large sets of

data. The integrity and efficiency of IoT systems are very important for their widespread adoption, and Hardware-in-the-Loop

(HIL) testing has emerged as a key tool in nearly achieving this. This research paper offers a brief exploration of HIL testing

within the scope of IoT engineering, exploring its practical applications and associated methodologies. This article empirically

describes two distinct data processing methods, Method-I and Method-II, providing insights into the adept tradeoff between

CPU-intensive algorithms and the efficiency of one-pass processing with Welford’s Algorithm. Additionally, the paper

introduces an innovative schema-based approach for sensor data storage using both XML and JSON formats, enabling efficient

and versatile data storage and retrieval, particularly when guided by Probability Density Functions (PDFs). While XML’s

verbosity and rigidity are acknowledged, the choice of format is contextual and application-specific. Overall, this research

advances our understanding of effective data processing and storage in IoT environments while showcasing the potential of

schema-driven, PDF-based data storage, reproduction, and schema design.

Keywords - Hardware-in-the-Loop (HIL) Testing, Sensor data logging and processing, Welford’s algorithm, Running standard

deviation and average, Sensor data storage, XML schema, JSON schema, Probability Density Function (PDF), Schema-based

data storage, Sensor data reproduction.

1. Introduction
IoT devices are becoming increasingly important,

covering domains ranging from home automation to industrial
control systems. The proper functioning of these devices relies

on rigorous testing and data analysis.

Hardware-in-the-Loop (HIL) testing is a critical approach

for evaluating IoT systems. However, the current systems lack

a detailed analysis of the underlying embedded system that

deals with signal capture, process, and reproduction.

Therefore, there is a need to identify the efficiency of the

HIL for any given application that requires an efficient

approach to reproduce the realistic signal behaviour to emulate

the near-real-time or real-time signal data at the right moment

that deals with polling every moment of a signal for the entire

system without failure which often is a CPU intensive job for
an embedded system.

The following section discusses the relevant methods

used to experiment and validate an efficient methodology to

reproduce the sensor signal in the perspective of reproducing

a sensor signal specifically designed to implement HIL for an

IoT application.

1.1. What is Hardware-in-the-Loop

Hardware-in-the-Loop (HIL) testing is a methodology

used to test and validate IoT systems by simulating real-world

conditions. In this environment, actual hardware components,

such as sensors, actuators, and controllers, are integrated with

simulation models [1]. This amalgamation facilitates the

evaluation of the system’s performance in a controlled yet

realistic setting.

1.2. Hardware-in-the-Loop (HIL) Testing

Hardware-in-the-Loop (HIL) testing is a methodology

used to test and validate IoT systems by simulating real-world

conditions. In this environment, actual hardware components,

such as sensors, actuators, and controllers, are integrated with

simulation models [2]. This conjunction facilitates the

evaluation of the system’s performance in a controlled yet

realistic setting.

1.3. The HIL Environment

The HIL environment consists of both hardware and

software components. Hardware components include IoT
devices like sensors, microcontrollers (such as the Raspberry

Pi Pico), and actuators. These components are connected to a

testing rig, which allows for data exchange and interaction

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:pdrpatnaik@gmail.com,

Patnaikuni Dinkar R. Patnaik & Sachin R. Gengaje / IJEEE, 11(5), 53-59, 2024

54

with the IoT system. The software part comprises simulation

models that emulate the behavior of the physical world.

2. Data Logging for Sensors
Data logging for sensors involves a systematic process

that begins with selecting suitable sensors for specific

measurements and ensuring their proper installation and

calibration. A compatible data logger or data acquisition

system is chosen, configured to capture data at the desired

intervals, and powered adequately for continuous operation.

Sensors are connected to the data logger, accounting for

environmental conditions, and real-time monitoring, if

needed, is established. Data is stored either in the data logger’s

memory or external storage, with retrieval options, and
subsequently analyzed for insights. Maintenance, calibration,

security, and data management considerations are crucial for

accurate and secure data collection and storage. This process

facilitates informed decision-making across various

applications, from scientific research to industrial processes

and IoT deployments.

Data logging with a microcontroller like the Raspberry Pi

Pico involves interfacing sensors with the GPIO pins of the

Pico, using libraries and programming languages like Python

to read sensor data at specified intervals. The collected data

can be stored in a local file or transmitted to external storage
or cloud services.

The Pico’s built-in hardware timers can help in precise

data sampling, and you can implement power-saving

strategies to extend battery life for remote deployments. This

approach enables cost-effective and versatile data logging

solutions for a wide range of applications, such as

environmental monitoring, home automation, and industrial

control systems.

Microcontrollers store data using various methods,

including internal memory (such as Flash or EEPROM) for

non-volatile storage of program code and configuration

settings, RAM for temporary data storage during program
execution, and external storage devices like SD cards or

EEPROM modules for larger datasets. Additionally, some

microcontrollers support communication with external storage

through interfaces like SPI or I2C. Storing data in registers,

arrays, or variables within the microcontroller’s memory is

common for in-program data manipulation. At the same time,

external storage is ideal for more extensive or long-term data-

logging applications.

The choice of storage method depends on factors like data

volume, retention requirements, and power constraints, it is

equally important to assess the complexity involved in storing
the data logged and also the amount of load that a

microcontroller is capable of withstanding.

3. Data Processing Methods
Efficient data processing is essential for extracting

meaningful insights from IoT sensor data. This paper presents

two distinct methods for data processing: Method I and

Method II.

The complexity surrounding sensors discussed in

Valencia, Goswami, and Goossens (2019) is not explicitly

outlined in the provided passages. The paper delves into

platform-aware control design flows, mechanical setups,

electrical circuits, MATLAB and Hardware-in-the-Loop

(HIL) experiments, Quality of Control (QoC) analysis, and

design guidelines [3]. Although sensors are mentioned, there

is no specific focus on their complexity.

In contrast, Gis, Büscher, and Haubelt (2021) elaborate

on the complexity of sensors, particularly in evaluating entire

systems, including inertial sensors, especially in safety-critical

systems [4]. They introduce a Sensor-in-the-Loop architecture

to address reproducibility challenges, enabling real-time

injection of sensor data directly into the hardware, ensuring

repeatable and reproducible results with lower jitter compared

to traditional methods.

Similarly, Gis, Büscher, and Haubelt (2020) discuss

challenges in software development for smart inertial sensors

due to hardware limitations and lack of reproducible testing
options, proposing a Sensor-in-the-Loop architecture as a

solution [5, 6].

Additionally, the complexity of digital sensors in a

Hardware-in-the-Loop (HIL) testing framework is highlighted

in Kalyan et al. (2023), specifically focusing on accelerometer

sensors BMA280 and BMC150 [7].

Overall, while Valencia et al. (2019) provide insights into

control design flows and experiments without emphasizing

sensor complexity, Gis et al. (2020, 2021) and Kalyan et al.

(2023) address challenges related to sensor evaluation and

testing within HIL frameworks, proposing innovative

solutions to mitigate these complexities [8].

3.1. Method-I: CPU-Intensive Algorithm

Method I employs a computationally intensive algorithm.

It involves recalculating the standard deviation and running

the average every time new data is added to the existing data

stream [9, 10]. This method is suitable for scenarios where

real-time processing and immediate feedback are paramount,

but it comes at the cost of high CPU utilization.

However, the CPU-intensive nature of this Algorithm

may pose challenges in resource-constrained IoT devices. It

demands a significant amount of processing power, which

could lead to increased energy consumption and potential
overheating issues in certain scenarios [11].

Patnaikuni Dinkar R. Patnaik & Sachin R. Gengaje / IJEEE, 11(5), 53-59, 2024

55

3.2. Method-II: One-Pass Data Processing with Welford’s

Algorithm

Method II takes advantage of Welford’s Algorithm to

calculate standard deviation and running average efficiently.

Unlike the two-pass mechanism of Method I, this method

processes the entire data set in a single pass 12, 13]. It enables
the continuous calculation of standard deviation and running

average in real-time, making it particularly suitable for

applications with resource constraints.

Welford’s Algorithm is a smart way to find the average

and spread of numbers as one gets them, and this itself is a

novelty, without needing to remember all the numbers we

have seen [14-16]. It is really handy when we are dealing with

many numbers and do not have much memory to spare. This

method keeps track of three things: how many numbers we

have seen so far (n), what the average is (M), and how spread

out the numbers are (S).

When a new number comes in, it uses simple math to
update these three values. It is like keeping a running tally of

the average and spread as one goes along, which is super

helpful for real-time calculations and when one cannot store a

huge list of numbers in our computer’s memory. One of the

key advantages of Method II is its ability to maintain

continuous calculations of standard deviation and running

average in real time. This makes it particularly suitable for IoT

applications where resource constraints are a concern. By

processing the data more efficiently, Method-II also

minimizes CPU utilization and energy consumption.

This paper presents the data logging and processing using
the usual approach. It then later compares that with another

approach as described above, using the statistical method of

sensor data storage using a Raspberry Pi Pico microcontroller

and a DHT 22 temperature and humidity sensor, which uses a

one-wire protocol.

4. Methodology
In this section, the detailed methodology used to interface

the DHT22 sensor with the Raspberry Pi Pico, a commonly

used microcontroller in IoT applications and two methods of

logging sensor data practically are discussed. The DHT22

sensor provides temperature and humidity readings. It

communicates via a standardized protocol, i.e., a wire

protocol, making it suitable for integration with IoT devices

through a simple one-wire interface, thereby limiting the
number of wires needed to interface many sensors.

4.1. Interfacing the DHT22 Sensor with Raspberry Pi Pico

Figure 1 below represents the Raspberry Pi Pico and the

DHT22 sensor connected using the one-wire protocol to

capture data on temperature and humidity. The "DATA" wire

serves as the communication link between the Pico and the

sensor, while the "GROUND" connection ensures a common

reference for both devices. The DHT22 sensor is responsible

for measuring temperature and humidity and sending this data

to the Raspberry Pi Pico for processing or logging. The

following interface was simulated using an online tool

available at the link wokwi.com, which is a widely used tool

to simulate IoT projects through a browser. The same tool

would be used further to simulate the interfacing of the DHT
22 sensor with a Raspberry Pi Pico for demonstration.

Fig. 1 Raspberry Pi Pico interfaced with DHT 22 sensor for data

capture

As can be clearly seen in the figure above, the Raspberry

Pi Pico is programmed so as to display Timestamp,

Temperature and Humidity, which is further stored in the form

of an array and later retrieved to store in the form of a CSV

file using appropriate external tools which is beyond the scope

of this paper. However, certainly, this method is too time-

consuming and the chances of inserting noise into data
increases.

Fig. 2 Raspberry Pi Pico interfaced with DHT 22 showing running

standard deviation and average

Patnaikuni Dinkar R. Patnaik & Sachin R. Gengaje / IJEEE, 11(5), 53-59, 2024

56

Followed by this, as shown above in Figure 2 an

experiment was conducted to reprogram the Raspberry Pi Pico

to calculate the running standard deviation and average for

temperature and skipped the humidity reading for simplicity

and demonstration purposes. Here, it is very clear that the use

of Welford’s Algorithm greatly reduces the CPU
intensiveness of the calculation process for standard deviation

and average while the temperature data stream.

As can be seen in the lower part of Figure 2 above,

whenever the temperature varies, the standard deviation is

calculated. If the same temperature is maintained for a while,

the deviation tends towards zero value while the average

approaches the true value. This stands valid with respect to the

rules of probability and statistics and, hence, is a novel way

presented in this paper to store the behaviour of the sensor data

for a given experiment of logging the temperature.

Further, this data is stored in the form of a Probability

Distribution Function (PDF) of the sensor data, which can
later be used to reproduce a similar behavior exhibiting sensor

waveform. However, it is again very important to note that

complete regeneration of the entire signal is almost not

possible merely on the basis of the PDF available for a given

signal and it only stores and gives information about the

statistical contribution and potentially leaves some essential

details about the signal structure for each value for a given

span of consideration.

4.2. Schema Definition for Sensor Data

A sensor schema is like an organized and agreed-upon
template for recording information about sensors. This

template includes important facts about sensors, such as what

kind they are, where they are placed, their special

identification numbers, how they are calibrated, the way they

store data, and other important details. These sensor schemas

are really important because they help keep all the sensor data

neat and organized. It is like having a set of rules that make

sure everyone records sensor information in the same way.

This makes it easier for people to find, use, and share sensor

data, no matter what kind of systems or fields they are working

in, and, of course, for a microcontroller, too.

Basically, there are two formats for defining a sensor
schema, which are discussed here, namely JSON and XML.

Here is an example of a DHT22 sensor data schema defined

using XML and JSON formats which will be compared for its

benefits later in this section.

Table 1. JSON schema for DHT22 sensor data

{

 "sensor_signal": {

 "sensor": {

 "name": "DHT22",

 "model": "AM2302",

 "manufacturer": "Adafruit"

 },

 "location": {

 "latitude": 40.7128,

 "longitude": -74.0060,

 "altitude": 10,

 "description": "New York City"

 },

 "data": {

 "temperature": {

 "value": 25.0,

 "unit": "Celsius"

 },

 "humidity": {

 "value": 50.0,

 "unit": "Percentage"

 }

 },

 "timestamp": "2023-09-25T14:30:00Z"

 }

}

Table 2. XML schema for DHT22 sensor data

<sensor_signal>

 <sensor>

 <name>DHT22</name>

 <model>AM2302</model>

 <manufacturer>Adafruit</manufacturer>

 </sensor>

 <location>

 <latitude>40.7128</latitude>

 <longitude>-74.0060</longitude>

 <altitude>10</altitude>

 <description>New York City</description>

 </location>

 <data>

 <temperature>

 <value>25.0</value>

 <unit>Celsius</unit>

 </temperature>

 <humidity>

 <value>50.0</value>

 <unit>Percentage</unit>

 </humidity>

 </data>

 <timestamp>2023-09-25T14:30:00Z</timestamp>

</sensor_signal>

Patnaikuni Dinkar R. Patnaik & Sachin R. Gengaje / IJEEE, 11(5), 53-59, 2024

57

4.3. Sensor Schema for PDF of Sensor Data

The Probability Density Function (PDF) serves as a

mathematical tool for characterizing the statistical properties

of a random variable’s potential values. It offers insights into

the likelihood of various values occurring within the variable’s

defined range. Through the process of integrating this function
over a specific interval, this gains the ability to quantify the

probability of the random variable taking on a value that lies

within that particular interval.

In more precise technical terms, the PDF operates as a

formal representation of the probabilities associated with

different potential outcomes of a random variable. It provides

a continuous description of how these outcomes are

distributed across the variable’s feasible range. When one

performs integration on the PDF over a defined range, it

corresponds to a probabilistic calculation. This fundamental

concept in probability theory and statistics is now utilized to

form the schema of the DHT22 sensor data, as shown in the
tables below.

Table 3. JSON schema for DHT22 sensor data PDF

{

 "sensor_signal": {

 "temperature": {

 "mean": 25.0,

 "std_deviation": 2.0,

 "welford_variance": 0.0,

 "welford_mean": 0.0,

 "sample_count": 0

 },

 "humidity": {

 "mean": 50.0,

 "std_deviation": 5.0,

 "welford_variance": 0.0,

 "welford_mean": 0.0,

 "sample_count": 0

 }

 }

}

In this XML schema, elements for welford_variance,

welford_mean, and sample_count under both temperature and

humidity to keep track of the statistics calculated using

Welford’s Algorithm are added. Initially, these values are set

to 0.

Table 4. XML schema for DHT22 sensor data PDF

<sensor_signal>

<temperature>

<mean>25.0</mean>

<std_deviation>2.0</std_deviation>

<welford_variance>0.0</welford_variance>

<welford_mean>0.0</welford_mean>

<sample_count>0</sample_count>

</temperature>

<humidity>

<mean>50.0</mean>

<std_deviation>5.0</std_deviation>

<welford_variance>0.0</welford_variance>

<welford_mean>0.0</welford_mean>

<sample_count>0</sample_count>

</humidity>

</sensor_signal>

In this JSON schema, similar to the XML schema,

additional fields for welford_variance, welford_mean, and

sample_count under both temperature and humidity to keep

track of the statistics calculated using Welford’s Algorithm are

added. Initially, these values are set to 0.

4.4. Advantages of Defining Sensor Data through Schema

Firstly, defining any data through schema has the added

advantage of getting the schema definition validated through

appropriate tools, which in turn validates the definitions of the

application as a whole in cases where the sensor data is prime.

4.4.1. Advantages of JSON
 Lightweight and user-friendly format for both humans

and machines.
 Supported in modern programming languages, ensuring

versatility.
 Native compatibility with JavaScript, commonly used in

web and IoT development.
 Excellent choice for straightforward data exchange

between systems.

4.4.2. Advantages of XML
 Offers structured representation for complex data

hierarchies.
 Supports namespaces and validation, which is vital for

data interchange standards.
 Widely used in applications requiring precise document

structure and data validation.

Patnaikuni Dinkar R. Patnaik & Sachin R. Gengaje / IJEEE, 11(5), 53-59, 2024

58

 Self-descriptive with tag names and attributes, enhancing

human readability in certain scenarios.

XML Schema tends to be verbose and challenging to

compose and comprehend when compared to JSON Schema.

It leans towards being inflexible and less adaptable, which

constrains your ability to define data and logic creatively.

Furthermore, it does not show the same level of popularity as

JSON or other formats that align better with web applications.

However, the reader of this paper needs to note that depending

on what the end application is one must choose the format.

5. Signal Reproduction for the HIL System
To reproduce the signal for temperature and humidity

based on the sensor schema created, the Pico was

reprogrammed, and the MicroPython code that generates

synthetic data using Welford’s Algorithm was incorporated in

the code, as can be seen in Figure 3 below (left half).

Fig. 3 Raspberry Pi Pico reproducing DHT22 sensor data using PDF

schema and synthetic data

Since MicroPython does not include extensive data

plotting libraries, the focus was on generating and printing the

synthetic data. This data can later be transferred to a computer

for detailed plotting if needed. This experiment was only to

demonstrate the reproduction of sensor data and does not deal

with the accuracy of the data thus reproduced. However, the

plotted over an Excel plotter showed the results to be quite

similar as these were not completely relying on the
randomness of the sensor data but a gradual and steady change

in the environmental parameters in the sensor’s vicinity.

This code initializes the sensor schema, updates Welford

statistics for temperature and humidity, generates synthetic

data, which can even be replaced with real sensor data if there

is a need for accuracy, and prints the data along with the final

Welford statistics.

6. Conclusion
In conclusion, this research paper has delved into the

pivotal role of Hardware-in-the-Loop (HIL) testing within the

domain of IoT engineering, exploring its practical applications

and methodologies. It has further examined two data

processing methods, Method-I and Method-II, providing

insights into the balance between CPU-intensive algorithms

and the efficiency offered by one-pass processing via

Welford’s Algorithm.

Additionally, the paper introduced a schema-based

approach for sensor data storage using both XML and JSON
formats, paving the way for efficient PDF-based data storage

and retrieval. While XML’s verbosity and rigidity were

acknowledged, the choice between XML and JSON depends

on the specific demands of the application.

In essence, this research contributes not only to the

understanding of effective data processing and storage in IoT

environments but also to the utilization of PDF-based storage

schemas, offering practical insights into sensor data logging,

reproduction, and robust schema design.

References
[1] Igor Pintaric et al., “Flexible HiL Interface Implementation for Automotive XiL Testing,” 2021 IEEE Vehicle Power and Propulsion

Conference (VPPC), Gijon, Spain, pp. 1-3, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[2] Farshideh Kordi et al., “Poster: Conceptual Design for FPGA Based Artificial Intelligence Model for HIL Applications,” 2023 IEEE

Symposium on Computers and Communications (ISCC), Gammarth, Tunisia, pp. 1-3, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[3] Juan Valencia, Dip Goswami, and Kees Goossens, “Comparing Platform-Aware Control Design Flows for Composable and Predictable

TDM-Based Execution Platforms,” ACM Transactions on Design Automation of Electronic Systems, vol. 24, no. 3, pp. 1-26, 2019.

[CrossRef] [Google Scholar] [Publisher Link]

[4] Angga Wahyu Aditya et al., “Implementation of the In The Loop (Mil) Model and In The Loop (Hil) Hardware as Practical Support

Means,” Electrical, Electronics and Telecommunications Engineering-B30, vol. 4, pp. 1-6, 2019. [Google Scholar] [Publisher Link]

[5] Daniel Gis, Nils Büscher, and Christian Haubelt, “Investigation of Timing Behavior and Jitter in a Smart Inertial Sensor Debugging

Architecture,” Sensors, vol. 21, no. 14, pp. 1-25, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[6] Daniel Gis, Nils Büscher, and Christian Haubelt, “Advanced Debugging Architecture for Smart Inertial Sensors Using Sensor-in-the-

Loop,” 2020 International Workshop on Rapid System Prototyping (RSP), Hamburg, Germany, pp. 1-7, 2020. [CrossRef] [Google

Scholar] [Publisher Link]

https://doi.org/10.1109/VPPC53923.2021.9699257
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Flexible+HiL+Interface+Implementation+for+Automotive+XiL+Testing&btnG=
https://ieeexplore.ieee.org/document/9699257
https://doi.org/10.1109/ISCC58397.2023.10218294
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Poster%3A+Conceptual+Design+for+FPGA+Based+Artificial+Intelligence+Model+for+HIL+Applications&btnG=
https://ieeexplore.ieee.org/abstract/document/10218294
https://doi.org/10.1145/3315572
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Comparing+Platform-aware+Control+Design+Flows+for+Composable+and+Predictable+TDM-based+Execution+Platforms&btnG=
https://dl.acm.org/doi/10.1145/3315572
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Implementasi+Model+In+The+Loop+%28Mil%29+Dan+Hardware+In+The+Loop+%28Hil%29+Sebagai+Sarana+Penunjang+Praktikum&btnG=
https://e--prosiding-poliban-ac-id.translate.goog/index.php/snrt/article/view/244?_x_tr_sl=id&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=sc
https://doi.org/10.3390/s21144675
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Investigation+of+Timing+Behavior+and+Jitter+in+a+Smart+Inertial+Sensor+Debugging+Architecture&btnG=
https://www.mdpi.com/1424-8220/21/14/4675
https://doi.org/10.1109/RSP51120.2020.9244851
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Advanced+Debugging+Architecture+for+Smart+Inertial+Sensors+using+Sensor-in-the-Loop&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Advanced+Debugging+Architecture+for+Smart+Inertial+Sensors+using+Sensor-in-the-Loop&btnG=
https://ieeexplore.ieee.org/document/9244851

Patnaikuni Dinkar R. Patnaik & Sachin R. Gengaje / IJEEE, 11(5), 53-59, 2024

59

[7] Dusarlapudi Kalyan et al., “Model-Based Design Accelerometer Control System in EV-ECU for HIL Testing,” 2023 International

Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE), Bengaluru, India, pp. 150-

154, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[8] B. Aravind Krishnan, and Anju S. Pillai, “Digital Sensor Simulation Framework for Hardware-in-the-Loop Testing,” 2017 International

Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), Kerala, India, pp. 813-817, 2017. [CrossRef]

[Google Scholar] [Publisher Link]

[9] Henrique Magnag et al., “HIL-Based Certification for Converter Controllers: Advantages, Challenges and Outlooks (Invited Paper),” 2021

21st International Symposium on Power Electronics (Ee), Novi Sad, Serbia, pp. 1-6, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[10] Antonio Parejo et al., “Raspberry Pi-Based Cluster Network for the Emulation of Sensor Networks in Remote Teaching,” 2022 Congreso

de Tecnología, Aprendizaje y Enseñanza de la Electrónica (XV Technologies Applied to Electronics Teaching Conference), Teruel, Spain,

pp. 1-5, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[11] James T. Meech, and Phillip Stanley-Marbell, “An Algorithm for Sensor Data Uncertainty Quantification,” IEEE Sensors Letters, vol. 6,

no. 1, pp. 1-4, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[12] Georgios Kokkinis et al., “High-Speed, Real Time Sensor Data Acquisition and Transfer Based on the Raspberry Pi Single Board

Computer,” 2023 International Balkan Conference on Communications and Networking (BalkanCom), İstanbul, Turkiye, pp. 1-4, 2023.

[CrossRef] [Google Scholar] [Publisher Link]

[13] Sheikh Badar ud din Tahir, Ahmad Jalal, and Kibum Kim, “Daily Life Log Recognition Based on Automatic Features for Health Care

Physical Exercise via IMU Sensors,” 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST),

Islamabad, Pakistan, pp. 494-499, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[14] Wenbing Zhao et al., “A Blockchain-Facilitated Secure Sensing Data Processing and Logging System,” IEEE Access, vol. 11, pp. 21712-

21728, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[15] Zhan Zhang et al., “Efficient Hardware Redo Logging for Secure Persistent Memory,” 2021 IEEE 23rd International Conference on High-

Performance Computing & Communications, 7th International Conference on Data Science & Systems, 19th International Conference on

Smart City, 7th International Conference on Dependability in Sensor, Cloud & Big Data Systems & Application

(HPCC/DSS/SmartCity/DependSys), Haikou, China, pp. 41-48, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[16] Andrey A. Efanov, Sergey A. Ivliev, and Alexey G. Shagraev, “Welford’s Algorithm for Weighted Statistics,” 2021 3rd International

Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE), Moscow, Russia, pp. 1-5, 2021. [CrossRef] [Google

Scholar] [Publisher Link]

https://doi.org/10.1109/IITCEE57236.2023.10091049
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Model-Based+Design+Accelerometer+Control+System+in+EV-ECU+For+HIL+Testing&btnG=
https://ieeexplore.ieee.org/document/10091049
https://doi.org/10.1109/ICICICT1.2017.8342669
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Digital+sensor+simulation+framework+for+hardware-in-the-loop+testing&btnG=
https://ieeexplore.ieee.org/document/8342669
https://doi.org/10.1109/Ee53374.2021.9628196
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=HIL-based+certification+for+converter+controllers%3A+Advantages%2C+challenges+and+outlooks+%28Invited+Paper%29&btnG=
https://ieeexplore.ieee.org/document/9628196
https://doi.org/10.1109/TAEE54169.2022.9840573
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Raspberry+Pi-based+cluster+network+for+the+emulation+of+sensor+networks+in+remote+teaching&btnG=
https://ieeexplore.ieee.org/document/9840573
https://doi.org/10.1109/LSENS.2021.3133761
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Algorithm+for+Sensor+Data+Uncertainty+Quantification&btnG=
https://ieeexplore.ieee.org/document/9647933
https://doi.org/10.1109/BalkanCom58402.2023.10167878
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=High-Speed%2C+Real+Time+Sensor+Data+Acquisition+and+Transfer+based+on+the+Raspberry+Pi+Single+Board+Computer&btnG=
https://ieeexplore.ieee.org/document/10167878
https://doi.org/10.1109/IBCAST51254.2021.9393204
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Daily+life+Log+Recognition+based+on+Automatic+Features+for+Health+care+Physical+Exercise+via+IMU+Sensors&btnG=
https://ieeexplore.ieee.org/document/9393204
https://doi.org/10.1109/ACCESS.2023.3252030
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Blockchain-Facilitated+Secure+Sensing+Data+Processing+and+Logging+System&btnG=
https://ieeexplore.ieee.org/document/10058513
https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys53884.2021.00033
https://scholar.google.com/scholar?q=Efficient+Hardware+Redo+Logging+for+Secure+Persistent+Memory&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/document/9780904
https://doi.org/10.1109/REEPE51337.2021.9387973
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Welford%E2%80%99s+algorithm+for+weighted+statistics&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Welford%E2%80%99s+algorithm+for+weighted+statistics&btnG=
https://ieeexplore.ieee.org/document/9387973

